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Abstract
In recent times, many iterative methods for computing multiple zeros of nonlinear functions
have been appeared in literature. Different from these existing methods, here we propose a
new class of methods with eighth order convergence for multiple zeros. With four evalua-
tions per iteration, themethods satisfy the criterion of attaining optimal convergence of eighth
order. Applicability is demonstrated on different examples that illustrates the computational
efficiency of novel methods. Comparison of numerical results shows that the proposed tech-
niques possess good convergence compared to existing optimal order techniques. Besides,
the accuracy of existing techniques is also challenged which is the main advantage.

Keywords Nonlinear equations · Newton-like methods · Fast algorithm · Multiple roots ·
Convergence

Mathematics Subject Classification 65H05 · 41A25 · 49M15

1 Introduction

Constructing higher order multi-point numerical methods for the multiple zeros of the uni-
variate function f (t), where f : C → C is analytic in neighborhood of the required zero, is
one of the most important and difficult problems in numerical analysis. The advantages of
multi-point iterative methods over the one-point iterative method can be found in the excel-
lent book by Traub [19]. More recently, Argyros and Regmi have also highlighted the newly
optimized advantages of multi-point iterative methods in their excellent book (see [1]). The
most basic one-point method is the Newton’s method [13]

ti+1 = ti − μ
f (ti )

f ′(ti )
, i = 0, 1, 2, . . . (1)
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Here μ is the multiplicity of a zero (say, α) of the function f (t), that is, f ( j)(α) = 0, j =
0, 1, . . . , μ − 1 and f (μ)(α) �= 0.

Many higher order multi-point methods, either independent or dependent on the Newton’s
scheme (1), have been proposed in literature, see [2,5,7,9–11,14–18,22] and the references
cited therein. In particular, Liu and Zhou [11] have recently proposed the following scheme
of two-point Newton-like methods:

yi = ti − μ
f (ti )

f ′(ti )
,

ti+1 = yi − μG(ui )
f (ti )

f ′(ti )
, (2)

where ui =
(

f ′(yi )
f ′(ti )

) 1
μ−1

and G : C → C is a holomorphic function in the neighborhood

of origin zero. They have shown that this iterative scheme attains fourth order convergence
provided that the function G(u) satisfies the conditions:

G(0) = 0, G ′(0) = 1, G ′′(0) = 4μ

μ − 1
, μ �= 1.

In this work our aim is to develop multi-point iterations with high computational efficient,
i.e. the iterative methods of higher convergence order that may use the computations as small
in number as we please. The definition of computational efficiency is closely related to the
well-known conjecture by Kung and Traub [8]. According to this the multi-point methods
without memory requiring n functional evaluations can attain the maximum convergence
order 2n−1. The methods qualifying the Kung–Traub criterion are usually known as optimal
methods. It is clear that Liu–Zhou method is optimal with fourth order convergence. Due
to the complexity in developing iterative procedures, the optimal methods for computing
multiple roots are seldom obtained.

Keeping the above points in view, we propose a family of eighth order methods that
requires four newpieces of informationper iteration andhencepossesses optimal convergence
of eighth order in the sense of Kung–Traub hypothesis. Proposed iterative scheme is the
composition of three steps that uses the Liu–Zhou iteration (2) in the first two steps and
Newton-type iteration in the third step. Iterative scheme is unique in the sense that it requires
two functions and two derivatives per each iteration. The efficiency index (see [12]) is 1.682
which is better than the efficiency index 1.587 of the basic fourth order Liu–Zhou method.
Therefore, the new scheme can also be observed as the modification of Liu–Zhou scheme.

We summarize the contents of this article. In Sect. 2, the eighth order iterative technique
is developed and its convergence is studied. Some numerical tests are performed in Sect. 3 to
check the stability of the methods and to verify the theoretical results. A comparison with the
existing methods is also shown in this section. In Sect. 4 concluding remarks are reported.

2 Development of scheme

Authors of this research area have used a variety of techniques to develop higher order
iterative methods for solving nonlinear equations. Some of these are: interpolation approach,
sampling approach, composition approach, geometrical approach, adomian approach and
weight-function approach. Of these the weight-function approach has been most popular in
recent times, see, for example [5,11,14,22] and references cited therein. We also use this
technique in the present work of computing a multiple root with multiplicity μ > 1. Thereby
consider the following three-step iterative scheme:
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yi = ti − μ
f (ti )

f ′(ti )
,

zi = yi − μG(ui )
f (ti )

f ′(ti )
,

ti+1 = zi − μvi B(ui )H(vi )K (wi )
f (ti )

f ′(ti )
, (3)

where ui =
(

f ′(yi )
f ′(ti )

) 1
μ−1

, vi =
(

f (zi )
f (ti )

) 1
μ
, wi = vi

ui
, and the functions G, B, H , K : C → C

are analytic in a neighborhood of 0. Note that second and third steps are weighted by the
factors G, B, H and K , so these factors are called weight factors or weight functions. Note
that ui and vi are one-to- μ − 1 and one-to- μ multi-valued functions, respectively, so we
consider their principal analytic branches. Hence, it is convenient to treat them as the principal
root.

In the sequel we will explore certain conditions under which the scheme (3) achieves
convergence of order as high as possible. The lengthy calculations are handled by using
computer algebra system such as Mathematica software (see [21]). In order to study the
convergence following theorem is stated and proved:

Theorem 1 Let f : C → C be an analytic function in a region enclosing a multiple zero
(say, α) with multiplicity μ > 1. Assume that initial guess t0 is sufficiently close to α, then
the local order of convergence of scheme (3) is at least 8, provided that

G(0) = 0, G ′(0) = 1, G ′′(0) = 4μ

μ − 1
,

G ′′′(0) = 6(μ(μ3 − 3μ2 + μ + 1)B ′′′(0) + 2(6μ4 + μ3 − 5μ2 − 3μ − 3)B ′′(0))
(μ − 1)2(μ(1 − μ)B ′′′(0) + 6(μ2 − μ − 1)B ′′(0))

,

B(0) = (μ − 1)(μ(1 − μ)B ′′′(0) + 6(μ2 − μ − 1)B ′′(0))
4(9μ3 − 8μ2 − 5μ + 6)

,

B ′(0) = 2B(0), H(0) = μ2H ′(0)
2(μ2 − μ − 1)

, K (0) = 1

B(0)H(0)
, K ′(0) = μ − 1

μ
K (0),

H ′(0) �= 0, μ(1 − μ)B ′′′(0) + 6(μ2 − μ − 1)B ′′(0) �= 0.

Proof Let the error at i-th iteration be εi = ti − α. Developing f (ti ) and f ′(ti ) about α by
Taylor’s series

f (ti ) = f (μ)(α)

μ! ε
μ
i

(
1 + C1εi + C2ε

2
i + C3ε

3
i + C4ε

4
i + C5ε

5
i + C6ε

6
i + · · ·

)
(4)

and

f ′(ti ) = f (μ)(α)

μ! ε
μ−1
i

(
μ + (μ + 1)C1εi + (μ + 2)C2ε

2
i + (μ + 3)C3ε

3
i

+(μ + 4)C4ε
4
i + · · · ) , (5)

where Cn = μ!
(μ+n)!

f (μ+n)(α)

f (μ)(α)
for n ∈ N.

Using (4) and (5) in first step of (3), it follows that

εyi = yi − α = C1

μ
ε2i + 2μC2 − (μ + 1)C2

1

μ2 ε3i +
5∑

n=1

φnε
n+3
i + O(ε9i ). (6)
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where φn = φn(μ,C1,C2,C3, . . . ,C7), n = 1, 2, 3, 5. For brevity, expressions of φn being
very lengthy are not expressed explicitly. Such lengthy expressions obtained in the next
computations will also not be shown explicitly.

Expansion of f ′(yi ) about α leads us to the expression

f ′(yi ) = f (μ)(α)

μ! eμ−1
yi

(
μ + (μ + 1)C1εyi + (μ + 2)C2ε

2
yi + (μ + 3)C3ε

3
yi

+(μ + 4)C4ε
4
yi + · · ·

)
. (7)

Using (5) and (7) in ui =
(

f ′(yi )
f ′(ti )

) 1
μ−1

, we have that

ui = C1

μ
εi + 2(μ − 1)C2 − (μ + 1)C2

1

μ(μ − 1)
ε2i +

6∑
n=1

ηnε
n+2
i + O(ε9i ), (8)

where ηn = ηn(μ,C1,C2, . . . ,C8).
Expansion of weight function G(ui ) in the neighborhood of origin yields

G(ui ) ≈ G(0) + uiG
′(0) + 1

2
u2i G

′′(0) + 1

6
u3i G

′′′(0) + O(u4i ). (9)

Then the second step of scheme (3), on using Eqs. (4)–(6), (8) and (9), produces

εzi = zi − α = −G(0)εi + 1 + G(0) − G ′(0)
μ

C1ε
2
i +

6∑
n=1

γnε
n+2
i + O(ε9i ), (10)

where γn = γn(μ,G(0),G ′(0),G ′′(0),G ′′′(0),C1,C2, . . . ,C7).
It follows that the fourth order convergence can be achieved if the coefficients of εi , ε2i

and ε3i vanish. Then, resulting equations yield

G(0) = 0, G ′(0) = 1 and G ′′(0) = 4μ

μ − 1
. (11)

By using (11) in (10), we obtain that

εzi = C1

6μ3(μ − 1)2
(
(3(μ3 + 8μ2 + μ + 2) − G ′′′(0)(μ − 1)2)C2

1 − 6(μ − 1)μ2C2
)
ε4i

+
4∑

n=1

ϕnε
n+4
i + O(ε9i ), (12)

where ϕn = ϕn(μ,G ′′′(0),C1,C2, . . . ,C6).
Developing f (zi ) about α, then

f (zi ) = f (μ)(α)

μ! εμ
zi

(
1 + C1εzi + C2ε

2
zi + C3ε

3
zi + C4ε

4
zi + C5ε

5
zi + C6ε

6
zi + · · ·

)
. (13)

From (4) and (13), we get expression of vi =
(

f (zi )
f (ti )

) 1
μ
as

vi = C1

6μ3(μ − 1)2
(
(3(μ3 + 8μ2 + μ + 2) − G ′′′(0)(μ − 1)2)C2

1 − 6(μ − 1)μ2C2
)
ε3i

+
5∑

n=1

τnε
n+3
i + O(ε9i ), (14)

123



A class of computationally efficient numerical… 857

where τn = τn(μ,G ′′′(0),C1,C2, . . . ,C6).
The use of (8) and (14) in wi = vi

ui
gives

wi = 1

6μ2(μ − 1)2
(
(3(μ3 + 8μ2 + μ + 2) − G ′′′(0)(μ − 1)2)C2

1 − 6(μ − 1)μ2C2
)
ε2i

+
6∑

n=1

ψnε
n+2
i + O(ε9i ), (15)

where ψn = ψn(μ,G ′′′(0),C1,C2, . . . ,C7).
Next, we expand weight functions B(ui ), H(vi ) and K (wi ) in the neighborhood of origin

by Taylor series, then we have

B(ui ) ≈ B(0) + ui B
′(0) + 1

2
u2i B

′′(0) + 1

6
u3i B

′′′(0), (16)

H(vi ) ≈ H(0) + vi H
′(0), (17)

K (wi ) ≈ K (0) + wi K
′(0). (18)

Hence by substituting (4), (5), (8), (12), (14)–(18) into the last step of scheme (3), we obtain
the error equation

εi+1 = (B(0)H(0)K (0) − 1)C1

6μ3(μ − 1)2
(
(G ′′′(0)(μ − 1)2 − 3(μ3 + 8μ2 + μ + 2))C2

1

+6(μ − 1)μ2C2
)
ε4i +

4∑
n=1

ξnε
n+4
i + O(ε8i ), (19)

where ξn = ξn(μ,G ′′′(0), B(0), B ′(0), B ′′(0), B ′′′(0), H(0), H ′(0), K (0), K ′(0),C1,

C2, . . . ,C6).
To obtain eighth order, it is sufficient to fix coefficients of ε4i , ε

5
i , ε

6
i and ε7i simultaneously

equal to zero. This process will give us
⎧
⎪⎪⎨
⎪⎪⎩

G ′′′(0) = 6(μ(μ3−3μ2+μ+1)B′′′(0)+2(6μ4+μ3−5μ2−3μ−3)B′′(0))
(μ−1)2(μ(1−μ)B′′′(0)+6(μ2−μ−1)B′′(0)) ,

B(0) = (μ−1)(μ(1−μ)B′′′(0)+6(μ2−μ−1)B′′(0))
4(9μ3−8μ2−5μ+6)

,

B ′(0) = 2B(0), H(0) = μ2H ′(0)
2(μ2−μ−1)

, K (0) = 1
B(0)H(0) , K ′(0) = μ−1

μ
K (0),

(20)

wherein H ′(0) �= 0 and μ(1 − μ)B ′′′(0) + 6(μ2 − μ − 1)B ′′(0) �= 0.
Substituting the values expressed by (20) in the error equation (19), then some simple

calculations yield

εi+1 = 1

48(μ − 1)5μ8(μ(1 − μ)B ′′′(0) + 6(μ2 − μ − 1)B ′′(0))3

×
(
C1

[
(−μ(μ3 + 9μ2 − 13μ + 3)B ′′′(0) + 2(3μ4 + 9μ3

− 26μ2 − 11μ − 3)B ′′(0))C2
1 + 2(μ − 1)μ(μ(μ − 1)B ′′′(0)

+ (6 + 6μ − 6μ2)B ′′(0))C2][(μ2(μ − 1)2B ′′′(0)2

× (14μ7 + 131μ6 + 172μ5 − 1058μ4 + 374μ3 + 87μ2 + 280μ + 48)

− 12μ(14μ10 + 67μ9 − 310μ8 − 424μ7

+ 1557μ6 − 469μ5 − 268μ4 − 558μ3 + 63μ2 + 280μ + 48)B ′′(0)B ′′′(0)

123



858 J. R. Sharma, S. Kumar

+ 12(42μ11 + 93μ10 − 984μ9

− 315μ8 + 3878μ7 + 200μ6 − 2468μ5 − 3143μ4 − 372μ3 + 1941

× μ2 + 1128μ + 144)B ′′(0)2)C4
1 − 12μ

× (μ − 1)(μ2(μ − 1)2(4μ5 + 21μ4 − 36μ3 − μ2 + 8)B ′′′(0)2 − 4μ(12μ8 + 21

× μ7 − 182μ6 + 185μ5 + 53μ4

− 50μ3 − 63μ2 + 24)B ′′(0)B ′′′(0) + 12(12μ9 + 3μ8 − 142

× μ7 + 130μ6 + 152μ5 − 46μ4 − 142μ3 − 51μ2

+ 48μ + 24)B ′′(0)2)C2
1C2 + 12(μ − 1)2μ4(2μ − 3)

× (μ(μ − 1)B ′′′(0) + (6 + 6μ − 6μ2)B ′′(0))2C2
2

+ 24(μ − 1)3μ3(1 + μ)(μ(μ − 1)B ′′′(0) + (6 + 6μ − 6

× μ2)B ′′(0))2C1C3

])
ε8i + O

(
ε9i

)
. (21)

Hence, the eighth order convergence is established. This completes the proof of theorem. ��

2.1 Some concrete methods

Many special cases of the scheme (3) can be generated satisfying the corresponding conditions
on the functions G, B, H and K shown above in Theorem 1 . Moreover, we will restrict
choices to consider the forms of low order polynomials. These choices should be such that
the resulting methods may converge to the root with order eight for μ > 1. Accordingly, the
following simple forms are chosen:

G(ui ) = ui + 2μ

μ − 1
u2i + (23μ4 + 7μ3 − 21μ2 − 13μ − 12)

(μ − 1)2(13μ2 − 13μ − 12)
u3i . (22)

B(ui ) = − 13μ3 − 26μ2 + μ + 12

4(9μ3 − 8μ2 − 5μ + 6)

(
1

2
+ ui

)
− u2i

2

(
1 − 1

6
ui

)
. (23)

B(ui ) = 1

8(9μ3 − 8μ2 − 5μ + 6)(6 + ui )

(
− 72 − 6μ + 156μ2 − 78μ3

− (169μ3 − 338μ2 + 13μ + 156)ui − (242μ3 − 244μ2 − 118μ + 168)u2i

)
.

(24)

H(vi ) = μ2

2(μ2 − μ − 1)
+ vi . (25)

H(vi ) = μ3vi + μ2(1 + 2vi ) − 2μvi − 2vi
2(μ2 − μ − 1)(1 + μvi )

. (26)

H(vi ) = μ3(2μ2vi − 2μvi − 2vi + μ)

2(μ2 − μ − 1)(2vi + 2μ3vi + μ2(v2i − 4vi + 1))
. (27)

K (wi ) = − 16(μ2 − μ − 1)(9μ3 − 8μ2 − 5μ + 6)

μ2(13μ2 − 13μ − 12)

( 1

μ − 1
+ 1

μ
wi

)
. (28)

K (wi ) = − 16(μ2 − μ − 1)(9μ3 − 8μ2 − 5μ + 6)(μ − wi + μwi + μ2wi )

(μ − 1)μ3(13μ2 − 13μ − 12)(1 + μwi )
. (29)
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Let us select the combination of (22), (23), (25), (28) in the scheme (3) anddenote the resulting
method by M-1; the combination of (22), (23), (26), (28) and denote the corresponding
method by M-2; the combination of (22), (24), (25), (28) and denote the method by M-3;
and the combination of (22), (23), (27), (28) and denote the method by M-4.

Remark 1 The computational efficiency (E) is defined as E = p1/θ , where p is the order of
convergence of the considered method and θ is the number of function evaluations required
per iteration (see [12]). With the conditions (11) and (20) the proposed scheme (3) reaches at
eighth order convergence by using only four functional evaluations (viz. f (ti ), f (zi ), f ′(ti )
and f ′(yi )) per iteration. Thus, the E-value of the new scheme is 81/4 ≈ 1.682, which is
much better than the E-values of Newton’s method (E = 21/2 ≈ 1.414) and fourth order
Liu–Zhou method (E = 41/3 ≈ 1.587).

Remark 2 The proposed algorithms require the knowledge of multiplicity μ of a root. To
estimate μ, we can employ the formula

μ ≈ ti+1 − ti
F(ti+1) − F(ti )

,

wherein F(ti ) = f (ti )
f ′(ti ) , which is approximately the reciprocal of divided difference of F for

successive iterates ti and ti+1 (see [6]).

3 Numerical examples

Convergence behavior and computational efficiency of the new methods M-1, M-2, M-3
and M-4 are hereby demonstrated by applying on some numerical problems. Performance
is compared with some existing well-known methods. For example, we choose the optimal
fourth order methods by Kansal et al. [5], Li et al. [9,10], Liu and Zhou [11], Sharma and
Sharma [17], Soleymani et al. [18] and Zhou et al. [22]. These methods are expressed as
follows:
Li–Liao–Cheng method (LLC):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − μ(μ − 2)
(

μ
μ+2

)−μ
f ′(yi ) − μ2 f ′(ti )

f ′(ti ) − (
μ

μ+2

)−μ
f ′(yi )

f (ti )

2 f ′(ti )
.

Li–Cheng–Neta method (LCN):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − a1
f (ti )

f ′(yi )
− f (ti )

a2 f ′(ti ) + a3 f ′(yi )
,
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where

a1 = − 1

2

(
μ

μ+2

)μ
μ(μ4 + 4μ3 − 16μ − 16)

μ3 − 4μ + 8
,

a2 = − (μ3 − 4μ + 8)2

μ(μ4 + 4μ3 − 4μ2 − 16μ + 16)(μ2 + 2μ − 4)
,

a3 = μ2(μ3 − 4μ + 8)(
μ

μ+2

)μ
(μ4 + 4μ3 − 4μ2 − 16μ + 16)(μ2 + 2μ − 4)

.

Sharma–Sharma method (SS):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − μ

8

[
(μ3 − 4μ + 8) − (μ + 2)2

( μ

μ + 2

)μ f ′(ti )
f ′(yi )

×
(
2(μ − 1) − (μ + 2)

( μ

μ + 2

)μ f ′(ti )
f ′(yi )

)] f (ti )

f ′(ti )
.

Zhou–Chen–Song method (ZCS):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − μ

8

[
μ3

(μ + 2

μ

)2μ( f ′(yi )
f ′(ti )

)2 − 2μ2(μ + 3)
(μ + 2

μ

)μ f ′(yi )
f ′(ti )

+ (μ3 + 6μ2 + 8μ + 8)
] f (ti )

f ′(ti )
.

Soleymani–Babajee–Lotfi method (SBL):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − f ′(yi ) f (ti )
p1( f ′(yi ))2 + p2 f ′(yi ) f ′(ti ) + p3( f ′(ti ))2

,

where

p1 = 1

16
μ3−μ(2 + μ)μ,

p2 = 8 − μ(2 + μ)(μ2 − 2)

8μ
,

p3 = 1

16
(μ − 2)μμ−1(2 + μ)3−μ.

Kansal–Kanwar–Bhatia method (KKB):

yi = ti − 2μ

μ + 2

f (ti )

f ′(ti )
,

ti+1 = ti − μ

4
f (ti )

(
1 +

μ4q−2μ
(
qμ−1 − f ′(yi )

f ′(ti )

)2
(qμ − 1)

8(2qμ + m(qμ − 1))

)

×
(4 − 2μ + μ2(q−μ − 1)

f ′(ti )
− q−μ(2qμ + μ(qμ − 1))2

f ′(ti ) − f ′(yi )

)
,
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Table 1 Test functions

Functions Root (α) μ Initial guess

f1(t) = t4 + 11.50t3 + 47.49t2 + 83.06325t + 51.23266875 (see [3]) −2.85 2 −2.5

f2(t) = (t3 − 5.22t2 + 9.0825t − 5.2675)2 1.75 4 3.7

f3(t) = [
tan−1 (√

5
2

) − tan−1(
√
t2 − 1) + √

6
(
tan−1 (√ t2−1

6
)

− tan−1 ( 1
2

√
5
6
)) − 11

63
]5 (see [4]) 1.841… 5 1.5

f4(t) = (t − 2)((t − 1)3 − 1)9 sin(t − 2)(et−2 − 1) 2 12 3

where q = μ
μ+2 .

Liu–Zhou method (LZ):

yi = ti − μ
f (ti )

f ′(ti )
,

ti+1 = yi − μ
(
ui + 2μ

μ − 1
u2i

) f (ti )

f ′(ti )
,

where ui =
(

f ′(yi )
f ′(ti )

) 1
μ−1

.

The methods are tested on the various problems as shown in Table 1. Numerical
calculations are performed in the programming package of Mathematica software using
multiple-precision arithmetic. Computed results exhibited in Table 2 contain the following
numerical values:

– The number of iterations (i) required to obtain the desired solution.
– The estimated errors |ti+1 − ti | for the first three iterations.
– The computational order of convergence (COC).
– The total number of function evaluations (TNFE).

Necessary iterations (i) are calculated by using the condition |ti+1 − ti | + | f (ti )| < 10−350

as the stopping criterion. Computational order of convergence is calculated by the formula

COC = ln |(ti+2 − α)/(ti+1 − α)|
ln |(ti+1 − α)/(ti − α)| ,

which is used to validate the theoretical order of convergence (see [20]).
From the numerical results displayed in Table 2 we observe that the errors generated by

the proposed methods M-1, M-2, M-3 and M-4 show the greater accuracy in the successive
approximations. This justifies the good convergence of themethods. The value 0 for |ti+1−ti |
indicates that the required accuracy has been achieved. Computational order of convergence
(COC) shown in the penultimate column of the table overwhelmingly supports the theoretical
convergence order. This feature points to the uniformity in the convergence speed of the
iterations which is contrary to the belief that higher order iterations do not always preserve the
order of convergence. Computational efficiency of the methods can be viewed by observing
the entries of TNFE. Indeed, the new methods are efficient in general, since TNFE is less
than that of the existing ones in all the cases. Similar numerical testing, carried out for many
other problems, have confirmed the above conclusions to a large extent.
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Table 2 Comparison of numerical results

Methods i |t2 − t1| |t3 − t2| |t4 − t3| COC TNFE

f1(t)

LLC 5 2.17 × 10−3 2.43 × 10−13 3.96 × 10−53 4 15

LCN 5 2.17 × 10−3 2.43 × 10−13 3.96 × 10−53 4 15

SS 5 2.20 × 10−3 2.56 × 10−13 4.91 × 10−53 4 15

ZCS 5 2.30 × 10−3 3.04 × 10−13 9.72 × 10−53 4 15

SBL 5 2.17 × 10−3 2.43 × 10−13 3.96 × 10−53 4 15

KKB 5 2.05 × 10−3 1.94 × 10−13 1.62 × 10−53 4 15

LZ 5 5.40 × 10−3 8.75 × 10−12 6.82 × 10−47 4 15

M-1 3 2.34 × 10−6 2.94 × 10−49 0 8 12

M-2 3 2.35 × 10−6 2.91 × 10−49 0 8 12

M-3 3 2.36 × 10−6 3.08 × 10−49 0 8 12

M-4 3 2.34 × 10−6 2.90 × 10−49 0 8 12

f2(t)

LLC 8 2.56 × 10−1 3.61 × 10−2 1.75 × 10−3 4 24

LCN 8 2.56 × 10−1 3.63 × 10−2 1.78 × 10−3 4 24

SS 8 2.57 × 10−1 3.67 × 10−2 1.84 × 10−3 4 24

ZCS 8 2.59 × 10−1 3.74 × 10−2 1.95 × 10−3 4 24

SBL 8 2.61 × 10−1 3.84 × 10−2 2.11 × 10−3 4 24

KKB 7 2.52 × 10−1 3.48 × 10−2 1.55 × 10−3 4 21

LZ 8 2.90 × 10−1 5.00 × 10−2 4.73 × 10−3 4 24

M-1 5 1.30 × 10−1 4.03 × 10−3 4.94 × 10−10 8 20

M-2 5 1.34 × 10−1 4.42 × 10−3 1.02 × 10−9 8 20

M-3 5 1.30 × 10−1 4.03 × 10−3 4.91 × 10−10 8 20

M-4 5 1.34 × 10−1 4.51 × 10−3 1.19 × 10−9 8 20

f3(t)

LLC 5 1.28 × 10−3 2.92 × 10−14 8.09 × 10−57 4 15

LCN 5 1.28 × 10−3 2.91 × 10−14 7.99 × 10−57 4 15

SS 5 1.28 × 10−3 2.89 × 10−14 7.74 × 10−57 4 15

ZCS 5 1.28 × 10−3 2.87 × 10−14 7.41 × 10−57 4 15

SBL 5 1.28 × 10−3 2.78 × 10−14 6.38 × 10−57 4 15

KKB 5 1.28 × 10−3 3.01 × 10−14 9.40 × 10−57 4 15

LZ 5 3.33 × 10−5 2.43 × 10−20 6.86 × 10−81 4 15

M-1 3 9.07 × 10−9 3.59 × 10−69 0 8 12

M-2 3 9.07 × 10−9 3.60 × 10−69 0 8 12

M-3 3 9.07 × 10−9 3.58 × 10−69 0 8 12

M-4 3 9.07 × 10−9 3.60 × 10−69 0 8 12

f4(t)

LLC 6 1.10 × 10−1 1.46 × 10−4 6.53 × 10−16 4 18

LCN 6 1.10 × 10−1 1.46 × 10−4 6.65 × 10−16 4 18
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Table 2 continued

Methods i |t2 − t1| |t3 − t2| |t4 − t3| COC TNFE

SS 6 1.11 × 10−1 1.50 × 10−4 7.40 × 10−16 4 18

ZCS 6 1.11 × 10−1 1.51 × 10−4 7.72 × 10−16 4 18

SBL 6 1.41 × 10−1 4.59 × 10−4 7.98 × 10−14 4 18

KKB 6 1.06 × 10−1 1.19 × 10−4 2.80 × 10−16 4 18

LZ 6 1.39 × 10−1 5.81 × 10−4 3.19 × 10−13 4 18

M-1 4 1.97 × 10−2 4.03 × 10−14 1.01 × 10−107 8 12

M-2 4 2.49 × 10−2 2.78 × 10−13 5.11 × 10−101 8 12

M-3 4 1.97 × 10−2 3.91 × 10−14 7.66 × 10−108 8 12

M-4 4 2.65 × 10−2 4.78 × 10−13 3.93 × 10−99 8 12

4 Conclusions

A convergent three-step optimal eighth order scheme has been derived for locating multiple
zeros of nonlinear functions. Themethodology is based onLiu–Zhou optimal fourth order and
Newton-like iterations. Analysis of the convergence has proved the order eight under standard
assumptions. Performance has been checked by numerical testing. The theoretical eighth
order convergence is verified by calculating computational order of convergence (COC).
The comparison of performance of the methods with existing efficient methods has also
been shown. Comparison of computational efficiency, measured in terms of total number
of function evaluations (TNFE) required to achieve the desired solution with the specified
accuracy, has also confirmed the efficient and robust character of the new methods. Finally,
it is hoped that this study makes a significant contribution to solving nonlinear equations.
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