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Abstract
Let R be a commutative ring with unity, M be a unitary R-module and G a finite abelian
group (viewed as a Z-module). The main objective of this paper is to study properties of
mod-annihilators of M . For x ∈ M , we study the ideals [x : M] = {r ∈ R | rM ⊆ Rx} of
R corresponding to mod-annihilator of M . We investigate as when [x : M] is an essential
ideal of R. We prove that the arbitrary intersection of essential ideals represented by mod-
annihilators is an essential ideal. We observe that [x : M] is injective if and only if R is
non-singular and the radical of R/[x : M] is zero. Moreover, if essential socle of M is non-
zero, thenwe show that [x : M] is the intersection ofmaximal ideals and [x : M]2 = [x : M].
Finally, we discuss the correspondence of essential ideals of R and vertices of the annihilating
graphs realized by M over R.
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Mathematics Subject Classification Primary 13C70 · 05C25

1 Introduction

A nonzero ideal in a commutative ring is called essential if it intersects with every other
nonzero ideal nontrivially. The study of essential ideals in a ring R is a classical problem.
For instance, Green and Van Wyk in [8] characterized essential ideals in certain classes
of commutative and non-commutative rings. The authors in [5, 12] studied essential ideals
in C(X), where C(X) denotes the set of continuous functions on X . They topologically
characterized the scole and essential ideals. Moreover, essential ideals have been investigated
in rings of measurable functions [14] and C∗-algebras [11]. For more on essential ideals, see
[4, 9, 10, 21].
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Throughout, R is a commutative ring (with 1 �= 0) and all modules are unitary unless
otherwise stated. [N : M] = {r ∈ R | rM ⊆ N } denotes an ideal of R. The symbols ⊆ and
⊂ have usual set theoretic meaning as containment and proper containment. We will denote
the ring of integers by Z, positive integers by N and the ring of integers modulo n by Zn . For
basic definitions from ring and module theory we refer to [7, 25].

For a R-module M and x ∈ M , set [x : M] = {r ∈ R | rM ⊆ Rx}, which clearly is
an ideal of R and an annihilator of the factor module M/Rx , whereas the annihilator of M
denoted by ann(M) is [0 : M].

Recently in [17], the elements of a module M have been classified into full-annihilators,
semi-annihilators and star-annihilators. We recall a definition concerning full-annihilators,
semi-annihilators and star-annihilators of a module M .

Definition 1.1 An element x ∈ M is a

(i) full-annihilator, if either x = 0 or [x : M][y : M]M = 0, for some nonzero y ∈ M
with [y : M] �= R,

(ii) semi-annihilator, if either x = 0 or [x : M] �= 0 and [x : M][y : M]M = 0, for some
nonzero y ∈ M with 0 �= [y : M] �= R,

(iii) star-annihilator, if either x = 0 or ann(M) ⊂ [x : M] and [x : M][y : M]M = 0, for
some nonzero y ∈ M with ann(M) ⊂ [y : M] �= R.

We denote by A f (M), As(M) and At (M), respectively, the sets of full-annihilators,
semi-annihilators and star-annihilators for any module M over R and call these annihilators
as mod-annihilators. We set Â f (M) = A f (M)/{0}, Âs(M) = As(M)/{0} and Ât (M) =
At (M)/{0}.

This paper is organized as follows. In Sect. 2, we study the correspondence of essential
ideals in R and submodules of M represented by mod-annihilators. For some finite abelian
group G (viewed as a Z-module), we determine the value of n such that [x : G] = nZ,
where x ∈ G. We characterize all Z-module M such that [x : M] is an essential ideal of
R. Furthermore, we discuss when [x : M] as a R-module is injective. Also, if essential
socle of M is non-zero, then we prove that [x : M] is the intersection of maximal ideals
and [x : M]2 = [x : M]. In Sect. 3, we discuss the correspondence of essential ideals of R
and the vertices of the annihilating graphs realized by modules over commutative rings. We
conclude this paper with a discussion on some problems in this area of research.

2 Essential ideals represented bymod-annihilators

In this section, we discuss the correspondence of essential ideals in R represented by elements
of Â f (M), and submodules ofM generated by elements of Â f (M).We characterize essential
ideals corresponding to Z-modules. We discuss the cases of finite abelian groups where
essential ideals which are represented by elements of Â f (M) corresponding to submodules

of M are isomorphic. If M is a non-simple R-module, then for x ∈ Â f (M), we show that
an ideal [x : M] considered as an R-module is injective. We also study essential ideals
represented by mod-annihilators over hereditary and regular rings.

By Definition 1.1, we see that there is a correspondence of ideals in R represented by
elements of Â f (M), Âs(M), and Ât (M) and cyclic submodules of M generated by elements

of sets Â f (M), Âs(M), and Ât (M). Furthermore, the containment At (M) ⊆ As(M) ⊆
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A f (M) is clear, so our main emphasis is on the set Â f (M). However, one can study these
sets separately for any module M .

Let λ = (λ1, λ2, . . . , λr ) be a partition of n denoted by λ � n. For any μ � n, we have an
abelian group of order pn and conversely every abelian group corresponds to some partition
of n. In fact, if Hμ,p = Z/pμ1Z ⊕ Z/pμ2Z ⊕ · · · ⊕ Z/pμr Z is a subgroup of Gλ,p =
Z/pλ1Z⊕Z/pλ2Z⊕· · ·⊕Z/pλr Z, thenμ1 ≤ λ1, μ2 ≤ λ2, . . . , μr ≤ λr . If these inequali-
ties hold, we writeμ ⊂ λ, that is a “containment order”on partitions. For example, a p-group
Z/p5Z ⊕ Z/pZ ⊕ Z/pZ is of type λ = (5, 1, 1). The possible types for its subgroup are
(5, 1, 1), (4, 1, 1), (3, 1, 1), (2, 1, 1), (1, 1, 1), 2(5, 1), 2(4, 1), 2(3, 1), 2(2, 1), 2(1, 1), (5),
(4), (3), (2), 2(1). Note that the types (5, 1), (4, 1), (3, 1), (2, 1), (1, 1) are appearing twice
in the sequence of partitions for a subgroup.

Let λ = (1, 1, . . . , 1) = (1n). A group of type λ is nothing but the Z/pZ-vector space
Z/pZ ⊕ Z/pZ ⊕ · · · ⊕ Z/pZ. Its subgroups are of type (1r ), where 0 ≤ r ≤ n. The
essential ideals corresponding to subspaces of vector space Z/pZ ⊕ Z/pZ ⊕ · · · ⊕ Z/pZ

(represented by elements of the set A f (Z/pZ ⊕ Z/pZ ⊕ · · · ⊕ Z/pZ) are same. In fact,
[x : Z/pZ ⊕ Z/pZ ⊕ · · · ⊕ Z/pZ] = ann(Z/pZ ⊕ Z/pZ ⊕ · · · ⊕ Z/pZ) = pZ.

More generally, for a finite abelain p-group of the type Z/pα
Z ⊕ Z/pα

Z · · · ⊕ Z/pα
Z,

where α ≥ 2, the essential ideals represented by elements of the set A f (Z/pα
Z⊕Z/pα

Z⊕
· · · ⊕ Z/pα

Z) = pα
Z.

A finite abelian p-group is isomorphic to the group of the form Z/pα1Z ⊕ Z/pα2Z ⊕
· · · ⊕ Z/pαnZ whereas a finitely generated abelian p-group with Betti number n is of the
fromZ/pα1Z⊕Z/pα2Z⊕· · ·⊕Z/pαnZ⊕Z⊕· · ·⊕Z. It is very difficult to determine the exact
ideals represented by mod-annihilators of sets A f (Z/pα1Z⊕Z/pα2Z⊕· · ·⊕Z/pαnZ) and
A f (Z/pα1Z⊕Z/pα2Z⊕· · ·⊕Z/pαnZ⊕Z⊕· · ·⊕Z). However, it is clear from the definition
ofmod-annihilators that for some x ∈ A f (Z/pα1Z⊕Z/pα2Z⊕· · ·⊕Z/pαnZ⊕Z⊕· · ·⊕Z),
[x : Z/pα1Z ⊕ Z/pα2Z ⊕ · · · ⊕ Z/pαnZ ⊕ Z ⊕ · · · ⊕ Z] is some ideal in Z.

Using the description given above, we now characterize all essential ideals represented
by elements of Â f (M) and corresponding to Z-modules.

Lemma 2.1 If M is any Z-module, then [x : M] is an essential ideal if and only if [x : M] is
non-zero for all x ∈ Â f (M).

Proof Let M be a Z-module. Clearly, M is an abelian group in a unique way. For all x ∈
Â f (M), we have [x : M] = nZ, n ∈ N. The ideal nZ intersects non-trivially with any ideal
mZ, m ∈ N in Z. So, if M is a non-simple Z-module, then for every x ∈ M , it follows that
[x : M] is an essential ideal. Note that M is simple if and only if Â f (G) = ∅.

If possible, suppose [x : M] = {0}, then [x : M] does not intersect non-trivially with
non-trivial ideals of Z, a contradiction. �


Since it is possible to have some finitely generated Z-modules such that the set of mod-
annihilators is equal to zero only which of course by definition is not an essential ideal.
Consider a Z-module M = Z ⊕ Z ⊕ · · · ⊕ Z, which is a direct sum of n copies of Z. It is
easy to verify that Â f (M) = ̂M with [x : M][y : M]M = 0 for all x, y ∈ M . The cyclic

submodules generated by elements of Â f (M) are simply lines with integral coordinates
passing through the origin in the hyperplane R ⊕ R ⊕ · · · ⊕ R and these lines intersect at the
origin only. Thus, for each x ∈ M , it follows that [x : M] is not an essential ideal in Z. In
fact [x : M] is a zero-ideal in Z.

For any R-module M and x ∈ Â f (M), it would be interesting to characterize essential

ideals [x : M] represented by elements of Â f (M) such that the intersection of all essential
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ideals is again an essential ideal. It is easy to see that a finite intersection of essential ideals
in any commutative ring is an essential ideal. But an infinite intersection of essential ideals
need not to be an essential ideal, even a countable intersection of essential ideals in general
is not an essential ideal, as can be seen in [5]. If the cardinality of M is finite over R,
then the submodules determined by elements of Â f (M) are finite and therefore the ideals
corresponding to submodules are finite in number. Thus, we conclude that for every x ∈
Â f (M), the intersection of essential ideals [x : M] in R is an essential ideal. For the other
case, that is, if the cardinality of M is infinite over R, we have the following result. Note that,
a nonzero submodule of a module M is said to be an essential submodule of M if it intersects
non-trivially with other nonzero submodules of M .

Theorem 2.2 Let M be an R-module such that every proper submodule of M is cyclic over
R. For x ∈ Â f (M), if the submodule generated by x intersects non-trivially with every other
nonzero submodule of M, then [x : M] is an essential ideal in R.

Proof Assume that
⋂

0 �=x∈M Rx �= 0. If Â f (M) = φ, then M is simple, a contradiction. Let

x ∈ Â f (M) and let Rx be the submodule generated by x . Since Rx intersects non-trivially

with every other submodule, so there exists y ∈ Â f (M) such that Rx ∩ Ry �= 0. It suffices
to prove the result for Rx ∩ Ry. Let z ∈ Rx ∩ Ry and let [x : M], [y : M], [z : M] be ideals
of R corresponding to submodules Rx , Ry and Rz. Then [z : M] ⊆ [x : M] ∩ [y : M] �= 0,
which implies [x : M] intersects non-trivially with every nonzero ideal corresponding to the
submodule generated by an element of Â f (M). For any other ideal I of R, it is clear that
I M = {∑ f ini te am : a ∈ I , m ∈ M} = Ra for some a ∈ M . Thus I corresponds to the
cyclic submodule generated by a ∈ M . It follows that [x : M] ∩ I �= 0, for every nonzero
ideal of R and we conclude that [x : M] is an essential ideal for each x ∈ Â f (M). �


The converse of Theorem 2.2 is not true in general.We can easily construct examples from
Z-modules such that an ideal corresponding to the submodule generated by some element of
Â f (M) is an essential ideal, but the intersection of all submodules determined by elements

of Â f (M) is empty. However, if every ideal [x : M], where x ∈ Â f (M), corresponds to an
essential submodule of M , then we have a non-zero intersection.

Corollary 2.3 Let M be an R-module.

(i) For x ∈ Â f (M), if the cyclic submodule Rx intersects with every other cyclic nonzero
submodule of M non-trivially, then [x : M] is an essential ideal in R.

(ii) The intersection
⋂

x∈ ̂A f (M)
[x : M] is an essential ideal in R if and only if every sub-

module of M is essentially cyclic over R.

In the preceding results, we proved that “arbitrary intersection of essentials ideals is an
essential ideal”. We formulated this theory of essential ideals using the concept of mod-
annihilators and mainly the theory involves study of cyclic submodules of M . It is interesting
to develop a similar theory that would employ the other finitely generated submodules of M .
So, motivated by [5], we have the following question regarding essential ideals represented
by elements of ̂A f (MN ), where ̂A f (MN ) = {r ∈ R | rM ⊆ N }, N is a finitely generated
submodule of M .

Problem 2.4 Let M be an R-module. For x ∈ ̂A f (MN ), characterize essential ideals [x : M]
in R such that their intersection is an essential ideal.
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For an R-module M , let Z(M) denote the following.

Z(M) = {m ∈ M : ann(m) is an essential ideal in R}.
If Z(M) = M , then M is said to be singular and if Z(M) = 0, then M is said to be
non-singular. By rad(M), we denote the intersection of all maximal submodules of M . So,
rad(R) is the Jacobson radical J (R) of a ring R. The socle of an R-module M denoted
by Soc(M) is the sum of simple submodules or equivalently the intersection of all essential
submodules. To say that Soc(M) is an essential socle is equivalent to saying that every cyclic
submodule of M contains a simple submodule of M . An essential socle of M is denoted by
essoc(M).

Lemma 2.5 Let M be an R-module with essoc(M) �= 0,
⋂

0 �=x∈M Rx �= 0. Then for x ∈
Â f (M), R/[x : M] is a singular module.

Proof Since
⋂

0 �=x∈M Rx �= 0 and essoc(M) �= 0, therefore, Â f (M) �= ∅. Thus, [x : M]
is an essential ideal. Moreover, Z

(

R/[x : M]) = R/[x : M]. Therefore, R/[x : M] is a
singular module. �


A ring R is said to be a regular ring if for all a ∈ R, a2x = a for some x ∈ R.

Lemma 2.6 [24] A commutative ring R with unity is regular if and only if every simple
R-module is injective.

Now, we consider singular simple R-modules (ideals) which are injective, and obtain
some properties of essential ideals corresponding to submodules generated by elements of
Â f (M).

Theorem 2.7 Let M be an R-module with essoc(M) �= 0 and
⋂

0 �=x∈M Rx �= 0. Then every

singular simple R-module [x : M], x ∈ Â f (M) is injective if and only if Z(R) = 0 and
rad(R/[x : M]) = 0.

Proof We have essoc(M) �= 0 and
⋂

0 �=x∈M Rx �= 0, so that Â f (M) �= ∅. Therefore
corresponding to every cyclic submodule generated by elements of Â f (M), we have an ideal

in R. For x ∈ Â f (M), suppose all singular simple R-modules [x : M] are injective. If

for some z ∈ Â f (M), I = [z : M] ⊆ Z(R) is a simple R-module, then Z(I ) = I . This
implies that I is injective and thus a direct summand of R. However, the set Z(R) is free from
nonzero idempotent elements. Therefore, I = 0 and so Z(R) = 0. For x ∈ Â f (M), clearly
A = [x : M] is an essential ideal of R. Thus, by Lemma 2.5, R/A is a singular module
and so is every submodule of R/A. Therefore every simple submodule of R/A is injective,
which implies that every simple submodule is excluded by some maximal submodule. Thus
we conclude that rad(R/A) = 0.

For the converse, we again consider the correspondence of cyclic submodules of M and
ideals of R. Let Ĩ be a singular simple R-module corresponding to the submodule of M . In
order to show that Ĩ is injective, we must show that for every essential ideal A in R corre-
sponding to the submodule determined by an element x ∈ Â f (M), every ϕ ∈ HomR(A, Ĩ )
has a lift ψ ∈ HomR(R, Ĩ ) such that the following diagram commutes.

123



52 Page 6 of 9 R. Raja, S. Pirzada

A R

Ĩ

i

ϕ
ψ

Let K = ker(ϕ). We claim that K is an essential ideal of R. For, if K ∩ J = {0}, for
some nonzero ideal J of R, then I ∗ = J ∩ A �= 0 and I ∗ ∩ K = {0}. This implies that
I ∗ ⊆ ϕ(I ∗) ⊆ Ĩ , a contradiction, since Ĩ is a singular simple submodule and Z(R) = 0.
For μ �= 0, it is clear that ϕ induces an isomorphism μ : A/K −→ Ĩ . So, A/K is a simple
R-submodule of R/K . By our assumption, rad(R/K ) = 0, so there is a maximal submodule
M/K such that R/K = A/K ⊕ M/K . Let g : R −→ R/K be a canonical map and let
p : R/K −→ A/K be a projection map. Then, we have pg : R −→ A/K . Therefore
the composition ψ = μpg : R −→ Ĩ is the required lift such that the above diagram
commutes. �


Now, we discuss some interesting consequences of the preceding theorem.

Theorem 2.8 Let M be an R-module with essoc(M) �= 0,
⋂

0 �=x∈M Rx �= 0 and for x ∈
Â f (M), let every singular simple R-module [x : M] be injective. Then every ideal [x : M]
is an intersection of maximal ideals, J (R)2 = 0 and [x : M]2 = [x : M].
Proof For any x ∈ Â f (M), clearly [x : M] is an essential ideal in R. Therefore, J (R) ⊆ [x :
M], since J (R) is contained in every essential ideal of R. On the other hand, intersection of
all essential ideals in R is Socle of R, therefore J (R) ⊆ Soc(R). This implies that J (R)2 = 0
and [x : M] is the intersection of maximal ideals in R. Suppose that [x : M]2 �= [x : M], for
an essential ideal [x : M] of R. By Theorem 2.7, Z(R) = 0 and therefore for every essential
ideal I , we have I ⊆ I 2. In particular, [x : M] ⊆ [x : M]2 for each x ∈ Â f (M). It follows
that [x : M]2 is an essential ideal and is the intersection of maximal ideals in R. Finally, if
y ∈ [x : M]2, y /∈ [x : M], there is some maximal ideal P of R such that [x : M] ⊆ P ,
y /∈ P . Then R = Ry + P , that is, 1 = ry + m. This implies that y = yry + ym ∈ P , a
contradiction. Hence we conclude that [x : M]2 = [x : M]. �

Corollary 2.9 Let M be an R-module, where R is hereditary. For x ∈ Â f (M), if [x : M]
is an essential ideal of R and J (R)2 = 0, then every singular simple R-module [x : M] is
injective.

Proof Let R be hereditary. From [7], the exact sequence

0 −→ ann(x) −→ R −→ Rx −→ 0

splits for any x ∈ R. Since J (R)2 = 0 and R/J (R) is an artinian ring, therefore J (R) ⊆
Soc(R). But any essential ideal of R contains Soc(R). So, J (R) ⊆ [x : M]. This implies
that R/[x : M] is a completely reducible R-module and therefore rad(R/[x : M]) = 0.
Thus, by Theorem 2.7, every singular simple R-module [x : M] is injective. �


Next, we consider the modules over regular rings.

Theorem 2.10 Let M be an R-module such that every submodule of M is cyclic over R and
⋂

0 �=x∈M Rx �= 0. The following are equivalent.

(i) R is regular.
(ii) A2 = A for each ideal A of R.
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(iii) [x : M]2 = [x : M] for each x ∈ Â f (M).

Proof The equivalence of (i) and (ii) is clear and certainly (ii) implies (iii). Thus, we just
need to show that (iii) implies (ii). By Theorem 2.7, [x : M] is an essential ideal for each
x ∈ Â f (M). Suppose that [x : M]2 = [x : M]. Choose J to be maximal ideal of R such that
A ∩ J = 0, where A is some non essential ideal of R. Then A + J is an essential ideal of
R. Therefore, again by Theorem 2.7, A + J corresponds to some submodule of M and we
have A + J = [z : M] for some z ∈ M . So, (A + J )2 = A2 + J 2 = A + J . If x ∈ A, then
x = ∑

f ini te ab + ∑

f ini te mn, where a, b ∈ A and m, n ∈ J . Therefore,

x −
∑

f ini te

ab =
∑

f ini te

mn ∈ A ∩ J = 0.

This implies that x ∈ A2 and we conclude that A = A2. �

Corollary 2.11 Let M be an R-module with essoc(M) �= 0 and

⋂

x∈M Rx �= 0. Then every

singular simple R-module [x : M], where x ∈ Â f (M), is injective if and only if R is regular.

Proof By Theorem 2.8, if every singular simple R-module [x : M] is injective, then for
x ∈ Â f (M), we have [x : M]2 = [x : M]. Therefore, by Theorem 2.10, R is regular. If R is
regular, then by Lemma 2.6 every simple R-module is injective. �


3 Representation of essential ideals by vertices of annihilating graphs

In this section, we give a brief discussion on representation of essential ideals by vertices of
graphs realized by modules over commutative rings.

A simple graph � consists of avertex set V (�) and an edge set E(�),where an edge is an
unordered pair of distinct vertices of�. One of the areas in algebraic combinatorics introduced
by Beck [6] is to study the interplay between graph theoretical and algebraic properties of an
algebraic structure. Continuing the concept of associating a graph to an algebraic structure,
another combinatorial approach of studying commutative rings was given by Anderson and
Livingston in [2]. They associated a simple graph to a commutative ring R with unity called
the zero-divisor graph denoted by �(R) with vertex set Z∗(R) = Z(R)/{0}, where two
distinct vertices x, y ∈ Z∗(R) are adjacent in �(R) if and only if xy = 0. The study of
graph theoretical parameters and spectral properties in zero-divisor graphs of commutative
rings are explored in [1–3, 15, 16, 18, 20, 22]. In [2, 18], authors have discussed chromatic
number, clique number and metric dimensions of zero-divisor graphs associated with finite
commutative rings whereas [16, 22] are related to eigenvalues and Laplacian eigenvalues of
zero-divisor graphs associated to finite commutative rings of typeZn for n = pN1qN2 , where
p < q are primes and N1, N2 are positive integers. The extension of zero-divisor graphs to
non-commutative rings and semigroups can be found in [13, 23].

The combinatorial properties of zero-divisors discovered in [6] have also been investigated
in module theory. In [17], the authors introduced annihilating graphs realized by modules
over commutative rings known as full-annihilating, semi-annihilating and star-annihilating
graphs, denoted by ann f (�(M)), anns(�(M)) and annt (�(M)). The vertices of annihilating

graphs are elements of sets Â f (M), Âs(M) and Ât (M) respectively, where two vertices x and
y are adjacent if and only if [x : M][y : M]M = 0. The three simple graphs: full-annihilating,
semi-annihilating and star-annihilating with vertex sets: Â f (M), Âs(M), Ât (M) are natural
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generalizations of the zero-divisor graph introduced in [2]. This concept was further studied
in [19].

We call a vertex x , an essential vertex in ann f (�(M)) if the ideal represented by x is
essential in R. Recall that a graph � is said to be a complete if there is an edge between every
pair of distinct vertices.

By Definition 1.1, we see the containment annt (�(M)) ⊆ anns(�(M)) ⊆ ann f (�(M))

as induced subgraphs of the graph ann f (�(M)), since At (M) ⊆ As(M) ⊆ A f (M). If

ann f (�(M)) is a finite graph, then by [17,Theorem 3.3 and Example 2.2], | Â f (M)| =
| Âs(M)| and annihilating graphs ann f (�(M)), anns(�(M)) coincide, whereas the graph

annt (�(M)) with vertex set Ât (M) may be different. For a Z-module M = Z ⊕ · · · ⊕ Z,
we have by Definition 1.1, [x : M][y : M]M = 0 for all x, y ∈ Â f (M). Therefore
ann f (�(M)) is a complete graph whereas the graph anns(�(M)) is an empty graph. Thus
for finitely generated infinite modules, graphs ann f (�(M)) and anns(�(M)) are different.

As discussed in Sect. 2, for a module M = Z ⊕ · · · ⊕ Z, the ideal [x : M] represented
by a vertex x ∈ Â f (M) of the graph ann f (�(M)) is not an essential ideal. So, x is not an
essential vertex of the graph ann f (�(M)). On the other hand, every vertex of a Z-module
Zp ⊕ Zq is an essential vertex of the graph ann f (�(Zp ⊕ Zq)), where p and q are any two
primes.

Finally, Problem 2.4 can be restated in the graph theoretical version as follows.

Problem 3.1 Characterize all annihilating graphs realized by a module M such that every
vertex x ∈ ̂A f (MN ) of an annihilating graph is an essential vertex.

4 Conclusion

In this paper,we formulated anewapproachof recognitionof essential ideals in a commutative
ring R. This formulation of essential ideals corresponds to mod-annihilators of a R-module
M . It is interesting to characterize essential ideals such that their arbitrary intersection is an
essential ideal, since it is specified in [5] that an arbitrary intersection of essential ideals may
not be an essential ideal. Furthermore, we obtained the results related to ideals [x : M] of R,
where x is a mod-annihilator ofM and discussed the representation of vertices of annihilating
graphs by essential ideals of R. Apart from the research problems which we mentioned in
Sects. 2 and 3, the following problems could be investigated for the future work.
1.LetG be a finite abelian p-group (viewed as a finiteZ-module) of rank at least 3. Determine
the value of n for the essential ideal [x : G] = nZ, where x ∈ G.
2. Let G be any finite abelian group (viewed as a finite Z-module). Determine the value of n
for the essential ideal [x : G] = nZ, where x ∈ G.
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