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Abstract
In a Banach algebra A it is well known that the usual spectrum has the following property:

σ(ab) \ {0} = σ(ba) \ {0}
for elements a, b ∈ A. In this note we are interested in subsets of A that have the Jacobson
Property, i.e. X ⊂ A such that for a, b ∈ A:

1 − ab ∈ X �⇒ 1 − ba ∈ X .
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1 Preliminaries

All algebras in this paper are complex and unital. Denote by A−1 the group of invertible
elements in a Banach algebra A and by σA(a) = {λ ∈ C : λ − a /∈ A−1} the ordinary
spectrum of a ∈ A. When no confusion can arise we write simply σ(a). Denote by A−1

�

and by A−1
r the left and right invertibles respectively. If K ⊂ C , we use the symbol acc K

to indicate the set of accumulation points of K and the symbol iso K for the set of isolated
points of K . The topological boundary is denoted by ∂K and the closure by K . If X ⊂ A we
say that X has the Jacobson Property, if for a, b ∈ A:

1 − ab ∈ X �⇒ 1 − ba ∈ X . (1)

By an ideal in A we mean a two-sided ideal. An ideal J in A is said to be inessential [1], p.
106 if

a ∈ J �⇒ acc σ(a) ⊂ {0},
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so that the spectrum of an element of J is either finite or a sequence converging to zero. The
collection of all inessential elements in A will be denoted by I(A). Note that I(A) = {a ∈
A : acc σ(a) ⊂ {0}}. An element a ∈ A is quasinilpotent if σ(a) = {0}. The collection of
these elements will be denoted by QN(A). We say a ∈ A is almost invertible if 0 /∈ acc σ(a).
The set of almost invertible elements in A will be denoted by Aai.

If A is a ring or an algebra, we call an element a ∈ A regular if it has a generalised inverse,
b ∈ A for which a = aba, and we write

̂A = {a ∈ A : a ∈ aAa} (2)

for the collection of regular elements. These include both the left and right invertible elements,

A−1
� ∪ A−1

r ⊂ ̂A (3)

as well as the idempotents,
A• = {

a ∈ A : a = a2
}

. (4)

The decomposably regular elements are those which admit invertible generalised inverses;
they are precisely those elements which can be written as a product of an invertible and an
idempotent:

A−1A• = A•A−1 = {

a ∈ A : a ∈ aA−1a
} ⊂ ̂A. (5)

Notice that
A−1

� ∩ A−1
r = A−1

� ∩ A−1A• = A−1
r ∩ A−1A• = A−1. (6)

For our next observation one needs completeness. So, if A is a Banach algebra, then by
[7, Theorem 7.3.4]

A−1A• = ̂A ∩ A−1. (7)

The following notion finds most of its application in the setting of commutative rings and
algebras. As the author of [11] comments in that article, it is fine to use it in a noncommutative
setting if needed. We will illustrate one such use later in this article.

Definition 1.1 Let I be an ideal in a Banach algebra A. I is subprime if ab ∈ I �⇒ a ∈ I
or b ∈ I .

The notion of a subprime ideal defined above coincides with that of a prime ideal in a
commutative ring or algebra. The generalization of the notion of prime ideal to a (possibly
noncommutative) ring or algebra is different from the notion of prime in a commutative ring
or algebra. As one would expect, the more general definition of a prime ideal is equivalent
to the idea of a prime ideal if the ring or algebra happens to be commutative.

Definition 1.2 [13, Definition 6.1] A nonempty subset R of a Banach algebra A is called a
regularity if it satisfies the following two conditions:

(i) if a ∈ A, n ∈ N then a ∈ R ⇐⇒ an ∈ R;
(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1 then a, b ∈

R ⇐⇒ ab ∈ R.

It is easy to see that the following theorem holds.

Theorem 1.1 [13, Theorem6.4] Let R be a nonempty subset of aBanach algebra A satisfying:

ab ∈ R ⇐⇒ a, b ∈ R (P1)

for all commuting elements a, b ∈ A. Then R is a regularity.
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A regularity that satisfies the condition of the above theorem will be called a (P1) regularity.
The definition of a regularity can be divided into two parts as follows:

Definition 1.3 [13, Definition 23.1] A nonempty subset R in a Banach algebra A will be
called a lower semiregularity if it satisfies the following conditions:

(i) a ∈ A, n ∈ N and an ∈ R ⇒ a ∈ R,
(ii) if a, b, c, d are commuting elements of A and ac + bd = 1, then ab ∈ R ⇒ a ∈

R and b ∈ R.

If a nonempty subset R in A satisfies

a, b ∈ A, ab = ba, ab ∈ R ⇒ a ∈ R and b ∈ R (P1)

then clearly it is a lower semiregularity, see [13, Remark 23.3]

Definition 1.4 [13, Definition 23.10] A nonempty subset R in a Banach algebra A is called
an upper semiregularity if it satisfies the following conditions:

(i) a ∈ R, n ∈ N ⇒ an ∈ R,
(ii) if a, b, c, d are commuting elements of A and ac + bd = 1, then a, b ∈ R ⇒ ab ∈ R,
(iii) R contains a neighbourhood of the unit element 1.

It is not difficult to see that any semigroup containing a neighbourhood of the identity is an
upper semiregularity, see [13, Remark 23.11]. Any subset R in A assigns to each a ∈ A a
subset of C defined by

σR(a) = {λ ∈ C : λ − a /∈ R}.
This mapping will be called the spectrum corresponding to R. If R is a regularity or a
semiregularity then the spectrum σR has interesting properties, see [13, sections 6, 23]. Our
interest in the Jacobson Property is the following: Let R be a nonempty subset of a Banach
algebra A. Then

R has the Jacobson Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}
for all a, b ∈ A

The fact that the invertible group A−1 in A has the Jacobson Property follows from
[1, Lemma 3.1.2]. In [13] there are many examples of subsets in a Banach algebra possessing
the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A. We denote the quotient Banach
algebra by A/I . The canonical homomorphism π : A → A/I is defined by π(a) = a + I
for a ∈ A. We define the sets:

��(I ) =
{

a ∈ A : a + I ∈ (A/I )−1
�

}

,

�r (I ) = {

a ∈ A : a + I ∈ (A/I )−1
r

}

and

�(I ) = {

a ∈ A : a + I ∈ (A/I )−1}

If a ∈ ��(I ) we call a left Fredholm relative to I. If a ∈ �r (I ) we call a right Fredholm
relative to I. Finally, if a ∈ �(I ) we call a Fredholm relative to I.

Denote the ideal π−1(Rad(A/I )) by kh(I ). This is the largest ideal consisting of Riesz
elements relative to the ideal I . We say that a ∈ A is Riesz relative to I if a+ I ∈ QN(A/I ).
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IfR(I ) denotes the collection of Riesz elements relative to I , thenR(I ) = π−1(QN(A/I )).
It is easy to see that

I ⊂ kh(I ) ⊂ R(I )

and if I is a closed inessential ideal in A, then one can prove, [1,Corollary 5.7.5], that

I ⊂ kh(I ) ⊂ R(I ) ⊂ I(A).

Let I be an ideal in a Banach algebra A. A function τ : I → C is called a trace on I if τ

is linear, τ(p) = 1 for every rank one idempotent p ∈ I and τ(ab) = τ(ba) for all a ∈ I
and b ∈ A. We shall refer to an ideal on which a trace is defined as a trace ideal. If I is a
trace ideal in A, then it is possible to define an index function ι on �(I ), see [4,Definition
3.3]. This abstract index function has all the properties that the index function defined on the
collection of Fredholm operators defined on a Banach space has, see [4, 5].

The left socle of A is the sum of all the minimal left ideals of A. The right socle of A is
the sum of all minimal right ideals of A. If the left and right socle of A coincide then their
common value is called the socle of A. We denote the socle of A by Soc(A).

2 Algebraic and topological results

In this section we exhibit basic properties of sets having the Jacobson Property.

Lemma 2.1 Suppose that X ⊂ Y ⊂ A and suppose that X , Y have the Jacobson Property.
Then Y \ X has the Jacobson Property.

Proof Assume that X and Y are as described, and that 1−ab ∈ Y \ X . Then 1−ab ∈ Y and
1 − ab /∈ X . Since Y has the Jacobson Property, 1 − ab ∈ Y �⇒ 1 − ba ∈ Y . Similarly,
since X has the Jacobson Property, 1 − ab /∈ X �⇒ 1 − ba /∈ X . Hence we have that
1 − ba ∈ Y \ X and we have shown that Y \ X has the Jacobson Property.

Remark 2.1 If we let Y = A in the above lemma we obtain the following important special
case:

If X ⊂ A and X has the Jacobson Property, then A \ X has the Jacobson Property.

Lemma 2.2 Every proper subprime ideal has the Jacobson property.

Proof Suppose 1− ab ∈ I , and I is a subprime ideal. Then since I is a proper ideal ab /∈ I .
Since I is an ideal, we also have that a /∈ I and b /∈ I . Since I is an ideal b(1 − ab) ∈ I .
Hence b − bab ∈ I �⇒ (1 − ba)b ∈ I . Since I is subprime and we know that b /∈ I we
have that 1 − ba ∈ I as required.

Theorem 2.1 Let I be a proper subprime ideal in a Banach algebra A. Then A \ I is a (P1)
regularity that has the Jacobson Property.

Proof Suppose ab ∈ A \ I . Then ab /∈ I . Since I is a two sided ideal, we must have that
a /∈ I and b /∈ I . Hence a, b ∈ A \ I . Conversely, suppose a, b ∈ A \ I . Then a /∈ I and
b /∈ I . Since I is subprime, we must have ab /∈ I , or ab ∈ A \ I .

To see that A \ I has the Jacobson property, we note that since I is subprime, by Lemma
2.2 we have that I has the Jacobson Property. By Lemma 2.1 and the remark following it
A \ I also has the Jacobson Property.
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Given the fact that the concept of subprime is usually used in a commutative context, in
Corollary 4.2 we take care to construct a nontrivial, proper, two-sided subprime ideal in a
non commutative Banach algebra, and in that way justify the use of the concept.

Theorem 2.1 immediately raises the question as to whether every (P1) regularity is the
complement of a proper subprime ideal. The question is easy to answer as A−1 is a (P1)
regularity but its complement is not an ideal in A.

Theorem 2.2 Let A be a Banach algebra and let I be a closed ideal in A. Suppose π : A →
A/I is the canonical homomorphism and X ⊂ A/I .

(i) If X has the Jacobson Property, then π−1(X) in A has the Jacobson Property.
(ii) If X does not have the Jacobson Property, then π−1(X) does not have the Jacobson

Property.

Proof (i) Let a, b ∈ A and 1 − ab ∈ π−1(X). Since π is a homomorphism, π(1 − ab) =
1 − π(a)π(b) ∈ X . Because X has the Jacobson Property 1 − π(b)π(a) ∈ X . Again,
since π is a homomorphism π(1 − ba) ∈ X , i.e., 1 − ba ∈ π−1(X).

(ii) If X does not have the Jacobson Property, there are a, b ∈ A with 1 − ab + I ∈ X , but
1 − ba + I /∈ X . Hence, 1 − ab ∈ π−1(X) and 1 − ba /∈ π−1(X).
This completes the proof.

Theorem 2.3 Let A be a Banach algebra and let X ⊂ A be a semigroup that contains a
neignbourhood of the identity. If X has the Jacobson Property, then X and ∂X have the
Jacobson Property.

Proof We showfirst that X has the Jacobson Property. Let a, b ∈ A and suppose that 1−ab ∈
X . Then there is a sequence (xn) in X such that xn → 1−ab. Hence, cn = xn+ab → 1. IfU
is a neighbourhood of 1 withU ⊂ X , then cn ∈ U for n large enough. Also, c−1

n → 1. Hence,
for n large enough c−1

n ∈ X . Note that cn − ab ∈ X and so cn − ab = cn(1 − c−1
n ab) ∈ X .

Since X is a semigroup this implies that 1− c−1
n ab ∈ X . Since X has the Jacobson Property,

1 − b(c−1
n a) ∈ X and so 1 − ba ∈ X . One can use the same proof to show that ∂X has the

Jacobson Property.

3 Examples

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson
Property.

In [13,Theorem 1.29] and [1,Lemma 3.1.2 ] it is shown that in a Banach algebra A the sets
A−1

� , A−1
r and A−1 have the Jacobson Property. If I is a closed ideal in A, then in the quotient

Banach algebra A/I , the sets (A/I )−1
� , (A/I )−1

r and (A/I )−1 have the Jacobson Property.
In view of Theorem 2.2 we get that ��(I ), �r (I ) and �(I ) have the Jacobson Property.

Corollary 3.1 Let A be a Banach algebra and let I be a closed ideal in A. Then X and ∂X
have the Jacobson Property if

X ∈ {A−1
� , A−1

r , A−1
� ∪ A−1

r ,��(I ),�r (I ),�(I ),��(I ) ∪ �r (I )}

Proof This follows from Theorem 2.3 since all the sets above are semigroups containing a
neighbourhood of the identity.
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In [12], the author introduces the boundary spectrum and discusses some of its properties.
We now show that the set R = A \ ∂A−1 which generates the boundary spectrum, has the
Jacobson Property.

Corollary 3.2 Let A be a Banach algebra. The sets A−1, ∂A−1, A \ ∂A−1 and A \ A−1 all
possess the Jacobson Property.

Proof It is well known that A−1 has the Jacobson Property. Next we use Lemma 2.3 to get
that A−1 and ∂A−1 have the Jacobson Property. Then we use the remark following Lemma
2.1 to prove the rest of the statement.

In [9, 10] the authors prove that the set Aai of almost invertible elements in A is a regularity.

Theorem 3.1 The regularity Aai has the Jacobson Property.

Proof Suppose 1 − ab ∈ Aai. Then 0 /∈ σ(1 − ab) or 0 ∈ iso σ(1 − ab). Suppose 0 /∈
σ(1 − ab). Then 1 − ab ∈ A−1 and since A−1 satisfies the Jacobson Property we have that
1 − ba ∈ A−1, hence 0 /∈ σ(1 − ba) and 1 − ba ∈ Aai as required.

Suppose 0 ∈ iso σ(1−ab). Then 1 ∈ iso σ(ab) and so 1 ∈ iso σ(ba) since σ(ab)\ {0} =
σ(ba) \ {0}. Hence, 0 ∈ iso σ(1 − ab) and we are done.

Theorem 3.2 The set I(A) of inessential elements in a Banach algebra A has the Jacobson
Property.

Proof Let 1−ab ∈ I(A). Then σ(1−ab) is finite or a sequence converging to zero. Suppose
that σ(1 − ab) is finite. Then 1 − σ(ab) is finite, and since σ(ab) \ {0} = σ(ba) \ {0} we
know that σ(1 − ba) must be finite as well.

Alternatively, suppose that σ(1 − ab) is a sequence converging to zero. Then σ(ab) is a
sequence converging to 1, hence σ(ba) is also a sequence converging to 1, and so σ(1− ab)
is a sequence converging to 0, as required.

Theorem 3.3 The set {a ∈ A : σ(a) = {1}} has the Jacobson Property.
Proof Suppose σ(1 − ab) = {1}. Then 1 − σ(ab) = {1}, hence σ(ab) = {0}. Hence
σ(ba) \ {0} = σ(ab) \ {0} = ∅. Now, σ(ba) cannot be empty, and so σ(ba) = {0}, hence
σ(1 − ba) = {1} as required.
If A is a Banach algebra, then it is well known that the set ̂A of generalised invertible elements
in A has the Jacobson Property, [13,Proposition 13.11]. This together with the fact that A−1

has the Jacobson Property, Corollary 3.1, implies that the collection A−1A• of decomposably
regular elements has the Jacobson Property, see (7).

We showwithTheorem5.1 that the (Jacobson) radical does not have the JacobsonProperty.
Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc A ⊂

I ⊂ kh( I ). In [4, 5] an abstract index function ι was defined on the set �(I ) of Fredholm
elements relative to I . It was shown that this abstract index function has all the desirable
properties of the classical index for Fredholm operators defined on a Banach space. One can
extend the domain of the abstract index fuction ι to the set ��(I ) ∪ �r (I ) by defining

ι(a) =
{

−∞ if a ∈ ��(I ) \ �(I )

∞ if a ∈ �r (I ) \ �(I )

If Z ⊂ Z, let

�Z (I ) = {a ∈ ��(I ) ∪ �r (I ) : ι(a) ∈ Z}.
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Corollary 3.3 Let A be a semisimple Banach algebra and let I be a closed trace ideal in A
with Soc A ⊂ I ⊂ kh( I ). If Z ⊂ Z and �Z (I ) is nonempty, then �Z (I ) has the Jacobson
Property.

Proof Let a, b ∈ Awith 1−ab ∈ �Z (I ). By definition, ι(1−ab) ∈ Z . In viewof [4,Theorem
3.20], ι(1 − ab) = ι(1 − ba) and so 1 − ba ∈ �Z (I ).

By the above Corollary, if Z = {k} with k ∈ Z, then �k(I ) has the Jacobson Property. In
particular, if k = 0, then �0(I ) is an upper semiregularity with the Jacobson property, see
[5,Theorem 3.6]. Also, �0 = W(I ) withW(I ) the collection of Weyl elements in A relative
to I .

For a, b ∈ A, we call ab − ba the commutator of a and b, denoted by [a, b]. In [14],
p305, the author defines the set AD as the smallest ideal that contains all the commutators.
We call AD the commutator ideal of A.

Theorem 3.4 If A is a Banach algebra then AD and A \ AD have the Jacobson Property.

Proof Suppose 1−ab ∈ AD . Then 1−ba = 1−ab+ab−ba = 1−ab+[a, b] ∈ AD . Next
we use the remark following Lemma 2.1 to conclude the remaining part of the statement.

4 Multiplicative linear functionals

The concept of a multiplicative linear functional on A gives us a means to generate a large
number of these sets that satisfy the Jacobson Property. While multiplicative linear func-
tionals find their application mostly in commutative settings it is interesting that there are
noncommutative Banach algebras that admit nonzero multiplicative linear functionals. The
authors of [3] discuss sufficient conditions for a Banach algebra to admit such nonzero mul-
tiplicative linear functionals, and discuss two classes of such Banach algebras as examples.
Below, wherever we refer to a Banach algebra on which is defined a multiplicative linear
functional, we will tacitly assume that the linear functional is nonzero.

Theorem 4.1 Let A be a complex unital Banach algebra and let f be a multiplicative linear
functional on A. Then the set P = { f −1(λ) : λ ∈ C} is a partition of A and every member
of P has the Jacobson Property.

Proof Since f is a multiplicative linear functional, it is onto C. Hence we have that ∅ /∈ P .
Next, f is defined for each a ∈ A, hence for each a there is a part of P that contains it.
Suppose that a ∈ f −1(λ1) ∩ f −1(λ2) where λ1 �= λ2. Then f (a) = λ1 and f (a) = λ2
which is impossible since f is a function, hence well-defined. We have shown that P is a
partition of A.

To see that each part of P has the Jacobson Property, suppose 1 − ab ∈ f −1(λ), where
λ ∈ C. Then f (1 − ab) = λ, which means 1 − f (a) f (b) = λ, so that 1 − f (b) f (a) = λ.
This means f (1 − ba) = λ, hence 1 − ba ∈ f −1(λ), as required.

The following corollary is a simple application of Theorem 4.1 and is stated without proof.

Corollary 4.1 Let A be a noncommutative Banach algebra, and f a multiplicative linear
functional on A. Then ker( f ) has the Jacobson Property.

We can generalize Theorem 4.1 above as follows:
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Theorem 4.2 Let f be amultiplicative linear functional on a complex, unital Banach algebra
A, and B ⊂ C, B �= ∅. Then f −1(B) has the Jacobson Property.

Proof The proof is similar to the proof of the previous theorem.

For f a multiplicative linear functional, the set ker( f ) gives us an interesting application
of one of the previous results. We note that for the next result, the existence of a nonzero mul-
tiplicative linear functional is a necessary condition, since there are many noncommutative
Banach algebras on which no nonzero multiplicative linear functional can be defined.

Corollary 4.2 Let A be a noncommutative Banach algebra, and f a multiplicative linear
functional on A. Then ker( f ) is a proper, non-trivial subprime ideal of A.

Proof It is well known that ker( f ) is an ideal. To see that it is subprime, suppose ab ∈ ker( f ).
Then f (ab) = f (a) f (b) = 0, hence f (a) = 0 or f (b) = 0, hence a ∈ ker( f ) or
b ∈ ker( f ). Since f is assumed to be nonzero, ker( f ) = A is not possible, hence ker( f ) is
a proper ideal. Finally, since A is not commutative, find a, b ∈ A such that ab �= ba. Then
0 �= ab − ba ∈ ker( f ), hence ker( f ) is not trivial.

Corollary 4.3 Let A be a noncommutative Banach algebra, and f a multiplicative linear
functional on A. Then A \ ker( f ) is a (P1) regularity in A which has the Jacobson Property.

Proof The proof is a simple application of Corollary 4.2 and Theorem 2.1.

5 Sets that do not have the Jacobson Property

In this section we provide examples of subsets in a Banach algebra that do not possess the
Jacobson Property. If A is a Banach algebra, then the upper semiregularity ExpA does not
have the Jacobson Property, see [8]. We are now ready to give more examples.

Proposition 5.1 Let A be a Banach algebra. Then the upper semiregularity ExpA does not
have the Jacobson Property.

Proof Since ExpA is a closed normal subgroup of A−1,

ExpA = ExpA
(A−1) = ExpA ∩ A−1

where ExpA
(A−1)

is the closure of Exp A in A−1. In view of ExpA not having the Jacobson
Property and A−1 having the Jacobson Property, we get that ExpA does not have the Jacobson
Property.

Example 5.1 Let A = L(�2) and let R = A\QN(A). Then R is a lower semiregularity that
does not have the Jacobson Property.

Proof Define operators S, T ∈ A by S(x1, x2, . . .) = (0, x1, x2, . . .) and T (x1, x2, . . .) =
(x2, x3, . . .) for all (x1, x2, . . .) ∈ �2. Then T S = I and I − ST is a rank one operator. This
means that σ(I − ST ) = {0, 1}. Consequently, I − ST ∈ R and I − ST = 0 /∈ R.

Let A be a Banach algebra. The proof of the above example can be adapted to show that
A\Rad A does not have the Jacobson Property.
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Theorem 5.1 Let A be a noncommutative Banach algebra with A−1
� \ A−1 �= ∅ or A−1

r \
A−1 �= ∅. Then Rad A does not have the Jacobson Property.

Proof We are going to show that A\Rad A does not have the Jacobson Property. Let a, b ∈ A
and suppose that ab = 1 and ba �= 1. Then 1− ab = 0 /∈ A\Rad A. Since ab = 1, a is right
invertible and b is left invertible. By (3) a, b ∈ ̂A. This means that ba is a projection and so
1 − ba is also a projection. Hence, 1 − ba ∈ A\Rad A, and so A\RadA does not have the
Jacobson Property. In view of the remark following Lemma2.1 we have that Rad A does not
have the Jacobson Property.

Since the radical in a Banach algebra A is the intersection of primitive ideals in A, under
the assumptions of Theorem 5.1, a noncommutative Banach algebra will have at least one
primitive ideal without the Jacobson Property. Let A−1

� \ A−1 �= ∅ or A−1
r \ A−1 �= ∅. If A

is noncommutative, the same proof as Theorem 5.1 can be used to show that QN(A) does
not have the Jacobson Property if we replace Rad A by QN(A).

Corollary 5.1 Let A be a noncommutative Banach algebra and let I be a closed ideal in A.
Then the ideal kh( I ) does not have the Jacobson Property.

Proof In view of Theorem 5.1 Rad (A/I ) does not have the Jacobson Property. By Theorem
2.2 kh(I ) = π−1(Rad(A/I )) does not have the Jacobson Property.

Corollary 5.2 Let A be a noncommutative Banach algebra and let I be a closed ideal in A.
Then the collectionR(I ) of Riesz elements relative to I does not have the Jacobson Property.

Proof Since QN (A/I ) does not have the Jacobson Property, see the proof of Theorem 5.1, it
follows fromTheorem 2.2 thatR(I ) = π−1(QN(A/I )) does not have the Jacobson Property.
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