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Abstract
Ourpurpose in the present investigation is to determine coefficient estimates andupper bounds
of third Hankel determinant for the family of starlike and convex functions of reciprocal order
in the open unit disk D = {z ∈ C : |z| < 1}.

Keywords Analytic function · Univalent function · Starlike and Convex function of
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Mathematics Subject Classification 30C45 · 30C50

1 Introduction and preliminaries

Let H denote the family of analytic functions in the open unit disk D = {z ∈ C : |z| < 1},
and A denote the class of functions f ∈ H such that

f (z) = z + a2z2 + a3z3 + · · · , z ∈ D. (1.1)

We denote by S the functions f in A that are univalent in D. A function f ∈ A is called
starlike, if f is univalent in D and f (D) is a starlike domain with respect to the origin.
Analytically, f ∈ S is called starlike, if and only if �{z f ′(z)/ f (z)} > 0, z ∈ D. A function
f ∈ S is called convex, if and only if z f ′(z) ∈ S∗. The class of starlike functions and the
class of convex functions are denoted, respectively, by S∗ and K.

Let S∗ and K∗, denote the class of functions f ∈ A which are stalike and convex of
reciprocal orders, respectively. Analytically, f ∈ S is called starlike of reciprocal order, if
and only if�{ f (z)/z f ′(z)} > 0, z ∈ D. Also, a function f ∈ S is called convex of reciprocal
order, if and only if z f ′(z) ∈ S∗ which analytically is represented by�{ f ′(z)/(z f ′(z))′} > 0.
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Various authors have studied the classesS∗ andK∗ andonemay see, e.g. theworks in [3,21,24]
and [26].

For f ∈ A of the form (1.1), �λ( f ) := a3 −λa2
2 is the classical Fekete-Szegö functional.

A classical problem settled by Fekete and Szegö [10] is to find for each λ ∈ [0, 1] the
maximum value of |�λ( f )| over the function f ∈ S, and they proved that

max
f ∈S |�λ( f )| =

{
1 + 2 exp{−2λ/(1 − λ)}, λ ∈ [0, 1),
1, λ = 1.

The problem of calculating the maximum of |�λ( f )| for various subfamilies of A, as well
as λ being an arbitrary real or complex number, was considered by many authors (see, e.g.
[1,7,14,15,19]).

The Hankel determinant of Taylor coefficients for functions f ∈ A of the form (1.1), is
denoted by Hq,n( f ) and is defined by

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
, (1.2)

where a1 = 1; n, q ∈ N = {1, 2, . . .}. Several researchers including Noonan and Thomas
[22], Pommerenke [25], Hayman [12], Ehrenborg [9], Noor [23] and many others have
studied the Hankel determinant and have given some remarkable results which are useful,
for example, in showing the bounded characteristic of a function in D.

For f ∈ A of the form (1.1), H2,1( f ) := �1( f ) = a3 − a2
2 is the Fekete-Szegö

functional. Furthermore, the upper bound of the second Hankel determinant H2,2( f ) for
various subclasses ofA has been studied by many authors (see, e.g. [2,4,6,13,16]). The third
Hankel determinant H3,1( f ) is defined by

H( f ) = H3,1( f ) :=
a1 a2 a3
a2 a3 a4
a3 a4 a5

= a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2).

(1.3)

Recently, the author has studied the bounds on |H( f )| for certain classes of analytic functions
(see [5,20]). In the current article, the upper bound of the initial coefficients and the bounds
on |H( f )| are studied for functions belonging to the classes S∗ and K∗ as stated above. In
our study we shall need the class P of Carathéodory functions [8] which is defined below.

Let P denote the class of analytic functions in D with �(p(z)) > 0 of the form

p(z) = 1 + c1z + c2z2 + · · · , z ∈ D. (1.4)

It is well known [8] that for the function p ∈ P of the form (1.4), |cn | ≤ 2, for all n ≥ 1.
This inequality is sharp and the equality holds for the function ϕ(z) = (1 + z)/(1 − z).

The power series (1.4) converges in D to a function in P , if and only if the Toeplitz
determinants

Tn(p) =

∣∣∣∣∣∣∣∣∣∣∣

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2
...

...
...

. . .
...

c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N
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and c−n = cn , are all nonnegative. The only exception is when p(z) has the form

p(z) =
m∑

ν=1

ρν

1 + ενz

1 − ενz
, m ≥ 1,

where ρν > 0, |εν | = 1, and εk �= εl if k �= l; k, l = 1, 2, . . . , m; we have then Tn(p) > 0
for n < m − 1 and Tn(p) = 0 for n ≥ m. This necessary and sufficient condition is due to
Carathéodory and Toeplitz and can be found in [11]. In particular, for n = 2, we have

T2(p) =
∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣ = 8 + 2�{c21c2} − 2|c2|2 − 4|c1|2 ≥ 0,

which is equivalent to

2c2 = c21 + x(4 − c21) (1.5)

for some x with |x | ≤ 1. Similarly, if

T3(p) =

∣∣∣∣∣∣∣∣

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

∣∣∣∣∣∣∣∣
,

then T3(p) ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4 − c21) + c1(2c2 − c21)
2| ≤ 2(4 − c21)

2 − 2|(2c2 − c21)|2. (1.6)

Solving (1.6) with the help of (1.5), we get

4c3 = c31 + 2c1x(4 − c21) − c1x2(4 − c21) + 2(4 − c21)(1 − |x |2)z, (1.7)

for some x and z with |x | ≤ 1 and |z| ≤ 1. Furthermore, the following well-known results
are being useful to obtain our main results.

Lemma 1.1 [14] If p ∈ P , then for any complex number ν,

|c2 − νc21| ≤ 2 max{1, |2ν − 1|},
and equality holds for the functions given by

ψ(z) = 1 + z2

1 − z2
and ϕ(z) = 1 + z

1 − z
.

Lemma 1.2 [18] Let the function p given by (1.4) is in the class P . Then for all n and s
(1 ≤ s < n), we have |cn − cscn−s | ≤ 2.

Lemma 1.3 [11] (See also [17, Lemma 3, p. 227]) If p ∈ P , then the following expressions
are all bounded by 2, and are all sharp:

1. |c21 − c2|,
2. |c3 − 2c1c3 + c3|,
3. |c41 + 2c1c3 + c22 − 3c21c2 − c4|,
4. |c51 + 3c1c22 + 3c21c3 − 4c31c2 − 2c1c4 − 2c2c3 + c5|
5. |c61 + 6c21c22 + 4c31c3 + 2c1c5 + 2c2c4 + c23 − c32 − 5c41c2 − 3c21c4 − 6c1c2c3 − c6|.
The following inequalities can also be obtained in the proof of a result in [17, p. 227–228]
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a. |2c21 − c2| ≤ 6
b. | − 6c31 + 7c1c2 − 2c3| ≤ 24
c. |24c41 − 46c21c2 + 22c1c3 + 7c22 − 6c4| ≤ 120
d. | − 120c51 + 96c4c1 + 50c2c3 + 326c31c2 − 202c21c3 − 127c1c22 − 24c5| ≤ 720.

Lemma 1.4 [27, Lemma 2.3, p. 507] Let p ∈ P . Then for all n, m ∈ N,

|μcncm − cm+n | ≤
{
2, μ ∈ [0, 1],
2 |2μ − 1|, elsewhere.

If 0 < μ < 1, then the inequality is sharp for the function p(z) = (1 + zm+n)/(1 − zm+n).
In other cases, the inequality is sharp for the function p(z) = (1 + z)/(1 − z).

2 Set of coefficient bounds belonging to the classS∗

The following is our first result in this section.

Theorem 2.1 Let f ∈ S∗ be given by (1.1), then |an | ≤ n for n = 2, 3, 4. The result is sharp
for the function e1(z) = z(1 + z)−2.

Proof Let us consider f ∈ S∗. Then by the definition, we have

f (z) = z f ′(z) p(z), (2.1)

where p ∈ P is of the form (1.4). Substituting the series expansion of f (z), f ′(z) and p(z)
in (2.1) and equating the coefficients, we get

an = 1

1 − n
(cn−1 + 2a2cn−2 + 3a3cn−3 + · · · + (n − 1)an−1c1) ,

which in particular gives us

a2 = −c1, a3 = 1

2
(2c21 − c2), a4 = 1

6
(7c1c2 − 2c3 − 6c31),

and

a5 = 1

24
(24c41 − 46c21c2 + 20c1c3 + 9c22 − 6c4).

(2.2)

Bounds for |a2| is obvious as |c1| ≤ 2. Bounds for |a3| and |a4| can be directly obtained by
using (a) and (b) of Lemma 1.3 . Furthermore, by using (1.5) and (1.7) in (2.2) for some x
and z such that |x | ≤ 1 and |z| ≤ 1, we obtain

|a3| = 1

4

∣∣3c21 − x(4 − c21)
∣∣

and

|a4| = 1

12

∣∣−6c31 + (4 − c21){5c1x + c1x2 − 2(1 − |x |2)z}∣∣ .
To show the sharpness, let us set c1 = 2 and x = 1 in (1.5) and (1.7), we obtain c2 = c3 = 2.
Using these values in the above relations, we find that the result is sharp and the extremal
function would be e1(z) = z(1 + z)−2. This completes the proof of Theorem 2.1. 	
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Theorem 2.2 Let f ∈ S∗ be given by (1.1), then |a5| ≤ 39/7.

Proof If f ∈ S∗, then by using the value of a5 from (2.2), we obtain

|a5| = 1

24

∣∣24c41 − 46c21c2 + 14c1c3 + 9c22 − 6(c4 − c1c3)
∣∣ .

By using (1.5) and (1.7) for some x and z such that |x | ≤ 1 and |z| ≤ 1, we get

|a5| = 1

96

∣∣27c41 + (4 − c21){−46c21x − 23c21x2 + 28c1(1 − |x |2)z + 36x2}
−24(c4 − c1c3)| .

If p(z) ∈ P , then p(eiαz) ∈ P . We can always select a real α in p(eiαz) so that cneiαn ≥ 0.
Hence we may suppose that cn ≥ 0 (n ∈ N). Furthermore, the power series (1.4) converges
in D to a function in P , if and only if the Toeplitz determinants Tn(p) and c−n = cn are all
nonnegative, i.e. c1 is real, c1 ≥ 0 and |c1| ≤ 2. Therefore, letting c1 = c, we may assume
without restriction that c ∈ [0, 2]. Hence, applying the triangle inequality with μ = |x |, and
applying Lemma 1.2, we obtain

|a5| ≤ 1

96

[
27c4 + (4 − c2){46c2μ + 23c2μ2 + 28c(1 − μ2) + 36μ2} + 48

] := D(c, μ).

Now we need to maximize D(c, μ) on the region 
 = {(c, μ) : 0 ≤ c ≤ 2 and 0 ≤ μ ≤ 1}.
For this, first we estimate

∂ D

∂μ
= 1

48

[
(4 − c2){23c2(1 + μ) + 4μ(9 − 7c)}] .

For 0 < μ < 1, and for fixed c with 0 < c < 2, we observe that ∂ D
∂μ

> 0. Therefore, D(c, μ)

becomes an increasing function ofμ, and hence it cannot have a maximum value at any point
in the interior of the closed region 
. Moreover, for a fixed c ∈ [0, 2], we have

max
μ∈[0,1] D(c, μ) = D(c, 1) = 1

16
(−7c4 + 40c2 + 32).

Therefore, by the second derivative test we can see that D(c, 1) has maximum value at c,
where c2 = 20/7.

Furthermore, if we look for the critical points on the boundary of 
, we estimate

∂ D

∂c
= 1

48
[54c3 + 23cμ(4 − c2)(2 + μ) − c(46c2μ + 23c2μ2 + 36μ2)

+14(1 − μ2)(4 − 3c2)].
Now we look for the critical point of D(c, μ) which must satisfy ∂ D

∂μ
= 0 and ∂ D

∂c = 0, and
one can check easily that the points (c, μ) satisfying such conditions are not interior point
of 
. So the maximum cannot attain in the interior of 
. Now to see on the boundary, taking
the boundary line L1 = {(2, μ) : 0 ≤ μ ≤ 1}, we have D(2, μ) = 5 which is a constant.
Along L2 = {(0, μ) : 0 ≤ μ ≤ 1}, we have D(0, μ) = (1+3μ2)/2, which gives the critical
point (0, 0). Along L3 = {(c, 1) : 0 ≤ c ≤ 2}, we have D(c, 1) = (−7c4 + 40c2 + 32)/16,
which gives the critical points (0, 1) and (

√
20/7, 1). Along L4 = {(c, 0) : 0 ≤ c ≤ 2}, we

have D(c, 0) = (27c4 −28c3 +112c +48)/96, which gives no critical points in 
. Observe
that

D(0, 0) < D(0, 1) < D(2, μ) < D(
√
20/7, 1).

Hence
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max



D(c, μ) = D(
√
20/7, 1) = 39/7.

This completes the proof. 	

Remark 2.3 For f ∈ S∗ of the form (1.1), Arif et al. [3, Corollary 7] obtained that

|a2| ≤ 2 and |an | ≤ 2

n − 1

n−1∏
k=2

(
3k − 1

k − 1

)
(n = 3, 4, 5, . . .).

Here we observe that, our result obtained in Theorem 2.1 and Theorem 2.2 provides the
improvement in the upper bound of the initial coefficients an, n = 3, 4, 5.

Theorem 2.4 Let f ∈ S∗ be given by (1.1), then

|a3 − a2
2 | ≤ 1, |a2a3 − a4| ≤ 2 and |a2a4 − a2

3 | ≤ 1. (2.3)

Inequalities in (2.3) are sharp for the extremal function given by e1(z) = z(1 + z)−2.

Proof If f ∈ S∗, then the values of a2, a3 and a4 are given in (2.2). Using these values, we
obtain

|a3 − a2
2 | =

∣∣∣∣−c2
2

∣∣∣∣ , |a2a3 − a4| = 1

3
|−2c1c2 + c3|

and

|a2a4 − a2
3 | = 1

24

∣∣−4c21c2 + 8c1c3 − 6c22
∣∣ .

Clearly, it follows that |a3 − a2
2 | = |c2/2| ≤ 1. Now by using Lemma 1.4, we obtain

|a2a3 − a4| ≤ 1

3
|2c1c2 − c3| ≤ 1

3
[2 |2 · 2 − 1|] = 2.

Furthermore, by using (1.5) and (1.7) for some x and z such that |x | ≤ 1 and |z| ≤ 1, we get

|a2a4 − a2
3 | = 1

48

∣∣(4 − c21)[−2c21x − 4c21x2 − 3x2(4 − c21)

+8c1(1 − |x |2)z] − 3c41
∣∣ . (2.4)

As |c1| ≤ 2, letting c1 = c, wemay assumewithout restriction that c ∈ [0, 2]. Thus, applying
the triangle inequality with μ = |x |, we obtain

|a2a4 − a2
3 | ≤ 1

48

[
(4 − c2){8c + (c2 − 8c + 12)μ2 + 2c2μ} + 3c4

] := F3(c, μ).

Next, by differentiating F3 with respect to μ, we observe that F3 is an increasing function
of μ on [0, 1]. Thus, it attains the maximum value at μ = 1. Again, F3(c, 1) = 1, is a
constant. Hence

max



F3(c, μ) = F3(c, 1) = 1.

To get the sharpness, let us set c1 = 2 and x = 1 in (1.5) and (1.7), we then obtain
c2 = c3 = 2. Using these values, we find that the results in (2.1) are sharp and the extremal
function would be e1(z) = z(1 + z)−2. This completes the proof of the theorem. 	


123



Coefficient estimates for the family of starlike... Page 7 of 10 25

Theorem 2.5 Let f ∈ S∗ be given by (1.1), then

|H( f )| ≤ 116

7
.

Proof Using the bounds obtained above in Theorem 2.1–Theorem 2.4 and applying the
triangle inequality, we estimate

|H( f )| ≤ |a3||a2a4 − a2
3 | + |a4||a2a3 − a4| + |a5||a3 − a2

2 | ≤ 3 + 8 + 39

7
= 116

7
,

and this completes the proof. 	


3 Set of coefficient bounds belonging to the classK∗

Theorem 3.1 Let f ∈ K∗ be given by (1.1), then |an | ≤ 1, n = 2, 3, 4.

Proof Let f ∈ K∗, then by the hypothesis it is clear that f (z) ∈ K∗ if and only if z f ′(z) ∈ S∗.
Thus replacing an by nan in (2.2), we obtain

a2 = −1

2
c1, a3 = 1

6
(2c21 − c2), a4 = 1

24
(7c1c2 − 2c3 − 6c31),

and

a5 = 1

120
(24c41 − 46c21c2 + 20c1c3 + 9c22 − 6c4).

(3.1)

Bounds for |a2| is obvious as |c1| ≤ 2. Bounds for |a3| and |a4| can be directly obtained from
results mentioned in a and b of Lemma 1.3. This completes the proof of the theorem. 	

Theorem 3.2 Let f ∈ K∗ be given by (1.1), then |a5| ≤ 39/35.

Proof Let f ∈ K∗, then using a5 from (3.1), we can write

|a5| = 1

120

∣∣24c41 − 46c21c2 + 14c1c3 + 9c22 − 6(c4 − c1c3)
∣∣ .

By using the relations (1.5) and (1.7), for some x and z such that |x | ≤ 1 and |z| ≤ 1, we
estimate

|a5| = 1

480

∣∣27c41 + (4 − c21){−46c21x − 23c21x2 + 28c1(1 − |x |2)z + 36x2}
−24(c4 − c1c3)| .

As |c1| ≤ 2, letting c1 = c, we may assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality and Lemma 1.2 with μ = |x |, we obtain

|a5| ≤ 1

480

[
27c4 + (4 − c2){46c2μ + 23c2μ2 + 28c(1 − μ2) + 36μ2} + 48

] := Z(c, μ).

Differentiating Z(c, μ) with respect to μ, we get

∂ Z

∂μ
= 1

480

[
(4 − c2){23c2(1 + μ) + 4μ(9 − 7c)}] > 0 for (0 ≤ μ ≤ 1).

Note that, Z is an increasing function ofμ on [0, 1]. Thus it attains maximum value atμ = 1.
Again, Z(c, 1) = (−21c4 + 120c2 + 96)/240, is an increasing function of c on [0, √20/7].
Thus (

√
20/7, 1) is a critical point of Z .

123



25 Page 8 of 10 S. Maharana, D. Bansal

Again, if we look for the critical points on the boundary of 
, as we have done earlier,
we get (0, 0), (0, 1) and (2, μ), 0 ≤ μ ≤ 1 are the other critical points in 
, and for these
points we have

Z(0, 0) < Z(0, 1) < Z(2, μ) < Z(
√
20/7, 1).

Hence

max



Z(c, μ) = Z(
√
20/7, 1) = 39/35.

This completes the proof of the theorem. 	

Remark 3.3 For f ∈ K∗ of the form (1.1), Arif et al. [3, Corollary 8] obtained that

|a2| ≤ 1 and |an | ≤ 2

n(n − 1)

n−1∏
k=2

(
3k − 1

k − 1

)
(n = 3, 4, 5, . . .).

We observe here that, our results obtained in Theorem 3.1 and Theorem 3.2 provide the
improvement in the upper bound of the initial coefficients an, n = 3, 4, 5.

Theorem 3.4 Let f ∈ K∗ be given by (1.1), then

|a3 − a2
2 | ≤ 1

3
, |a2a3 − a4| ≤ 4

3
and |a2a4 − a2

3 | ≤ 1

8
. (3.2)

The first inequality of (3.2) is sharp and equality is attended for the function e3(z) = z+ 1
3 z3.

Proof If f ∈ K∗, then by using the values of a2, a3 and a4 which are given in (3.1), we
obtain

|a3 − a2
2 | = 1

12

∣∣c21 − 2c2
∣∣ , |a2a3 − a4| = 1

24

∣∣2c31 − 5c1c2 + 2c3
∣∣ ,

and

|a2a4 − a2
3 | = 1

144

∣∣−5c21c2 + 6c1c3 + 2c41 − 4c22
∣∣ .

By using Lemma 1.1 we obtain

|a3 − a2
2 | = 1

12

∣∣c21 − 2c2
∣∣ = 1

6

∣∣∣∣c2 − 1

2
c21

∣∣∣∣ ≤ 1

6
· 2max{1, |2(1/2) − 1|} = 1

3
.

Now by using Lemma 1.4, we obtain

|a2a3 − a4| = 1

24

∣∣2c31 − 5c1c2 + 2c3
∣∣ ≤ 1

24

[
2|c1|3 + 2

∣∣∣∣52c1c2 − c3

∣∣∣∣
]

≤ 1

24
[2 · 8 + 2 · 2|2(5/2) − 1|] = 4

3
.

Now, by using the relations (1.5) and (1.7), we obtain

|a2a4 − a2
3 | = 1

288

∣∣(4 − c21){−3c21x − (4 − c21)2x2 + 6c1(1 − |x |2)z − 3c21x2}∣∣ . (3.3)

As |c1| ≤ 2, letting c1 = c, we can assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality with μ = |x |, we get

|a2a4 − a2
3 | ≤ 1

288

[
(4 − c2){6c + 3c2μ + (8 − 6c + c2)μ2}] := G3(c, μ). (3.4)

123
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Furthermore, differentiating G3(c, μ) with respect to μ, we get

∂G3

∂μ
= 1

288
(4 − c2){3c2 + (8 − 6c + c2)2μ} > 0 for 0 ≤ μ ≤ 1.

Hence G3(c, μ) is an increasing function of μ on [0, 1]. Thus, it attains maximum value at
μ = 1. Let

max
0≤μ≤1

G3(c, μ) = G3(c, 1) = (8 + 2c2 − c4)/72 = G3(c).

Again note that, G3(c) is an increasing function on [0, 1], so G3(c) attend maximum value at
c = 1. Hence G3(c, μ) have maximum value at the point (1, 1), that is

max



G3(c, μ) = G3(1, 1) = 1/8.

This completes the proof of the theorem. 	

Theorem 3.5 Let f ∈ K∗ be given by (1.1), then

|H( f )| ≤ 1537

840
.

Proof Using Theorem 3.1–Theorem 3.4 and applying the triangle inequality, we obtain that

|H( f )| ≤ |a3||a2a4 − a2
3 | + |a4||a2a3 − a4| + |a5||a3 − a2

2 | ≤ 1

8
+ 4

3
+ 39

105
= 1537

840
,

and this completes the proof. 	
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