

Some results on U-cross Gram matrices by using K-frames

Mitra Shamsabadi¹ · Ali Akbar Arefijamaal¹

Received: 22 November 2018 / Accepted: 12 May 2020 / Published online: 25 May 2020 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Abstract

U-cross Gram matrices are produced by frames and Riesz bases. In this paper, we represent bounded operators as matrix operators using *K*-frames. We study the invertibility matrices respect to *K*-frames. Moreover, we apply the concept of *K*-Riesz bases in Hilbert space \mathcal{H} to the concept of matrix induced by *U* with respect to *K*-Riesz bases.

Keywords U-cross Gram matrix \cdot Cross Gram matrix \cdot K-frame \cdot K-Riesz basis

Mathematics Subject Classification Primary 41A58 · Secondary 43A35

1 Introduction, notation and motivation

A unitary system is a set of unitary operators \mathcal{U} acting on a Hilbert space \mathcal{H} which contains the identity operator I of $B(\mathcal{H})$. A Bessel generator for \mathcal{U} is a vector $x \in \mathcal{H}$ with the property that $\mathcal{U}x := \{Ux : U \in \mathcal{U}\}$ is Bessel sequence for \mathcal{H} . Many useful frames, which play an essential role in both theory and applications, can been considered as unitary systems, group-like unitary systems and atomic systems [16,18]. *K*-frames were recently introduced by Gavruta to study atomic systems with respect to a bounded operator $K \in B(\mathcal{H})$. It is a generalization of frame theory such that the lower bound is only satisfied for the elements in the range of K [17]. It is shown that an atomic system for K is a K-frame and vice versa. For this reason, K-frames are a useful mathematical tool to study the structure of unitary systems. Another purpose of this paper is to study Gram Matrices. The operator equation Uf = vwhere $U \in B(\mathcal{H})$ does not have a smooth solution (i.e. have all derivatives continuous) in general. It can be rewritten of the form

$$Ax = b \tag{1.1}$$

where $A_{i,j} = \langle Ue_i, e_j \rangle$ and $\{e_i\}_{i \in I}$ is an orthonormal basis of *H*. To solve linear systems (1.1) variational method can be applied for example [25]. Recently, frames, Riesz bases and

 Mitra Shamsabadi mi.shamsabadi@hsu.ac.ir
 Ali Akbar Arefijamaal arefijamaal@hsu.ac.ir; arefijamaal@gmail.com

¹ Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

g-frames are applied to obtain (1.1) [3,4,12]. In this paper, we apply *K*-frames to get (1.1) as atomic decompositions of elements in the range of *K* which may not be closed.

Let \mathcal{H} be a separable Hilbert space and K an operator from \mathcal{H} to \mathcal{H} . A sequence $F := {f_i}_{i \in I} \subseteq \mathcal{H}$ is called a *K*-frame for \mathcal{H} , if there exist constants A, B > 0 such that

$$A \|K^* f\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B \|f\|^2, \quad (f \in \mathcal{H}).$$
(1.2)

Clearly if $K = I_{\mathcal{H}}$, then *F* is an ordinary frame. The constants *A* and *B* in (1.2) are called lower and upper bounds of *F*, respectively. We call *F* a *A*-tight *K*-frame if $A ||K^*f||^2 = \sum_{i \in I} |\langle f, f_i \rangle|^2$ and a 1-tight *K*-frame as *Parseval K*-frame. A *K*-frame is called an *exact K*-frame, if by removing any element, the reminder sequence is not a *K*-frame.

Obviously, every *K*-frame is a Bessel sequence, hence similar to ordinary frames the *synthesis operator* can be defined as $T_F : l^2 \to \mathcal{H}$; $T_F(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i$. It is a bounded operator and its adjoint which is called the *analysis operator* given by $T_F^*(f) = \{\langle f, f_i \rangle\}_{i \in I}$. Finally, the *frame operator* is given by $S_F : \mathcal{H} \to \mathcal{H}$; $S_F f = T_F T_F^* f = \sum_{i \in I} \langle f, f_i \rangle f_i$. Many properties of ordinary frames do not hold for K-frames, for example, the frame operator of a K-frame is not invertible in general. It is worthwhile to mention that if *K* has close range then S_F from R(K) onto $S_F(R(K))$ is an invertible operator [24]. In particular,

$$B^{-1}||f|| \le ||S_F^{-1}f|| \le A^{-1}||K^{\dagger}||^2 ||f||, \quad (f \in S_F(R(K))),$$
(1.3)

where K^{\dagger} is the pseudo-inverse of *K*.

Let $\{f_i\}_{i \in I}$ be a Bessel sequence. A Bessel sequence $\{g_i\}_{i \in I} \subseteq \mathcal{H}$ is called a *K*-dual of $\{f_i\}_{i \in I}$ if

$$Kf = \sum_{i \in I} \langle f, g_i \rangle \pi_{R(K)} f_i, \quad (f \in \mathcal{H}).$$
(1.4)

In [17], it was shown that for every *K*-frame of \mathcal{H} there exists at least a Bessel sequence $\{g_i\}_{i \in I}$ which satisfies (1.4).

Let $F = \{f_i\}_{i \in I}$ be a *K*-frame. The Bessel sequence $\{K^*S_F^{-1}\pi_{S_F(R(K))}f_i\}_{i \in I}$ can be considered as *the canonical K-dual* of *F* [1]. For simplicity, the canonical *K*-dual is denoted by $F^{\ddagger} = \{f_i^{\ddagger}\}_{i \in I}$. In the sequel, we show that for each $f \in \mathcal{H}$, the sequence $\{\langle f, f_i^{\ddagger} \rangle\}_{i \in I}$ has minimal ℓ^2 -norm among all sequences representating Kf.

The next proposition is important in K-frame theory.

Proposition 1.1 [14] Let $L_1 \in B(\mathcal{H}_1, \mathcal{H})$ and $L_2 \in B(\mathcal{H}_2, \mathcal{H})$ be two bounded operators. *The following statements are equivalent:*

(1) $R(L_1) \subseteq R(L_2)$.

(2)
$$L_1L_1^* \leq \lambda^2 L_2L_2^*$$
 for some $\lambda \geq 0$

(3) there exists a bounded operator $X \in B(\mathcal{H}_1, \mathcal{H}_2)$ so that $L_1 = L_2 X$

In this paper, we establish the notion of *K*-Riesz bases and show that, similar to ordinary frames, a *K*-Riesz basis has a unique *K*-dual. Also, try to state an operator as a matrix operator induced by *K*-frames and *K*-Riesz bases. More precisely, every *K*-frame is a Bessel sequence, and therefore we can induce matrix representations (3.1) for operators by *K*-frames. The inverse of such matrices are computed if they are exist. Moreover, we investigate sufficient conditions such that a matrix operator induced by *K*-frames is invertible. For more similar information see [5].

2 K-Riesz bases

In this section, we present K-Riesz sequences in \mathcal{H} and investigate their properties. Also, we state K-Riesz bases and give some characterizations of this concept such as we prove that they are a unique K-dual. Throughout this paper we suppose K is a bounded operator with closed range.

Definition 2.1 A family $F := \{f_i\}_{i \in I}$ is called a *K*-*Riesz sequence* for \mathcal{H} if there exists an injective bounded operator $U : \mathcal{H} \to \mathcal{H}$ such that $\{\pi_{R(K)}f_i\}_{i \in I} = \{Ue_i\}_{i \in I}$, where $\{e_i\}_{i \in I}$ is an orthonormal basis for \mathcal{H} . In addition, if *F* is a *K*-frame, then $\{f_i\}_{i \in I}$ is called a *K*-*Riesz basis*.

The next theorem, which used frequently throughout the paper, gives an equivalent condition for *K*-Riesz sequences.

Theorem 2.2 For a *K*-frame $F = \{f_i\}_{i \in I}$ in \mathcal{H} , the following are equivalent:

- (1) $\{f_i\}_{i \in I}$ is a K-Riesz basis for \mathcal{H} .
- (2) There exist constants A, B > 0 such that for every finite scalar sequence $\{c_i\}_{i \in I}$,

$$A\sum_{i\in I} |c_i|^2 \le \left\|\sum_{i\in I} c_i \pi_{R(K)} f_i\right\|^2 \le B\sum_{i\in I} |c_i|^2.$$
(2.1)

Proof (1) \Rightarrow (2) Let $\{f_i\}_{i \in I}$ be a *K*-Riesz sequence. Then there exists an injective bounded operator $U : \mathcal{H} \to \mathcal{H}$ such that $Ue_i = \pi_{R(K)} f_i$. Moreover, applying the lower *K*-frame condition and Theorem 1.1 we have

$$R(U) = \pi_{R(K)}\pi_{R(T_F)}\mathcal{H}$$
$$= \pi_{R(T_F)}\pi_{R(K)}\mathcal{H}$$
$$= \pi_{R(K)}\mathcal{H} = R(K).$$

In particular, R(U) is closed, and so U has a bounded left inverse denoted by L. Hence,

$$\left\|\sum_{i\in I} c_i \pi_{R(K)} f_i\right\|^2 = \left\|\sum_{i\in I} c_i U e_i\right\|^2 \le \|U\|^2 \sum_{i\in I} |c_i|^2$$

and

$$\sum_{i \in I} |c_i|^2 = \left\| LU \sum_{i \in I} c_i e_i \right\|^2 \le \|L\|^2 \left\| \sum_{i \in I} c_i \pi_{R(K)} f_i \right\|^2,$$

for every finite scalar sequence $\{c_i\}_{i \in I}$.

 $(2) \Rightarrow (1)$ Given

$$U: \mathcal{H} \to \overline{span} \left\{ \pi_{R(K)} f_i \right\}_{i \in I}, (e_i \mapsto \pi_{R(K)} f_i).$$

Then (2.1) yields

$$A \sum_{i \in I} |c_i|^2 = \left\| \sum_{i \in I} c_i \pi_{R(K)} f_i \right\|^2$$
$$= \left\| U \sum_{i \in I} c_i e_i \right\|^2 \le B \sum_{i \in I} |c_i|^2.$$

Deringer

So, U is bounded and injective.

The next corollary gives equivalent conditions for a Bessel sequence being a K-Riesz basis.

Corollary 2.3 Let $F = \{f_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H} . The following are equivalent:

- (1) F is a K-Riesz basis.
- (2) F is a K-frame and

$$A\sum_{i\in I} |c_i|^2 \le \left\| \sum_{i\in I} c_i \pi_{R(K)} f_i \right\|^2 \le B\sum_{i\in I} |c_i|^2.$$

(3) $\pi_{R(K)}T_F$ is invertible from ℓ^2 onto R(K).

An overcomplete or redundant *K*-frame is a *K*-frame $\{f_i\}_{i \in I}$ such that $\{f_i\}_{i \in I}$ is not a *K*-Riesz basis. In other word, a *K**-frame $\{f_i\}_{i \in I}$ is redundant, if there exist coefficients $\{c_i\}_{i \in I} \in \ell^2 \setminus \{0\}$ for which $\sum_{i \in I} c_i \pi_{R(K)} f_i = 0$. In fact, a *K*-frame $\{f_i\}_{i \in I}$ is a *K*-Riesz basis if the elements of $\{\pi_{R(K)} f_i\}_{i \in I}$ are independent.

Proposition 2.4 Let $\{f_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H} . The following are equivalent:

- (1) $\{f_i\}_{i \in I}$ is K-Riesz sequence for \mathcal{H} .
- (2) $\{\pi_{R(K)} f_i\}_{i \in I}$ is a Riesz sequence.
- (3) $\{\pi_{R(K)}f_i\}_{i\in I}$ is ω -independent.

Moreover, let $\{f_i\}_{i \in I}$ be a K-frame. Then $\{f_i\}_{i \in I}$ is a K-Riesz basis if and only if $\{\pi_{R(K)}, f_i\}_{i \in I}$ is ω -independent.

The relationship between *K*-Riesz bases and exact K^* -frames is discussed on the following proposition, see Theorem 3.3.2 of [11] for the ordinary case.

Proposition 2.5 Let $F = \{f_i\}_{i \in I}$ be a *K*-frame in \mathcal{H} . The following are equivalent.

- (1) F is a K-Riesz basis.
- (2) F has a unique K-dual in H.

Proof (1) \Rightarrow (2) Assume that *F* is a *K*-Riesz basis of the form of $\{Ue_i\}_{i \in I}$, where $U \in B(\mathcal{H})$ is injective. If $\{g_i\}_{i \in I}$ and $\{h_i\}_{i \in I}$ are *K*-dual of *F*, then

$$U \sum_{i \in I} \langle f, g_i \rangle e_i = \sum_{i \in I} \langle f, g_i \rangle Ue_i$$

= $\sum_{i \in I} \langle f, g_i \rangle \pi_{R(K)} f_i$
= Kf
= $\sum_{i \in I} \langle f, h_i \rangle \pi_{R(K)} f_i$
= $\sum_{i \in I} \langle f, h_i \rangle Ue_i = U \sum_{i \in I} \langle f, h_i \rangle e_i$

for every $f \in \mathcal{H}$. The injectivity U induces that $\{g_i\}_{i \in I} = \{h_i\}_{i \in I}$. (2) \Rightarrow (1) Assume that F has a unique K-dual in \mathcal{H} . On the contrary, suppose that F is not a K-Riesz basis. Using Proposition 2.4 follows that $\{\pi_{R(K)}f_i\}$ is not a Riesz basis, or equivalently, $\pi_{R(K)}T_F$ is not injective. Choose $0 \neq \{c_i\}_{i \in I} \in I^2$ such that

$$\pi_{R(K)}T_F\{c_i\}_{i\in I} = 0.$$
(2.2)

D Springer

Defining the sequence $\{g_i\}_{i \in I}$ in \mathcal{H} weakly by

$$\langle f, g_i \rangle = \langle f, f_i^{\ddagger} \rangle + c_i, \quad (i \in I, f \in \mathcal{H}).$$
 (2.3)

Then $\{g_i\}_{i \in I}$ is a Bessel sequence. Moreover, applying (2.2) and (2.3) we obtain

$$\sum_{i \in I} \langle f, g_i \rangle \pi_{R(K)} f_i = \sum_{i \in I} \left(\langle f, f_i^{\ddagger} \rangle + c_i \right) \pi_{R(K)} f_i$$
$$= \sum_{i \in I} \langle f, f_i^{\ddagger} \rangle \pi_{R(K)} f_i + \pi_{R(K)} T_F \{c_i\}_{i \in I} = K f_i$$

Hence, $\{g_i\}_{i \in I}$ is a *K*-dual of *F* and so $g_i = f_i^{\ddagger}$, for all $i \in I$ by the assumption. This easily follows that $\{c_i\} = 0$ which is impossible.

The question that may involve is that the relationship between Riesz bases and K-Riesz bases.

Corollary 2.6 Let $\{f_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H} . If $\{f_i\}_{i \in I}$ is a Riesz basis, then $\{Kf_i\}_{i \in I}$ is a K-Riesz basis in \mathcal{H} . If $\{Kf_i\}_{i \in I}$ is a Riesz basis, then $\{f_i\}_{i \in I}$ is a K-Riesz sequence in \mathcal{H} .

3 U-Gram matrix with respect to K-frames

The standard matrix description of an operator U, using an orthonormal basis $\{e_i\}_{i \in I}$, is the matrix M defined by

$$(Mc)_j = \sum_k M_{jk} c_k, \quad (c = \{c_k\}_k \in \ell^2),$$

where $M_{jk} = \langle Ue_k, e_j \rangle$. The same can be constructed with frames and their duals. More precisely, assume that $\Phi = \{\phi_i\}_{i \in I}$ and $\Psi = \{\psi_i\}_{i \in I}$ are a pair of dual frames and Uf = v is an operator equation, then

$$\sum_{j} \langle U\psi_{j}, \phi_{i} \rangle \langle f, \phi_{j} \rangle = \left\langle \sum_{j} \langle f, \phi_{j} \rangle \psi_{j}, U^{*}\phi_{i} \right\rangle$$
$$= \langle Uf, \phi_{i} \rangle = \langle v, \phi_{i} \rangle.$$

Thus, the operator equation can be reduced to the linear system

$$\left(\left\langle U\psi_j,\phi_i\right\rangle\right)_{i,j}\left(\left\langle f,\phi_j\right\rangle\right)=\left(\left\langle v,\phi_i\right\rangle\right).$$

We say that $((U\psi_j, \phi_i))_{i,j}$ is the matrix representation of U by using dual pairs Φ and Ψ . In [22], it is shown that operators can be described as the form of matrices by using fusion frames.

In this section, we represent an operator in $B(\mathcal{H})$ as the form of a matrix in the base of *K*-frames. Also, we investigate its inverse if there exists.

Definition 3.1 Let $\Psi = \{\psi_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H}_1 and $\Phi = \{\phi_i\}_{i \in I}$ a Bessel sequence in \mathcal{H}_2 . For $U \in B(\mathcal{H}_1, \mathcal{H}_2)$, the matrix induced by operator U with respect to the Bessel sequences $\Phi = \{\phi_i\}_{i \in I}$ and $\Psi = \{\psi_i\}_{i \in I}$, denoted by $\mathbf{G}_{U,\Phi,\Psi}$, is given by

$$\left(\mathbf{G}_{U,\Phi,\Psi}\right)_{i,j} = \left\langle U\psi_j, \phi_i \right\rangle, \quad (i,j \in I),$$
(3.1)

🖉 Springer

for more details see [4]. It is straightforward to see that

$$\mathbf{G}_{U,\Phi,\Psi} = T_{\Phi}^* U T_{\Psi}. \tag{3.2}$$

Because of the operator representation (3.2), we call $\mathbf{G}_{U,\Phi,\Psi}$ the *U*-cross Gram matrix of Φ and Ψ , respectively. In other word, $\mathbf{G}_{U,\Phi,\Psi}$ is a bounded operator on ℓ^2 with $\|\mathbf{G}_{U,\Phi,\Psi}\| \leq \sqrt{B_{\Phi}B_{\Psi}}\|U\|$ and $(\mathbf{G}_{U,\Phi,\Psi})^* = \mathbf{G}_{U^*,\Psi,\Phi}$. If $\mathcal{H}_1 = \mathcal{H}_2$ and $U = I_{\mathcal{H}_1}$ it is called the *cross Gram matrix* and denoted by $\mathbf{G}_{\Phi,\Psi}$. We use \mathbf{G}_{Ψ} for $\mathbf{G}_{\Psi,\Psi}$; the so called the *Gram matrix* [11].

An operator $U \in B(\mathcal{H})$ has a *K*-right inverse (*K*-left inverse) if there exists an operator $\mathcal{R} \in B(\mathcal{H})$ (resp. $\mathcal{L} \in B(\mathcal{H})$), so that

$$U\mathcal{R} = K$$
, $(resp. \mathcal{L}U = K)$,

for $K \in B(\mathcal{H})$. If $\mathcal{R} = \mathcal{L}$, then \mathcal{R} is the *K*-inverse of *U*.

Example 3.2 Let $K \in B(\mathcal{H})$ and $\Phi = \{\phi_i\}_{i \in I}$ be a K-frame in \mathcal{H} . Then

(1) $\mathbf{G}_{S_{\Phi}(K^{\dagger})^{*}, \Phi, \Phi^{\ddagger}} = \mathbf{G}_{\Phi}$, when *K* is a closed range operator in $B(\mathcal{H})$ and $\Phi \subseteq S_{\Phi}(R(K))$. Indeed, since $R(S_{\Phi}^{-1}) \subseteq R(K)$ on $S_{\Phi}(R(K))$ and $KK^{\dagger} = I|_{R(K)}$ we have

$$\mathbf{G}_{S_{\Phi}(K^{\dagger})^{*},\Phi,\Phi^{\ddagger}} = T_{\Phi}^{*}S_{\Phi}(K^{\dagger})^{*}T_{\Phi^{\ddagger}}$$
$$= T_{\Phi}^{*}T_{S_{\Phi}(K^{\dagger})^{*}K^{*}S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\Phi}$$
$$= T_{\Phi}^{*}T_{\Phi} = \mathbf{G}_{\Phi}.$$

(2) If $R(U) \subseteq R(K)$ and $\mathbf{G}_{\left(S_{\Phi}^{-1}\right)^{*}U\pi_{R(K)},\Phi,\Phi} = I_{\ell^{2}}$, then *U* is *K*-right invertible. According to the fact that Φ^{\ddagger} is a *K*-dual of Φ , we have

$$K = \pi_{R(K)} T_{\Phi} T_{\Phi^{\ddagger}}^{*}$$

= $\pi_{R(K)} T_{\Phi} \mathbf{G}_{\left(S_{\Phi}^{-1}\right)^{*} U \pi_{R(K)}, \Phi, \Phi} T_{\Phi^{\ddagger}}^{*}$
= $\pi_{R(K)} T_{\Phi} T_{\Phi}^{*} \left(S_{\Phi}^{-1}\right)^{*} U \pi_{R(K)} T_{\Phi} T_{\Phi^{\ddagger}}^{*}$
= $\pi_{R(K)} S_{\Phi} \left(S_{\Phi}^{-1}\right)^{*} U K$
= $\pi_{R(K)} U K = U K.$

In the following we state a sufficient condition such that $\mathbf{G}_{U,\Phi,\Phi^{\ddagger}} = I_{\ell^2}$.

Theorem 3.3 Let $U, K \in B(\mathcal{H})$ and $R(U) \subseteq R(K)$. If Φ is a K-frame such that $\mathbf{G}_{U,\Phi,\Phi^{\ddagger}} = I_{\ell^2}$, then UK^* is a biorthogonal projection on R(K). The converse is true if Φ is a K-Riesz basis.

Proof Using the duality formula we have

$$T_{\Phi^{\ddagger}}T_{\Phi}^{*}\pi_{R(K)}=K^{*}.$$

Then

$$S_{\Phi}\pi_{R(K)} = T_{\Phi}T_{\Phi}^{*}\pi_{R(K)}$$

= $T_{\Phi}\mathbf{G}_{U,\Phi,\Phi^{\ddagger}}T_{\Phi}^{*}\pi_{R(K)}$
= $T_{\Phi}T_{\Phi}^{*}UT_{\Phi^{\ddagger}}T_{\Phi}^{*}\pi_{R(K)} = S_{\Phi}UK^{*}.$

🖄 Springer

Applying $R(U) \subseteq R(K)$ implies that S_{Φ} is an invertible on R(U) and then $UK^* = \pi_{R(K)}$. Conversely, it is easy to see that

$$\mathbf{G}_{U,\Phi,\Phi^{\ddagger}} T_{\Phi}^* \pi_{R(K)} = T_{\Phi}^* U T_{\Phi^{\ddagger}} T_{\Phi}^* \pi_{R(K)}$$
$$= T_{\Phi}^* U K^* = T_{\Phi}^* \pi_{R(K)}.$$

So, $\mathbf{G}_{U,\Phi,\Phi^{\ddagger}} = I_{\ell^2}$ if $T_{\Phi}^* \pi_{R(K)}$ is invertible and so by Proposition 2.3 if Φ is a *K*-Riesz basis.

It is worthwhile to mention that from the one sided invertibility of Gram matrix induced by $K \in B(\mathcal{H})$ with respect to Bessel sequences Ψ and Φ , respectively, it follows that the Bessel sequences $K\Psi$ and $K^*\Phi$ are *K*-Riesz sequence and K^* -Riesz sequence, respectively.

Theorem 3.4 Let $\Psi = \{\psi_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H} .

If G_{K,Φ,Ψ} has a left inverse, then KΨ is a K-Riesz sequence in H.
 If G_{K,Φ,Ψ} has a right inverse, then K*Φ is a K*-Riesz sequence in H.

Proof Let \mathcal{L} be a left inverse of $\mathbf{G}_{K,\Phi,\Psi}$. Then

$$I_{\ell^2} = \mathcal{L}\mathbf{G}_{K,\Phi,\Psi}$$

= $\mathcal{L}T_{\Phi}^*KT_{\Psi} = \mathcal{L}T_{\Phi}^*T_{K\Psi}.$

The above computations show that $T_{K\Psi}$ has a left inverse and so $T_{K\Psi}$ is an injective operator. Hence, by applying Lemma 2.4.1 of [11] there exists A > 0 such that

$$A\sum_{i\in I}|c_i|^2 \le \left\|\sum_{i\in I}c_iK\psi_i\right\|^2 = \left\|\sum_{i\in I}c_i\pi_{R(K)}K\psi_i\right\|^2$$

Therefore, $K\Psi$ is a K-Riesz sequence in \mathcal{H} by Theorem 2.2.

The proof of (2) is similar.

Now, we study several K-duals of a K-frame by its Gram matrix.

Theorem 3.5 Let $\Phi = {\phi_i}_{i \in I}$ be a *K*-frame in \mathcal{H} . Then $\mathbf{G}_{\Phi} = I_{\ell^2}$ on $R(T_{\Phi}^*K)$ if and only if $S_{\Phi} = I_{\mathcal{H}}$ on R(K). In this case $\phi_i^{\ddagger} = K^* \pi_{R(K)} \phi_i$, for all $i \in I$.

Proof We first claim that $\mathbf{G}_{\Phi}T_{\Phi}^*K = T_{\Phi}^*K$ if and only if $S_{\Phi}K = K$. Assume that $\mathbf{G}_{\Phi}T_{\Phi}^*K = T_{\Phi}^*K$. Then

$$S_{\Phi}S_{\Phi}K = T_{\Phi}T_{\Phi}^{*}T_{\Phi}T_{\Phi}^{*}K$$
$$= T_{\Phi}G_{\Phi}T_{\Phi}^{*}K$$
$$= T_{\Phi}T_{\Phi}^{*}K = S_{\Phi}K.$$

The invertibility S_{Φ} on R(K) implies that $S_{\Phi}K = K$. For the reverse,

$$\mathbf{G}_{\Phi}T_{\Phi}^*K = T_{\Phi}^*T_{\Phi}T_{\Phi}^*K = T_{\Phi}^*S_{\Phi}K = T_{\Phi}^*K.$$

Moreover,

$$\phi_i^{\ddagger} = K^* S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} \phi_i$$

= $K^* S_{\Phi} S_{\Phi}^{-1} \pi_{S_{\Phi}R(K)} \phi_i$
= $K^* \pi_{S_{\Phi}R(K)} \phi_i = K^* \pi_{R(K)} \phi_i$,

for all $i \in I$. It completes the proof.

1355

Springer

We are going to construct several K-duals for some Bessel sequences in which their Gram matrices are invertible from the left or from the right.

Theorem 3.6 Let $\Phi = {\phi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be a K-frame and a Bessel sequence in \mathcal{H} , respectively. Also, $U \in B(\mathcal{H})$ and $\mathbf{G}_{U,\Phi,\Psi}$ has a right inverse as \mathcal{R} . Then

- (1) $\left\{S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\phi_{i}\right\}_{i\in I}$ is a K-frame. Moreover, $\left\{K^{*}T_{\Phi}\mathcal{R}^{*}T_{\Psi}^{*}U^{*}\phi_{i}\right\}_{i\in I}$ is a K-dual of $\left\{S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\phi_{i}\right\}_{i\in I}.$ (2) for every K-dual $\Phi^{d} = \left\{\phi_{i}^{d}\right\}_{i\in I}$, the K*-frame $\left\{T_{\Phi^{d}}\mathcal{R}^{*}T_{\Psi}^{*}U^{*}\phi_{i}\right\}_{i\in I}$ is a K-dual of Φ .

Proof Notice that $S_{\Phi}^{-1}S_{\Phi} = I$ on R(K). So, for all $f \in \mathcal{H}$, we obtain (1)

$$\begin{split} Kf &= S_{\Phi}^{-1} S_{\Phi} Kf \\ &= S_{\Phi}^{-1} T_{\Phi} \mathbf{G}_{U,\Phi,\Psi} \mathcal{R} T_{\Phi}^* Kf \\ &= S_{\Phi}^{-1} T_{\Phi} T_{\Phi}^* U T_{\Psi} \mathcal{R} T_{\Phi}^* Kf \\ &= \sum_{i \in I} \left\langle f, \, K^* T_{\Phi} \mathcal{R}^* T_{\Psi}^* U^* \phi_i \right\rangle \pi_{R(K)} S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} \phi_i. \end{split}$$

The existence of K-dual for $\left\{S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\phi_i\right\}_{i \in I}$ proves the considered sequence is a Kframe.

(2) Using (1.4) we obtain

$$\begin{split} Kf &= \pi_{R(K)} T_{\Phi} T_{\Phi^d} f \\ &= \pi_{R(K)} T_{\Phi} \mathbf{G}_{U,\Phi,\Psi} \mathcal{R} T_{\Phi^d} f \\ &= \pi_{R(K)} T_{\Phi} T_{\Phi}^* U T_{\Psi} \mathcal{R} T_{\Phi^d} f \\ &= \sum_{i \in I} \langle f, T_{\Phi^d} \mathcal{R}^* T_{\Psi}^* U^* \phi_i \rangle \pi_{R(K)} \phi_i. \end{split}$$

In the following, we present pairs of K-duals by means of the one sided invertibility of Gram matrices.

Corollary 3.7 Let $\Phi = {\phi_i}_{i \in I}$ be a Bessel sequence and $\Psi = {\psi_i}_{i \in I}$ a K-frame in H. Also, let $U \in B(\mathcal{H})$, and \mathcal{L} be a left inverse of $\mathbf{G}_{U,\Phi,\Psi}$. Then

- (1) $\{K^*\psi_i\}_{i\in I}$ is a K-dual of $\left\{S_{\Psi}^{-1}\pi_{S_{\Psi}(R(K))}T_{\Psi}\mathcal{L}T_{\Phi}^*U\psi_i\right\}_{i\in I}$.
- (2) $\left\{K^*S_{\Psi}^{-1}\pi_{S_{\Psi}(R(K))}\psi_i\right\}_{i\in I}$ is a K-dual of $\left\{T_{\Psi}\mathcal{L}T_{\Phi}^*U\psi_i\right\}_{i\in I}$.
- (3) $\Psi^d = \{\psi_i^d\}_{i \in I}$ is a K-dual of $\{T_{\Psi}\mathcal{L}T_{\Phi}^*U\psi_i\}_{i \in I}$, where Ψ^d is a K-dual of Ψ .

Proof (1) Let $\mathcal{L} \in B(\mathcal{H})$ be a left inverse of $\mathbf{G}_{U,\Phi,\Psi}$. It is clear to see that $\{K^*\psi_i\}_{i\in I}$ and $\{S_{\Psi}^{-1}\pi_{S_{\Psi}(R(K))}T_{\Psi}\mathcal{L}T_{\Phi}^*U\psi_i\}_{i\in I}$ are Bessel sequences in \mathcal{H} . Moreover,

$$\begin{split} Kf &= S_{\Psi}^{-1} S_{\Psi} Kf \\ &= \pi_{R(K)} S_{\Psi}^{-1} S_{\Psi} Kf \\ &= \pi_{R(K)} S_{\Psi}^{-1} \pi_{S_{\Psi} R(K)} T_{\Psi} T_{\Psi}^* Kf \\ &= \pi_{R(K)} S_{\Psi}^{-1} \pi_{S_{\Psi} R(K)} T_{\Psi} \mathcal{L} \mathbf{G}_{U,\Phi,\Psi} T_{\Psi}^* Kf \\ &= \sum_{i \in I} \langle f, K^* \psi_i \rangle \pi_{R(K)} S_{\Psi}^{-1} \pi_{S_{\Psi} R(K)} T_{\Psi} \mathcal{L} T_{\phi}^* U \psi_i, \end{split}$$

for all $f \in \mathcal{H}$. The rest is similar.

In the following we present a K-dual for a K-frame by some its K-duals.

Proposition 3.8 Assume that $\Psi = \{\psi_i\}_{i \in I}$ is a K-dual of a K-frame $\Phi = \{\phi_i\}_{i \in I}$. If $U \in B(\mathcal{H})$ such that $\mathbf{G}_{U,\Phi,\Psi} = I_{\ell^2}$, then $S_{\Psi}^* U^* \Phi$ is a K-dual of Φ . In particular, if Ψ is the canonical K-dual of Φ and $KU^* = I_{\mathcal{H}}$, then $S_{\Psi}^* U^* \Phi = \Psi$.

Proof For all $f \in \mathcal{H}$ we have

$$Kf = \pi_{R(K)} T_{\Phi} T_{\Psi}^* f$$

= $\pi_{R(K)} T_{\Phi} \mathbf{G}_{U,\Phi,\Psi} T_{\Psi}^* f$
= $\pi_{R(K)} T_{\Phi} T_{\Phi}^* U T_{\Psi} T_{\Psi}^* f$
= $\pi_{R(K)} S_{\Phi} U S_{\Psi} f$
= $\sum_{i \in I} \langle f, S_{\Psi}^* U^* \phi_i \rangle \pi_{R(K)} \phi_i.$

In particular, if Ψ is the canonical *K*-dual of Φ , then we have

$$S_{\Psi}f = \sum_{i \in I} \left\langle f, K^* S_{\Phi}^{-1} \pi_{S_{\Phi}R(K)} \phi_i \right\rangle K^* S_{\Phi}^{-1} \pi_{S_{\Phi}R(K)} \phi_i$$

= $K^* S_{\Phi}^{-1} \pi_{S_{\Phi}R(K)} S_{\Phi} (S_{\Phi}^{-1})^* K f.$

Now, by using $KU^* = I_{\mathcal{H}}$ we obtain

$$S_{\Psi}^{*}U^{*}\Phi = K^{*}S_{\Phi}^{-1}\pi_{S_{\Phi}R(K)}S_{\Phi}^{*}(S_{\Phi}^{-1})^{*}KU^{*}\Phi$$

= $K^{*}S_{\Phi}^{-1}\pi_{S_{\Phi}R(K)}\Phi = \Psi.$

References

- Arabyani Neyshaburi, F., Arefijamaal, A.: Some construction of K-frames and their duals. Rocky Mt. J. Math. 47(6), 1749–1764 (2017)
- Arefijamaal, A.A., Zekaee, E.: Signal processing by alternate dual Gabor frames. Appl. Comput. Harmon. Anal. 35, 535–540 (2013)
- Arefijamaal, A.A., Shamsabadi, M.: O-cross Gram matrices with respect to g-frames, Arefijamaal. Arab. J. Math. (2019). https://doi.org/10.1007/s40065-019-0246-8
- Balazs, P.: Matrix-representation of operators using frames. Sampl. Theory Signal Image Process. 7(1), 39–54 (2008)

- Balazs, P., Shamsabadi, M., Arefijamaal, A.A., Rahimi, A.: U-cross Gram matrices and their invertibility. J. Math. Anal. Appl. 476, 367–390 (2019)
- Benedetto, J., Powell, A., Yilmaz, O.: Sigm-Delta quantization and finite frames. IEEE Trans. Inform. Theory 52, 1990–2005 (2006)
- Bolcskel, H., Hlawatsch, F., Feichtinger, H.G.: Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46, 3256–3268 (1998)
- Cands, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C² singularities. Commun. Pure. Appl. Math. 56, 216–266 (2004)
- 9. Cassaza, P. G., Kutyniok, G.: Frames of subspaces, Contemp. Math. vol 345, Am. Math. Soc. Providence, RI, 87-113 (2004)
- Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal 25(1), 144–132 (2008)
- 11. Christensen, O.: Frames and Bases: An Introductory Course. Birkhäuser, Boston (2008)
- 12. Christensen, O.: Frames and pseudo-inverses. J. Math. Anal. Appl. 195(2), 401-414 (1995)
- Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36, 961–1005 (1990)
- Douglas, R.G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17(2), 413–415 (1966)
- Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)
- Gabardo, J., Han, D.: Frame representations for group-like unitary operator systems. J. Operator Theory 49, 1–22 (2003)
- 17. Găvruța, L.: Frames for operators. Appl. Comp. Harm. Anal. 32, 139-144 (2012)
- 18. Han, D., Larson, D.: Frames, bases and group representation. Mem. Am. Math. Soc., 147, no. 697 (2000)
- 19. Mallat, S.: A wavelet tour of signal processing, second edn. Academic Press, Cambridge (1999)
- Shamsabadi, M., Arefijamaal, A.: Some results of *K*-frames and their multipliers. Turk. J. Math. 44, 538–552 (2020)
- Shamsabadi, M., Arefijamaal, A.: The invertibility of fusion frame multipliers. Linear Multilinear Algebra 65(5), 1062–1072 (2016)
- Shamsabadi, M., Arefijamaal, A., Balazs, P.: The invertibility of U-fusion cross Gram matrices, arXiv:1711.00091v1. To appear in The Mediterranean Journal of Mathematics (2020)
- 23. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)
- Xiao, X.C., Zhu, Y.C., Găvruţa, L.: Some properties of K-frames in Hilbert spaces. Results Math. 63, 1243–1255 (2013)
- 25. Zhou, P.: Numerical Analysis of Electromagnetic Fields. Springer-Verlag, New York (1993)
- Zhu, Y.C.: Characterizations of g-frames and g-bases in Hilbert spaces. Acta Math. Sin. 24, 1727–1736 (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.