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Abstract

Making use of the g —difference operator L, 4 (a, ¢), we introduce a new two subclasses of
p—valent analytic functions in the open unit disk. The main objective of the present paper is
to investigate the various important properties and characteristics of each of these subclasses.
Furthermore, several properties involving neighborhoods and modified Hadamard products
of functions in these subclasses are obtained.
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Cauchy—Schwarz inequality
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1 Introduction

Let A (p) denote the class of functions normalized by

f@=2"+) a ™’ (peN={1,2,3..}, (1.1)
k=1

which are analytic and p—valent in the open unit disk U = {z € C: |z| < 1}. If f (z) and
g (2) are analytic in U, we say that f (z) is subordinate to g (z), written symbolically as
f < gor f(z) < g(2)(z €, if there exists a Schwarz function w (z) in U such that
f (@) =g w(2)(z € U(see [7,12]).
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For functions f € A (p), given by (1.1), and g € A (p) given by

oo
g@ ="+ b (peN), (1.2)
k=1

we define the Hadamard product (or convolution) of f (z) and g (z) by

(f%8) (@ =2"+ > arypbispdt? (e, (1.3)
k=1

Recently, g—derivative has played a crucial role in the theory of univalent and multivalent
functions especially in estimating the sharp inequalities bound for various subclasses of
univalent functions (see [1,18,21,30,31]). For 0 < g < 1, Jackson [19,20] (see also [11,14]
and [35]) defined the g — derivative of f as follows:

1/(0) ifz=0,
D,,f(@:=1 f&—f(g2) if2 40, (1.4)
I—q)z
provided that f’(0) exists. For f € A (p) given by (1.1), we deduce that
Dpyf @ =1[plyz" + ) Tk +plg arrp P71 @ £ 0), (1.5)
k=1
where
; -4 2 i-1
[l]qzl_q=1+q+q +-+q' (1.6)
and
. . @) — f(g2) /
Pl paf (@ i S g 1 (@,

for a function f which is differentiable in a given subset of C. We note that Dy 4 f (z) =
D, f (z) and

D, 4 (c) = 0, where c is constant;
Dp,q (f@)£gk) = Dp,qf (z) + Dp,qg (2);

Dpg(f(2)g (@) =8@) Dpyf @)+ f(q2) Dpyg(2);
D (f(Z)) (Z)Dp qf(Z) f( )Dp qg(Z)
8(2) 8(qz) g(2)

Bl S e

As aright inverse, Jackson [20] introduced the g —integral of a function f € A (p) given
by (1.1 ) as follows:

00
p+1 Zk+17+l

Z .
Dyt =21 - (") = 20 S,
ff() ( q)qu ‘)=, X::k+17[k+p+1]q
provided that the series converges. We observe that
Zk+p—¢—1

k+pk+p+1’

hrn f(z)dt—/ f@®)dt =

=1

where foz f () dt is the ordinary integral a function f.
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Next, in terms of the g-Pochhammer symbol ([v], ), given by

([v]) :{1 (n=0),
4/n Wy v+ 1, v+2],---[v+n—1]; (peN),

we define the function ¢, , (a, c; z) by

(lalg)y i, @>0:c>0zel). (1.7)
lelg)y

bp.q (a,c; z)—z”-ﬁ-z
= (
Corresponding to the function ¢, 4 (a, c; z), we consider a linear operator L,  (a,c) :
A (p) = A (p) which is defined by means of the following Hadamard product (or convolu-
tion):
o0

(lal
Lypg@0) f (D) =pg@csf@=2"+ [Z]q aep? . (18)
k=1 q

It is easily verified from (1.8) that

4“7 PzDp g (Lpg(a,0) f () =laly Lpg@+1,0) f(2) —la—plyLpg(a,c) f ().
(1.9)

Moreover, for f (z) € A(p), we observe that

1. L q(a a) f(@)=f(@);

pa (p+1.p) f(2) = 2l and limg - Lyg (p+1.p) £ (2) = L,

3. The operator lim,_, - L, 4 (a ¢) = L (a, c) was introduced by Saitoh [28] and studied
by Srivastava and Patel [34];

4 Lyyn+p, D@ = RPN @) (> —p), where RyTP7f(2) denotes the
Ruscheweyh g—derivative of a function f € A(p) of order n + p — 1 (see [1],
[21] and [32]) and limy_1- Ly 4 (n+p, 1) f(2) = D”+p_]f(z) (n > —p), where
D"tP=1 £ (7) denotes the Ruscheweyh derivative of a function f (z) € A (p) of order
n+ p—1(see [22,23]).

For p e N,0 < ¢ < 1,a > 0and ¢ > 0, and for the parameters A, A and B such that
—1<A<B<1,0<B<land0<AX< [p]q,we say that a function f € A (p) is in the
class 7, 4 (a, c, A, B, 1) if it satisfies the following subordination condition:

Dy (Lpg (@0 f @) [Py +{Iply B+ (A~ B)(Ipl, —4)}=

el),
zp~ ! 1+ Bz el
(1.10)
or, equivalently, if the following inequality holds true:
Dpg(Lpga.c) f ()
p—1 - [P]q
D (L ( )f()Z) <1 (zel).
p.g\Epgld, €) ] L
B o —{tpl, B+ (A =B (Ipl, — )}
(1.11)

By specializing the parameters a, ¢, A, B, p,q and A involved inthe class 7, ;4 (a, c, A, B, 1),
we obtain the following subclasses which were studied in many earlier works:
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lim,_,1- 7p 4 (a, ¢, A, B, 1) = Py (A, B; A, p) (Aouf et al. [9]);

limg_1- Tpq (@.a, A, B.3) =S, (A, B, 2) (Aouf [4]);

limg - Tpg (@.a.—1,1,1) = S, (1) (Owa [26]);

lim,_,1- 75 4 (a,a, A, B,0) = Sp (A, B) (Chen [13]);

limg,_,1-7p 4 (n+ p, 1, =1, 1,1) = Ty p—1 () (n > —p) (Goel and Sohi [15]);
lim,_,-7,,(n+p,1,—-A, —=B,0) = Vyyp (A, B) (n > —p) (Kumar and Shukla
[23]);

lim, ,-7p 4 (n+p,1,—A, =B, %) = Vyip (A, B, 1) (n > —p) (Aouf [5]);

8. limy_,i- 714 (a,a, —A, —B,0) = R (A, B) (Mehrok [25]).

A

~

Furthermore, we say that a function f € 7,,(a,c,A, B,)) is in the subclass
Tp*’q (a,c, A, B, ) if f (2) is of the
following form:

f@=2" =Y |a,|7 (peN). (1.12)
k=1

Thus, by specializing the parameters a, ¢, A, B, p, g and A, we obtain the following familiar
subclasses of analytic functions in U with negative coefficients:

1. limq_”— ’Tp*’q (a,c, A, B,\) = ”P[;C (A, B; A, p) (Aouf et al. [9]);

lim,_, - Tp*’q (a,a, A, B,)) =P*(p, A, B, ) (Aouf [2]);

lim, -7, (a,a, =B, B, %) =P, (A, f) (0 < B < 1) (Aouf [3]);

lim,_, - ’Z;,*’q (a,a, A, B,0) = P*(p, A, B)(Shukla and Dashrath [33]);

lim,_, ;- Tp*ﬂ (a,a,—1,1,1) = F, (1, 1) (Lee et al. [24]);

lim,_, - Tl’fq (a,a, —B, B, 1) = P* (A, B) (Gupta and Jain [17]);

lim,_, - ’Z;*’q (n+p,1,-1,1,1) = Quyp—1 (&) (n > —p) (Aouf and Darwish [6]);
lim,_, - Tp*’q n+1,1,—-1,1,2) = @, (X)) (n € No = NU {0}) (Uralegaddi and Sarangi
[37D).

In this paper, we investigate the various important properties and characteristics of
Tpq(a,c, A, B, A)and ’T; q (a,c, A, B, 1).Furthermore, several properties involving neigh-
borhoods of functions in these subclasses are investigated. We also derive many results for
the modified Hadamard products of functions belonging to the class 7,7, (a, ¢, A, B, A).

PO NNk WD

2 Inclusion properties of the function class 7, 4 (a, ¢, A, B, 1)

Unless otherwise mentioned, we assume throughout this paper that p € N, 0 < ¢ < 1,
a>0,¢c>0,-1<A<B<1,0<B=<10<Ac< [ply, lily is given by (1.6) and
zel.

For proving our first inclusion result, we shall make use of the following lemma.

Lemma 1 (see[10] and [36]) Let the nonconstant function w (z) be analytic in U with w (0) =
0. If |\w (2) | attains its maximum value on the circle |z| = r < 1 at a point zg € U, then

zZow (z0) = ¥y Dpqw (2), 2.0
where y is a real number and y > 1.
Theorem 1 Ifa > O, then
Tpgla+1,¢c,A,B,A) CTpy(a,c,A, B, 1).
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Proof 1f f € T, ,(a+1,c, A, B, 1), then we find from (1.10) that
Dpy(Lpgla+1,0f() [ply+{lply B+(A—B)(pl, — )} wi(2)
7Pl N 1 + Bwy (z)

where wy (z) is a Schwarz function. To prove that f (z) is in the class 7, 4 (a, c, A, B, 1),
we write

Dy (Lpg @0 f @) _ [Py +{Iply B+ (A= B) (Ipl, ~ )} w )

» 22)

— 2.3)
zP 1+ Bw(2)
It now suffices to show that |w (z) | < 1. Indeed, by using (1.9) and (2.3), we have
Dyg(Lpg@+1.0)f @)  Ipl,+{lpl, B+ (A—B)(Ipl, — 1)} w )
“(A—-B — D
q° ( ) ([ply; — &) 2Dpqw (2) b

[al, [1+ Bw (q2)1[1 + Bw (2)]
We claim that
lw@l <1 (zel.
Otherwise, there exists a point zg € U such that

max |w (z)| = |w (z0)! .
[zI=<lzol

Applying Lemma 1, we have
20Dpqw (20) =yw(z0) (¥ = 1).
Now, upon setting
w(z0) =¥ (0<6<2n),

if we put z = zp in (2.4), we get

Dpg(Lpga+1,0 f(20) :
p—1 - [p]q
z
-1
DyolL,o(@+tl,
5 Dra(Lpga 1 ) f o) {[pl, B+ (A - B) ((p), — 1)}

=
<0
|(lal, + q°v) + lal, Be|* = |lal, + (lal, — ¢“y) Be|’
l[al, + ([a], — g%y) Bei®|?
q**y? (1 — B%) +2[al, ¢°y (1 + B>+ 2B cosb) .
l[al, + (lal, — g%y) Bei®[? -

which, in view of (1.11), contradicts our hypothesis that f € 7, ;, (a + 1, ¢, A, B, 1). Thus
we must have

lw@)| <1 (zel).

So, by applying (2.3), we conclude that f € 7, , (a, c, A, B, A). This completes the proof
of Theorem 1. O
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778 T. M. Seoudy, A. E. Shammaky

Theorem?2 If f € T, , (a,c, A, B, 1), then the function F (z) given by

[]7+U]q ‘ v—1
Fo=25 [ 0de (feapivs—pipen @)

is also in the class T, 4 (a, c, A, B, A).

Proof From (2.5), we have

[p+v],Lpg(a.c)f(z)=1[vlyLpg@c)F@)+q"zDpg(Lpgla.c)F ().
(2.6)
Let
Dpy(Lpg@ o) F@) [ply+{iply B+A=B)(pl,—N}w@
zr-1 B 1+ Bw (2)
where w (z) is either analytic or meromorphic in U with w (0) = 0. Then, by differentiating

(2.7) and using (2.6), we obtain

Dpy(Lpg(a o) f@) [ply+{lply B+ (A—B)(pl,—3)}w@
zp=1 - 1+ Bw(z)
q""P (A= B)([pl, — ») 2Dpqw (2)

[p +vl, [1+ Bw (@)][l + Bw ()]

. @27

(2.8)

The remaining part of the proof of Theorem 2 is much akin to that of Theorem 1, and so it
is being omitted here. o

Theorem 3 The function f € T, 4 (a,c, A, B, A) if and only if the function g (z) given by

[al,
g@ = Zai—p

Zz
/ 1P (1) dygt (2.9)
0
is in the class T, 4 (a +1,c, A, B, }).
Proof Making use of (2.9), we have

laly, f (@) =la—pl, (@) +q" "zDp 48 (2), (2.10)
which, in the light of (1.9), yields

laly Lpg(a,c) f(z)=1la—ply Lpg(a,c)g@+q* PzDpyLyq4(a,c)g(z)
= [a]q Lyg (a+1,0g@-.

Therefore, we have

Lyg(a,c) f@= Lyg (@a+1,0)g (),

and the desired result follows at once. O

3 Basic properties of the function class ’1;,":,, (a,c,A,B, )

We first determine a necessary and sufficient condition for a function f € A (p) of the form
(1.12) to be in the class ’Tp’fq (a,c, A, B, \).
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Theorem 4 Let the function f € A(p) be given by (1.12). Then f € ’Tpfq (a,c, A, B,)N) if
and only if

> [a]
> lk+pl, 1+ B) (lal,), |arsp| < (B —A) (Ip), — 1) 3.1)
k=1 ([C]q)k

Proof If the condition (3.1) holds true, we find from (1.12) and (3.1) that

D L 9 >
P.q ( p,qu(al C) f (Z)) . [p]q
D L a,
B p,q( Pvqu(l C)f(Z)) _{[p]qB-l—(A—B)([p]q_)‘)}‘

‘ Z[k+ ]q C ;k |“+p|Z

— (B =4 (Ip), - BZ[k+ ]q ; o)y |ak+p| 2*

‘ 11)
([a]q)k
—(B—A —A 0
(icly)s |aksp| = ( ) (Ipl, =) <

(zedU={zeC:|zl=1}.

=Y lk+pl,(1+B)
k=1

Hence, by the Maximum Modulus Theorem, we have f € 7, ; q (a,c, A, B, )).
Conversely, let f € 7;,*’(/ (a,c, A, B, L) be given by (1.12). Then, from (1.11) and (1.12),
we find that

Dy (Lpg (@ ) f(2)

= —[rl,
Dpg(Lpg (a0 f(z)
pPralra OO iy a1y (11, - )
=20 [k +pl, ((Et))z |a+p| 2*

= D) <1 (zel). (3.2)
(B = A) (1Pl = ») = BYGZ [k + ply 5t lawep|

Now, since |1 (z)| < |z| for all z, we have
[a]
— TR ke pl, A gy |
— % O <. (33)
(B = A) ((Ply = 4) = B Tk + ply (g5t lawsp| 2

Dpg(Lpglac)f@)
7Pl

We choose values of z on the real axis so that is real. Then, upon clearing

the denominator in (3.3) and letting z — 1~ through real values, we get

([a]q)k
([c]q)k

This completes the proof of Theorem 4. O

D lk+pl,(1+B) |aksp| < (B = A) (Iply — 1)
k=1
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780 T. M. Seoudy, A. E. Shammaky

Remark 1 Since Q;jq (a,c, A, B, A) is contained in the function class 7, 4 (a, ¢, A, B, 1), a

sufficient condition for f (z) defined by (1.1) to be in the class 7, ; (a, ¢, A, B, A) is that it
satisfies the condition (3.1) of Theorem 4.

Corollary 1 Let the function f € A(p) be given by (1.12). If f € T, (a, c, A, B, }), then

=< ,keN). 34
lrl = o e B ), PFEN (34)
The result is sharp for the function f (z) given by
B—A —A
f@=z"- ( ) (1ply = 4) ([C]")kz"ﬂ’ (p.keN). (3.5)

[k + pl, (1 + B) (laly),

We next prove the following growth and distortion properties for the class 7,
(a,c, A, B, ™).

Theorem 5 If a function f (z) defined by (1.12) is in the class Tp*’q (a,c, A, B, )), then

(B—A)([pl,—1)lclylz] - (B—A)([pl,—2)[clylz] -
([p]q - %) 2P < Do f ()] < ([mq + %) Hay

(3.6)
The result is sharp for the function f (z) given by
(B —A) (Ipl, — ) el
— P _ a 4 ,ptl N). 3.7
f@=z [+ o1, (1 + B [a], (peN) (3.7
Proof In view of Theorem 4, we have
(1+ B) la], = =\ k4 ply A+ B) (laly),
k+ < =1L
(B —A) (Ipl, — 1) ], k;[ Plylacer| ,; B —A) (ipl, —») (icly), k|
which readily yields
> (B — A) (Ipl, — ) [c],
k N). 3.8
k;[ + p, |aksp| < (B L, (reN) (3.8)
Now, by g —differentiating both sides of (1.12) with respect to z, we obtain
o0
Dpgf (@) =1pl,z"~" =D Tk +ply a7 (peN). (3.9)

k=1

Theorem 5 follows readily from (3.8) and (3.9).
Finally, it is easy to see that the bounds in (3.6) are attained for the function f (z) given
by (3.7). O

4 Properties involving neighborhoods
Following the earlier works (based upon the familiar concept of neighborhoods of analytic
functions) by Goodman [16], Ruscheweyh [27] and Aouf [8], we begin by introducing here

the §— neighborhood of a function f € A (p) of the form (1.1) by means of Definition 1
below.
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Definition 1 For § > 0, a > 0, ¢ > 0 and a non-negative sequence T’ = {fz};2,, where

_ [k+ply 1+ B) (laly),
(B — 4) (p), — ) (c]y),

the § —neighborhood of a function f € A (p) of the form (1.1) is defined as follows:

Ik (keN),

o0 o0
Ns(f)=18:8@) =2" 4+ b2 € A(p) and Y tx |bryp — aryp| <87 .
k=1 k=1
4.1

We now prove our first result based upon the familiar concept of neighborhood defined
by (4.1).

Theorem 6 Let the function f (z) defined by (1.1) be in the class T, 4 (a,c, A, B, A). If f

satisfies the following condition:

f(2) +ez?

T €Tpgyla,c,A,B,X) (e€C;le|l <8;8>0), 4.2)
&

then
Ns(f) CTpqla,c,A,B,A). 4.3)

Proof Ttis easily seen from (1.11) that g € 7, p.q (@, c, A, B, ))if and only if, for any complex
o(lo] =1,

2Dpq (Lpg (@ c)g (@) —I[pl, 2"
BzDp 4 (Lpg(a,c)g (@) —{lpl, B+ (A—B)(pl, —*)}z”
which is equivalent to the following inequality:

(g *xh)(2)
zP

£, 4.4)

#0 (z e, 4.5)

where, for convenience,

D=2+ ep P =2 + 3 [k + pl, (1 +0B)(laly), -

(4.6)
Pt o (B~ A)(Iply — ) (Icly),
It follows from (4.6) that
k 1 B
il < EH P AL oB (), gy @.7)

(B = A) (Iply — ) (Icly),
Now, if f € A (p), given by (1.1), satisfies the condition (4.2), then (4.5) yields

(.f(zl)_:rﬁz”) «h (2)

#0 (z€0)
zP
or
f(z)*h(Z)?é_S zel).
zP
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which is equivalent to the following inequality:

’f(z):ph(z) >§ (zeU;6>0). 4.8)
By letting
2@ =2"+) b, e N5 (f), 4.9)
k=1

we deduce that

[f (@) —g@]*h(z)

7P

o0
= Z (ak+p - bk+p) Ck+ka

=, [k + pl, (1+OB)([a]) by atoy|
+p — Gk+
S Bl -1 (), "

< (zeU,8>0), (4.10)

Ol

which leads us to (4.5), and hence also to (4.4) for any complex number o (|o'| = 1). This
implies that g (z) € 7, 4 (a, c, A, B, 1), which completes the proof of the assertion (4.3) of
Theorem 6. O

We now define the § —neighborhood of a function f € A (p) of the form (1.12) as follows.

Definition 2 For min {6, a, ¢} > 0, the §— neighborhood of a function f € A (p) of the form
(1.12) is given by

N5 (f) = {g 8@ =2" =) |biyp| P € A(p) and
k=1
i [k + (1+B) (la] )
(

] ool 3] a1

Theorem 7 If the function f (z) defined by (1.12) is in the class ’T;q (a+1,c, A, B, M),
then

* " _ g
Ni(f)C T}, (a+1,c A B2 <a = [a+1]q>. (4.12)

The result is the best possible in the sense that § cannot be increased.
Proof Let f € ’T;LI (a+1,c, A, B, ) be given by (1.12). Then, by Theorem 4, we have

© [k + pl, (1+ B) ([a + 11,), [a],

413
) Y TRV TR AR P T @13)
Similarly, by taking
—_ P _ - k+p " _ q
8@ =z ;|bk+p|z e N (f) (5— [a+1]q>’ (4.14)
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we find from the definition (4.11) that

> [k+ pl, (1+ B) (laly),
by — |ag <§ (6>0). (4.15)

; B (0], ~ ) (icl), ||Brtp| = |acsp ||

With the help of (4.13) and (4.15), we get

i [k + pl, (1 + B) ([al,),

o (B—4) ([P]q - )‘) ([C]q)
> [k + pl, (1+ B) ([a] )
f | k+p|

— (B~ A) (Ip), — ) (lc],),

i k—i—p]q(l—i-B)( e
= (B—A) (Ipl, — 1) (Iclg),

| k+17‘

[[Bitp| = x|

Thus, in view of Theorem 4 again, we see that g € Tp* q (a,c, A, B, 1). To show the sharpness
of the assertion of Theorem 7, we consider the functions f (z) and g (z) given by

(B — A)([pl, — ) [cly
[1+pl, A+ B)[a+1],

f@=2z"— el (@+1.¢c,A.B.)) (416

and

¢ (2) =P — ( (B —A) ([ply = M) [elg (B =A)(Ipl, —»)[e], 8,) "

(H+pl, A+ B)la+1],  [1+pl, (+B)ldl,

4.17)
where §' > § = @ +1] . Clearly, g € Ny (f). On the other hand, we find from Theorem 4
that g € Tp*’ q @ c A, B A). The proof of Theorem 7 is thus completed. O
5 Properties associated with modified Hadamard products
For the functions f; (z) (j = 1, 2) given by
[e.¢]
fi@=2" =Y lacsp;| 277 (=12 peN), 5.1)

k=1

we denote by (f1 e f2) (z) the modified Hadamard product (or convolution) of the functions
f1(z) and f3 (2), defined by

(fre )@ =2" = |acspi||arspa| 27 = (a0 1) @) (5.2)

k=1

Theorem8 Let the functions fj(z)(j =1,2) defined by (5.1) be in the class
’Tp’fq (a,c, A, B,)). Then (f1 e f2)(2) € ’T;ll (a,c, A, B,y), where

(B —A)(Ip), — 1) Lel,
[1+pl, 1+ B)[a],

y =1Ipl, - (5.3)
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The result is sharp for the functions f; (z) (j = 1,2) given by
B - A)(1pl, - M)y 00

=1,2; N). 5.4
0+pl,(+Bya, - U=hHPED G4

Proof Employing the technique used earlier by Schild and Silverman [29], we need to find
the largest y such that

§:M+phU+BMMﬁk
o (B—4) ([P]q - V) ([C]q)k

fi@ =2z~

}ak+p,1| . |ak+p,2| <1 (5.5)

(fieTr@e A B2 =12).

Since f; € T;q (a,c, A, B,A) (j = 1,2), we readily see that
§:m+pba+BMmm
(B - A)(Ip), 1) (Ic],

Therefore, by the Cauchy—Schwarz inequality, we obtain

>\ [k+ pl, (1+ B)(lal,),
' <1 5.7
,; (B—A) ([p]q _ A) ([C]q)k \/|ak+p,l| \/|ak+p,z| < .7

This implies that we only need to show that

’3 |akipi| <1 (G=12). (5.6)
k

}akﬂ,,] | . |ak+py2| _ \/|ak+p,l|~\/|ak+p,l|

keN 5.8
(ply —v B [pl; — 2 (ke 65
or, equivalently, that
lplg —v
NN Ly kel (5.9)

Hence, by making use of the inequality (5.7), it is sufficient to prove that

(B —4) (1pl, —2) (Iely), _ [ply —v
lk+ pl, (1 + B) (lal,), ~ Lpl, —*

(k e Ny, (5.10)

that is, that

(B = A) (1), = 4)* (Iely),
[k + pl, (1 + B) (laly),

Now, defining the function & (k) by

B = A) (1pl, = )’ (iely),
[k + pl, (1 + B) (laly),

we see that @ (k) is an increasing function of k. Therefore, we conclude that

CB=A) (1), - 1)1l

[k + pl, (I + B) [al,

which completes the proof of Theorem 8. O

y <lpl, — (keN). (5.11)

@ (k) =[ply — (keN), (5.12)

y <@ ) =Ip], : (5.13)
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By using arguments similar to those in the proof of Theorem 8, we can derive the following
result.

Theorem9 Let the functions fj(z)(j =1,2) defined by (5.1) be in the class
7, (a,c, A, B, Aj) (j = 1,2). Then (fi e f2) (2) € 7, ,(a,c, A, B, ), where

B =) (Ipl, = M) (Ipl, — 22) [el,

= 5.14
¢ =rl [+ pl, (+ B)lal, o1
The result is sharp for the functions f; (z) (j = 1,2) given by
B—A —Aj
f,/(z)zz”—( ) (17, ’)[C]qz"“ (j=1,2;peN). (5.15)

[1+ pl, 1+ B)lal,
Theorem 10 Let the functions f;(z)(j =1,2) defined by (5.1) be in the class
’Tp’fq (a,c, A, B, ). Then the function h (z) defined by

oo

h(z) =7" — Z <|(lk+p,l |2 + |ak+p,z|2) ktp (5.16)
k=1

belongs to the class ’Tp’iq (a,c, A, B, x), where

2(B - A) (Ipl, — ) Ic],
(1+pl, A+ B)lal,
This result is sharp for the functions f; (z) (j = 1, 2) given by (5.4).

x =[ply — (5.17)

Proof By noting that

0 2 2 2 00 2
Z (lk+pl,)"(1+B) (lalg), |a '|2 - [k+pl, (1+B)(laly), |a ’ <1
e O VAN Y A Ve AU R (O

fi @) €Ty @.e. A B2 (j =1,2)). (5.18)

we have

§§(w+phfu+4n2<awﬁ
=28 - A2 (1pl, — ) \(lelg)
Therefore, we have to find the largest y such that

L [k + pl, (1 + B) (lal,),

2
k) (\ak+p,1|2 + Iak+p,z!2) <l (519
k

< (keN), (5.20)
Pl =% = 28— 4) (1p), = 2)" (Iely),
that is, that
2
2(B—A —A
x <lpl, — ( ) (Il = 3)" (Iela), (k eN). (5.21)
[1+ pl, A+ B) (lal,),
Now, if we define a function ¥ (k) by
2(B—A —2)?
v (k) = [pl, - ( ) (1Plg = 2)" (el (k € N), (5.22)

[1+ pl, A+ B) (lal,),
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we observe that W (k) is an increasing function of k. We thus conclude that

2(B - A) (Ipl, — ) Ic],
[1+pl, 1+ B)[al,

X< W) =0pl, — , (5.23)

which completes the proof of Theorem 10. O
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