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Abstract
The theory of fuzzy filters in pseudo-BE algebras is developed. Various characterizations of
fuzzy filters are given. It is proved that the set of all fuzzy filters of a pseudo-BE algebra
is a complete lattice. Some characterizations of Noetherian pseudo-BE algebras by fuzzy
filters are obtained. Finally, fuzzy commutative filters are defined and studied. Moreover, the
homomorphic properties of fuzzy (commutative) filters are provided.
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1 Introduction

In 1966, Imai and Iséki [11] introduced BCK algebras which are an algebraic model of
BCK-logic. There exist several generalizations of BCK algebras such as BCI algebras [12],
BCH algebras [10], BE algebras [13], etc. BE algebras were deeply studied by Rezaei et.
al. [1,17–19]. In 2001, Georgescu and Iorgulescu [9] introduced pseudo-BCK algebras as a
non-commutative extension of BCK algebras. Next, pseudo-BCI and pseudo-BCH algebras
were defined in [6] and [21], respectively. In 2013, Borzooei et al. [2] introduced the notion
of pseudo-BE algebra. Ciungu [3] defined commutative pseudo-BE algebras and proved that
the class of these algebras coincides with the class of commutative pseudo-BCK algebras.

In 1965, Zadeh [25] introduced fuzzy sets. At present these ideas have been applied to
many mathematical branches such as abstract algebra (semigroups, groups, rings, modules,
etc.), functional analysis, probability theory, topology and so on. In 1991, Xi [24] applied
the concept of fuzzy set to BCK algebras. Fuzzy ideals of BCI and BCH algebras were
studied in [16] and [23], respectively. Fuzzy filters of BE algebras were discussed in [7] and
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[20]. Lee [15] established the fuzzyfication of ideals in pseudo-BCI algebras. Fuzzy ideals
of pseudo-BCK algebras were investigated in [8]. Walendziak andWojciechowska–Rysiawa
[22] studied fuzzy ideal theory in pseudo-BCH algebras.

In this paper, we develop fuzzy filter theory in pseudo-BE algebras. This theory plays
an important role in the investigation of such algebras. We give characterizations of fuzzy
filters and provide conditions for a fuzzy set to be a fuzzy filter. We also show that the set
of fuzzy filters of a pseudo-BE algebra is a complete lattice. Moreover, we obtain some
characterizations of Noetherian pseudo-BE algebras by fuzzy filters. Finally, we introduce
the notion of fuzzy commutative filter and investigate some of its properties.

2 Preliminaries

In this section, we review some of the standard facts on pseudo-BE algebras.

Definition 2.1 An algebra (X;→, 1) of type (2, 0) is called a BE algebra if it satisfies the
following equations:

(BE1) x → x = 1,
(BE2) x → 1 = 1,
(BE3) 1 → x = x ,
(BE4) x → (y → z) = y → (x → z).

Definition 2.2 [2] An algebra (X;→,�, 1) of type (2, 2, 0) is called a pseudo-BE algebra
if it satisfies the following axioms:

(pBE1) x → x = x � x = 1,
(pBE2) x → 1 = x � 1 = 1,
(pBE3) 1 → x = 1 � x = x ,
(pBE4) x → y = 1 ⇐⇒ x � y = 1,
(pBE5) x → (y � z) = y � (x → z).

Definition 2.3 [14] An algebra (X;→,�, 1) of type (2, 2, 0) is called a pseudo-BCK alge-
bra if it satisfies (pBE1)–(pBE4) and the following axioms:

(pBCK1) (x → y) � [(y → z) � (x → z)] = 1,
(pBCK2) (x � y) → [(y � z) → (x � z)] = 1,
(pBCK3) (x → y = 1 and y → x = 1) �⇒ x = y.

Remark 2.4 Every pseudo-BCK algebra verifies (pBE5), see [14], and therefore pseudo-BCK
algebras are pseudo-BE algebras.

Definition 2.5 A pseudo-BE algebra (X;→,�, 1) is called proper if it is not a pseudo-BCK
algebra and → �= �.

Remark 2.6 If (X;→,�, 1) is a pseudo-BE algebra, then (X;�,→, 1) is a pseudo-BE
algebra, too. We also note that if the operations → and � coincide, then (X;→, 1) is a BE
algebra.

In a pseudo-BE algebra, one can introduce a binary relation ≤ by:

x ≤ y ⇐⇒ x → y = 1 ⇐⇒ x � y = 1, for all x, y ∈ X .

123



Fuzzy filters of pseudo-BE algebras 741

Proposition 2.7 [2] In a pseudo-BE algebra (X;�,→, 1), the following statements hold:

(i) x ≤ y → x and x ≤ y � x,
(ii) x ≤ (x � y) → y and x ≤ (x → y) � y,
(iii) 1 ≤ x �⇒ x = 1.

Example 2.8 Consider the set X = {a, b, c, d, e, f , 1} with the operations→ and� defined
by the following tables:

→ a b c d e f 1
a 1 1 1 d e f 1
b c 1 c d e f 1
c a b 1 d e f 1
d a b c 1 d 1 1
e a b c 1 1 d 1
f a b c 1 d 1 1
1 a b c d e f 1

� a b c d e f 1
a 1 1 1 d e f 1
b a 1 c d e f 1
c b b 1 d e f 1
d a b c 1 d 1 1
e a b c 1 1 d 1
f a b c 1 d 1 1
1 a b c d e f 1

Then X = (X;→,�, 1) is a pseudo-BE algebra. Since (e → d) � [(d → f ) � (e →
f )] = 1 � (1 � d) = d �= 1, axiom (pBCK1) does not hold. Hence,X is not a pseudo-BCK
algebra. Therefore, X is a proper pseudo-BE algebra.

Definition 2.9 [5] A pseudo-BE algebra with the condition (A) or a pseudo-BE(A) algebra
for short, is a pseudo-BE algebra (X;→,�, 1) satisfying

(A) x ≤ y �⇒ (y → z ≤ x → z and y � z ≤ x � z).

Example 2.10 [5] Let X = {a, b, c, d, 1}. Define the operations → and � on X as follows:

→ a b c d 1
a 1 c c 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 c c 1 1
1 a b c d 1

� a b c d 1
a 1 b c 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 b c 1 1
1 a b c d 1

It is easy to check that X = (X;→,�, 1) is a pseudo-BE(A) algebra. Since b → c = 1 and
c → b = 1, axiom (pBCK3 ) is not satisfied. Hence, X is not a pseudo-BCK algebra.

Definition 2.11 [3]A pseudo-BE algebra (X;→,�, 1) is said to be commutative if it verifies
the equations:

(x → y) � y = (y → x) � x and (x � y) → y = (y � x) → x .

Proposition 2.12 [3] Any commutative pseudo-BE algebra is a pseudo-BCK algebra, there-
fore commutative pseudo-BE algebras coincide with commutative pseudo-BCK algebras.

Definition 2.13 [2] Let X be a pseudo-BE algebra. A subset F of X is called a filter of X if
for all x, y ∈ X :

(F1) 1 ∈ F ,
(F2) if x → y ∈ F and x ∈ F , then y ∈ F .

Proposition 2.14 [2] Let X be a pseudo-BE algebra and F be a subset of X satisfying (F1).
Then F is a filter of X if and only if for all x, y ∈ X,
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742 A. Walendziak, A. Rezaei

(F2′) if x � y ∈ F and x ∈ F, then y ∈ F.

We will denote by F(X) the set of all filters of X. Obviously, {1}, X ∈ F(X).

Example 2.15 Let X be the pseudo-BE algebra from Example 2.8. We have F(X) =
{{1}, {1, b}, {1, c}, X1, X2, {b} ∪ X2, {c} ∪ X2, X1 ∪ X2}, where X1 = {a, b, c, 1} and
X2 = {d, e, f , 1}.
Proposition 2.16 Let X be a pseudo-BE algebra and let F ∈ F(X). For any x, y ∈ X, if
x ∈ F and x ≤ y, then y ∈ F.

Proof Straightforward. ��

3 Fuzzy filters

We now review some fuzzy logic concepts. First, for � ⊆ [0, 1] we define ∧
� = inf � and∨

� = sup�. Obviously, if � = {α, β}, then α ∧ β = min{α, β} and α ∨ β = max{α, β}.
Recall that a fuzzy set in X is a function μ̄ : X −→ [0, 1].

For any fuzzy sets μ and ν in X , we define

μ̄ ≤ ν̄ ⇐⇒ μ̄(x) ≤ ν̄(x) for all x ∈ X .

It is easy to check that this relation is an order relation in the set of fuzzy sets in X .
Let X and Y be any two sets, μ be any fuzzy set in X , and f : X → Y be any function.

Write f ←(y) = {x ∈ A : f (x) = y} for y ∈ Y . The fuzzy set ν in Y defined by

ν (y) =
{∨{μ(x) : x ∈ f ← (y)} if f ← (y) �= ∅,

0 otherwise

for all y ∈ Y , is called the image of μ under f and is denoted by f (μ) .
Let X and Y be any two sets, f : X → Y be any function, and ν be any fuzzy set in

f (X). The fuzzy set μ in X defined by

μ (x) = ν ( f (x)) for all x ∈ X

is called the preimage of ν under f and is denoted by f ← (ν).
Next we define fuzzy filters of pseudo-BE algebras. From now on, X is a pseudo-BE

algebra, unless it is stated.

Definition 3.1 A fuzzy set μ̄ in X is called a fuzzy filter of X if it satisfies the following
conditions:

(FF1) μ̄(1) ≥ μ̄(x),
(FF2) μ̄(y) ≥ μ̄(x) ∧ μ̄(x → y).

Let FF(X) denote the set of all fuzzy filters of a pseudo-BE algebra X.

Example 3.2 Let X be the pseudo-BE algebra given in Example 2.10. Define a fuzzy set
μ̄ : X −→ [0, 1] by μ̄(a) = μ̄(d) = 0.5, μ̄(b) = μ̄(c) = 0.6 and μ̄(1) = 0.7. It is easily
seen that μ̄ is a fuzzy filter of X.

Proposition 3.3 Every fuzzy filter μ̄ of X satisfies the following assertions:

(i) if x ≤ y, then μ̄(x) ≤ μ̄(y),
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(ii) if x ≤ y, then μ̄(x) ≤ μ̄(z → y) and μ̄(x) ≤ μ̄(z � y),
(iii) μ̄(y) ≤ μ̄(x → y) and μ̄(y) ≤ μ̄(x � y).

Proof (i) Assume that x ≤ y. Then x → y = 1. Applying (FF2) and (FF1), we have

μ̄(y) ≥ μ̄(x) ∧ μ̄(x → y)) = μ̄(x) ∧ μ̄(1) = μ̄(x).

(ii) Let x ≤ y. From (pBE5) and (pBE2) we get x � (z → y) = z → (x � y) = z → 1 =
1, and so x ≤ z → y. Using (i), we obtain μ̄(x) ≤ μ̄(z → y). The second inequality is
obtained by a similar argument.

(iii) By Proposition 2.7(i), y ≤ x → y and y ≤ x � y. Applying (i), we have (iii).
��

Proposition 3.4 A fuzzy set μ̄ in X is a fuzzy filter of X if and only if μ̄ verifies (FF1) and for
all x, y ∈ X,

(FF3) μ̄(y) ≥ μ̄(x) ∧ μ̄(x � y).

Proof It suffices to prove that if (FF2) is satisfied, then (FF3) is also satisfied. The proof of
the converse of this implication is similar. From Proposition 2.7(ii) we see that x ≤ (x �
y) → y. By Proposition 3.3(i), μ̄(x) ≤ μ̄((x � y) → y). Hence

μ̄(x) ∧ μ̄(x � y) ≤ μ̄((x � y) → y) ∧ μ̄(x � y)) ≤ μ̄(y).

��
Proposition 3.5 A fuzzy set μ̄ in X is a fuzzy filter of X if and only if μ̄ verifies (FF1) and for
all x, y, z ∈ X,

(FF4) if x ≤ y → z, then μ̄(z) ≥ μ̄(x) ∧ μ̄(y).

Proof Assume that μ̄ is a fuzzy filter and x ≤ y → z. Using (FF2) and Proposition 3.3(i),
we have:

μ̄(z) ≥ μ̄(y) ∧ μ̄(y → z) ≥ μ̄(y) ∧ μ̄(x).

Conversely, let μ̄ satisfy (FF4). Since y → z ≤ y → z, we obtain:

μ̄(z) ≥ μ̄(y → z) ∧ μ̄(y).

Thus, μ̄ satisfies (FF2), and hence μ̄ is a fuzzy filter of X. ��
Proposition 3.6 A fuzzy set μ̄ in X is a fuzzy filter of X if and only if μ̄ verifies (FF1) and for
all x, y, z ∈ X,

(FF5) if x ≤ y � z, then μ̄(z) ≥ μ̄(x) ∧ μ̄(y),

Proof Similar to the proof of Proposition 3.5. ��
Theorem 3.7 A fuzzy set μ̄ in X is a fuzzy filter of X if and only if its nonempty level subset
U (μ̄, α) = {x ∈ X : μ̄(x) ≥ α} is a filter of X for all α ∈ [0, 1].
Proof Let μ̄ ∈ FF(X) and let α ∈ [0, 1]. Assume U (μ̄, α) �= ∅. Then there exists x0 ∈ X
such that μ̄(x0) ≥ α. Since μ̄(1) ≥ μ̄(x), we have 1 ∈ U (μ̄, α). Let x, x → y ∈ U (μ̄, α).

Hence μ̄(x) ≥ α and μ̄(x → y) ≥ α. It follows from (FF2) that

μ̄(y) ≥ μ̄(x) ∧ μ̄(x → y) ≥ α.
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Therefore, y ∈ U (μ̄, α).

Conversely, suppose that for each α ∈ [0, 1], U (μ̄, α) = ∅ or U (μ̄, α) is a filter of X . If
(FF1) does not hold, then there exists x0 ∈ X such that μ̄(1) < μ̄(x0) := β. ThenU (μ̄, β) �=
∅ and by assumption,U (μ̄, β) is a filter of X. Hence 1 ∈ U (μ̄, β) and consequently, μ̄(1) ≥
β. This is a contradiction, and so (FF1) holds. Now, assume that (FF2) is not satisfied. Then
there are x0, y0 ∈ X such that μ̄(y0) < μ̄(x0) ∧ μ̄(x0 → y0). Taking

β = 1

2
(μ̄(y0) + (μ̄(x0) ∧ μ̄(x0 → y0)),

we get μ̄(y0) < β < μ̄(x0) ∧ μ̄(x0 → y0) ≤ μ̄(x0 → y0) and β < μ̄(x0). Therefore,
x0, x0 → y0 ∈ U (μ̄, β) but y0 /∈ U (μ̄, β). This is impossible, and so μ̄ ∈ FF(X). ��
Corollary 3.8 If μ̄ is a fuzzy filter of X, then the set Xa := {x ∈ X : μ̄(x) ≥ μ̄(a)} is a filter
of X for all a ∈ X.

Corollary 3.9 If μ̄ is a fuzzy filter of X, then the set Xμ̄ := {x ∈ X : μ̄(x) = μ̄(1)} is a filter
of X.

The following example shows that the converse of Corollary 3.9 is not true in general.

Example 3.10 Let X be a pseudo-BE algebra. Define a fuzzy set μ̄ in X by:

μ̄(x) =
{
0.3 if x = 1,
0.5 otherwise.

Then Xμ̄ = {1} and it is a filter ofX but μ̄ is not a fuzzy filter, since μ̄ does not satisfy (FF1).

Let μi ∈ FF(X) for i ∈ I . The meet
∧

i∈I μi of fuzzy filters μi is defined as follows:
(

∧

i∈I
μi

)

(x) =
∧

{μi (x) : i ∈ I }.

Proposition 3.11 Let μ̄i ∈ FF(X) for i ∈ I . Then
∧

i∈I μ̄i ∈ FF(X).

Proof Let μ̄ := ∧
i∈I μ̄i . Then, by (FF1),

μ̄(1) =
∧

{μ̄i (1) : i ∈ I } ≥
∧

{μ̄i (x) : i ∈ I } = μ̄(x)

for all x ∈ X . Let x, y ∈ X . Since μ̄i ∈ FF(X), we have μ̄i (x) ≥ μ̄i (y → x) ∧ μ̄i (y).
Hence, by (FF2),

∧{μ̄i (x) : i ∈ I } ≥ ∧{μ̄i (y → x) ∧ μ̄i (y) : i ∈ I }
= ∧{μ̄i (y → x) : i ∈ I } ∧ ∧{μ̄i (y) : i ∈ I }.

Consequently, μ̄(x) ≥ μ̄(y → x) ∧ μ̄(y), and therefore μ̄ ∈ FF(X). ��
Let ν̄ be a fuzzy set in X . A fuzzy filter μ̄ of X is said to be generated by ν̄ if ν̄ ≤ μ̄ and

for any fuzzy filter ρ̄ of X , ν̄ ≤ ρ̄ implies μ̄ ≤ ρ̄. The fuzzy filter generated by ν̄ will be
denoted by [ν̄). The fuzzy filter [ν̄) we can define equivalently as follows:

[ν̄) =
∧

{ρ̄ : ρ̄ ∈ FF(X) and ν̄ ≤ ρ̄}.
Let μ̄, ν̄ be two fuzzy filters in X. Denote the join of μ̄ and ν̄ by μ̄ ∨ ν̄, that is, μ̄ ∨ ν̄ = [ρ̄),

where ρ̄ is the fuzzy set in X defined by ρ̄(x) = μ̄(x) ∨ ν̄(x).
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Fuzzy filters of pseudo-BE algebras 745

Theorem 3.12 Let X be a pseudo-BE algebra. Then (FF(X); ∧,∨) is a complete lattice.

Proof The proof is straightforward. ��
Definition 3.13 A pseudo-BE algebraX is said to satisfy the ascending chain condition if for
every ascending sequence F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · of filters of X, there exists a natural
number k such that Fn = Fk for all n ≥ k. If X satisfies the ascending chain condition, we
say X is a Noetherian pseudo-BE algebra.

Theorem 3.14 Let X be a pseudo-BE algebra. The following statements are equivalent:

(i) X is Noetherian,
(ii) For each fuzzy filter μ of X, Im(μ) is a well-ordered set.
(iii) For each fuzzy filter μ of X, if Im(μ) ⊆ {t1, t2, . . .} ∪ {0}, where (tn) is a

strictly decreasing sequence in (0, 1], then there exists k ∈ N such that Im(μ) ⊆
{t1, t2, . . . , tk} ∪ {0}.

Proof (i) ⇒ (ii): Assume that X is Noetherian and μ is a fuzzy filter of X such that Im(μ) is
not a well-ordered subset of [0, 1] . Then, there exists a strictly decreasing sequence (μ (xn)),
where xn ∈ X . Let tn = μ (xn) and Un = U (μ; tn). By Theorem 3.7, Un is a filter of X
for every n ∈ N. So U1 ⊂ U2 ⊂ . . . is a strictly ascending sequence of filters of X. This
contradicts the assumption that is Noetherian. Then Im(μ) is a well-ordered set for each
fuzzy filter μ of X.

(ii) ⇒ (iii): Assume that (ii) is true. Let μ be a fuzzy filter of X such that Im(μ) ⊆
{t1, t2, . . .}∪{0}. Since Im(μ) is awell-ordered subset of [0, 1] and (tn) is a strictly decreasing
sequence in (0, 1], there is k ∈ N such that Im(μ) ⊆ {t1, t2, . . . , tk} ∪ {0}.

(iii)⇒ (i): Suppose thatX is notNoetherian.Then there exists a strictly ascending sequence
F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · of filters of X. Let μ be a fuzzy set in X such that

μ (x) =
{ 1

n if x ∈ Fn − Fn−1 for some n ∈ N,

0 if x /∈ Fn for each n ∈ N,

where F0 = ∅. Let F = ⋃
n∈N Fn . It is easy to see that F is a filter of X. Obviously,

μ(1) = 1 ≥ μ(x) for all x ∈ X , that is, (FF1) holds. Now we show that μ satisfies (FF2).
Let x, y ∈ X . We consider two cases.

Case 1: x /∈ F .
Then y → x /∈ F or y /∈ F . Therefore, μ(y → x) ∧ μ(y) = 0 = μ (x).

Case 2: x ∈ Fn − Fn−1 for some n ∈ N.
Then y → x /∈ Fn−1 or y /∈ Fn−1. Hence μ(y → x) ≤ 1

n or μ(y) ≤ 1
n . So μ(y →

x) ∧ μ(y) ≤ 1
n = μ (x). Thus (FF2) is also satisfied, and consequently μ is a fuzzy filter of

X. We have Im(μ) = { 1
n : n ∈ N

} ∪ {0}. Obviously, Im(μ) �
{
1, 1

2 , . . . ,
1
k

} ∪ {0} for every
k ∈ N, which is a contradiction. Therefore X is Noetherian, and the proof is complete. ��
Corollary 3.15 If for every fuzzy filter μ of X, Im (μ) is a finite set, then X is Noetherian.

4 Fuzzy commutative filters

Ciungu [4] defined commutative deductive systems and showed that a pseudo-BCK algebra
X is commutative if and only if all the deductive systems of X are commutative. In this
section, we introduce the notion of a fuzzy commutative filter of a pseudo-BE algebra and
study some of its properties.
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746 A. Walendziak, A. Rezaei

Definition 4.1 [4] We say that a filter F of a pseudo-BE algebra X is commutative if for all
x, y ∈ X :

(CF1) y → x ∈ F �⇒ [(x → y) � y] → x ∈ F ,
(CF2) y � x ∈ F �⇒ [(x � y) → y] � x ∈ F .

Let CF(X) denote the set of all commutative filters of X.

Example 4.2 Let X be the pseudo-BE algebra given in Example 2.8. It is easy to see that
{a, b, c, 1} ∈ CF(X), while the filter {1} is not commutative, since a → c = 1 but [(c →
a) � a] → c = c /∈ {1}.
Definition 4.3 A fuzzy filter μ̄ of X is called a fuzzy commutative filter if for all x, y ∈ X ,

(FCF1) μ̄((x → y) � y) → x) ≥ μ̄(y → x),
(FCF2) μ̄((x � y) → y) � x) ≥ μ̄(y � x).

If μ̄ ∈ FF(X) satisfies (FCF1) and (FCF2), then we also say that μ̄ is commutative. Let
FCF(X) denote the set of all fuzzy commutative filters of a pseudo-BE algebra X.

Proposition 4.4 A fuzzy set μ̄ in X is a fuzzy commutative filter of X if and only if it satisfies
the following conditions:

(i) μ̄(1) ≥ μ̄(x),
(ii) μ̄(((x → y) � y) → x) ≥ μ̄(z → (y → x)) ∧ μ̄(z),
(iii) μ̄(((x � y) → y) � x) ≥ μ̄(z � (y � x)) ∧ μ̄(z).

Proof Assume that μ̄ ∈ FCF(X). By (FF1), condition (i) holds. Since μ̄ is commutative,
using (FCF1) and (FF2), we have

μ̄(((x → y) � y) → x) ≥ μ̄(y → x)

≥ μ̄(z → (y → x)) ∧ μ̄(z).

Similarly, μ̄(((x � y) → y) � x) ≥ μ̄(z � (y � x)) ∧ μ̄(z), and so (ii) and (iii) hold.
Conversely, let x, z ∈ X and put y := 1 in conditions (ii) and (iii). Applying (pBE2) and

(pBE3), we obtain

μ̄(x) = μ̄(((x → 1) � 1) → x) ≥ μ̄(z → (1 → x)) ∧ μ̄(z) = μ̄(z → x) ∧ μ̄(z).

Hence μ̄ satisfies (FF2). From this and (i) we see that μ̄ ∈ FF(X).

To prove that μ̄ is commutative, set z := 1 in conditions (ii) and (iii). By (pBE2) and (i), we
get

μ̄(((x → y) � y) → x) ≥ μ̄(1 → (y → x)) ∧ μ̄(1)

= μ̄(y → x) ∧ μ̄(1)

= μ̄(y → x)

and

μ̄(((x � y) → y) � x) ≥ μ̄(1 � (y � x)) ∧ μ̄(1)

= μ̄(y � x) ∧ μ̄(1)

= μ̄(y � x).

Therefore, μ̄ ∈ FCF(X). ��
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Fuzzy filters of pseudo-BE algebras 747

Theorem 4.5 A fuzzy set μ̄ in X is a fuzzy commutative filter of X if and only if its nonempty
level subset U (μ̄, α) is a commutative filter of X for all α ∈ [0, 1].
Proof Let μ̄ ∈ FCF(X) and α ∈ [0, 1]. Assume that U (μ̄, α) �= ∅. From Theorem 3.7 we
deduce that U (μ̄, α) is a filter of X. Let y → x ∈ U (μ̄, α). Hence μ̄(y → x) ≥ α. Since
μ̄(((x → y) � y) → x) ≥ μ̄(y → x) ≥ α, it follows that μ̄(((x → y) � y) → x) ≥ α,
and so ((x → y) � y) → x ∈ U (μ̄, α). Similarly, ((x � y) → y) � x ∈ U (μ̄, α).

Therefore, U (μ̄, α) ∈ CF(X).

Conversely, suppose that for each α ∈ [0, 1], U (μ̄, α) = ∅ or U (μ̄, α) ∈ CF(X) . By
Theorem 3.7, μ̄ is a fuzzy filter of X. Now observe that μ̄ satisfies (FCF1). On the contrary,
assume that there are x0, y0 ∈ X such that μ̄(y0 → x0) > μ̄(((x0 → y0) � y0) → x0).
Set μ̄(y0 → x0) := s for some s ∈ [0, 1]. Hence y0 → x0 ∈ U (μ̄, s). Since U (μ̄, s) is a
commutative filter, we get ((x0 → y0) � y0) → x0 ∈ U (μ̄, s). Thus μ̄(((x0 → y0) �
y0) → x0) ≥ μ̄(y0 → x0). This is impossible, and so μ̄ satisfies (FCF1). By a similar
argument, μ̄ also satisfies (FCF2). Consequently, μ̄ ∈ FCF(X). ��
Corollary 4.6 A nonempty subset F ⊆ X is a commutative filter of X if and only if χF is a
fuzzy commutative filter of X.

Proof The proof is straightforward. ��
Example 4.7 Let X be the pseudo-BE algebra from Example 2.8. Since F := {a, b, c, 1} ∈
CF(X), by Corollary 4.6, χF is a fuzzy commutative filter of X.

Proposition 4.8 (Extension property) LetX be a pseudo-BE(A) algebra and let μ̄ ∈ FCF(X).
If ν is a fuzzy filter of X such that μ̄ ≤ ν and μ̄(1) = ν(1), then ν ∈ FCF(X).

Proof Assume that x, y ∈ X and set u := y → x . By Proposition 2.7 (ii), y → (u � x) = 1.
Since μ̄ is a commutative fuzzy filter and μ̄ ≤ ν, we have:

ν(1) = μ̄(1) = μ̄(y → (u � x)) ≤ μ̄((((u � x) → y) � y) → (u � x))

≤ ν((((u � x) → y) � y) → (u � x)).

Therefore
ν((((u � x) → y) � y) → (u � x)) = ν(1). (4.1)

By Proposition 2.7(i), x ≤ u � x . Applying condition (A), we conclude that (u � x) →
y ≤ x → y, hence that (x → y) � y ≤ ((u � x) → y) � y, finally that (((u � x) →
y) � y) → (u � x) ≤ ((x → y) � y) → (u � x). From (4.1) and Proposition 3.3 (i)
we deduce that

ν(1) ≤ ν(((x → y) � y) → (u � x)),

and so ν(((x → y) � y) → (u � x)) = ν(1). Therefore, using (pBE5), we see that

ν(u � (((x → y) � y) → x))) = ν(1). (4.2)

By (FF3), (4.2) and (FF1),

ν(((x → y) � y) → x) ≥ ν(u) ∧ ν(u � (((x → y) � y) → x)))

= ν(u) ∧ ν(1)

= ν(u)

= ν(y → x).

Thus ν satisfies (FCF1). Similarly, ν also satisfies (FCF2). Consequently, ν ∈ FCF(X). ��

123



748 A. Walendziak, A. Rezaei

Theorem 4.9 If X is a commutative pseudo-BE algebra, then FF(X) = FCF(X).

Proof Since every fuzzy commutative filter is a fuzzy filter, it is sufficient to prove that
FF(X) ⊆ FCF(X). Assume that μ̄ ∈ FF(X). By Proposition 2.7(ii) and commutativity, we
have:

y → x ≤ ((y → x) � x) → x = ((x → y) � y) → x .

Hence μ̄(y → x) ≤ μ̄(((x → y) � y) → x). Similarly, we get μ̄(y � x) ≤ μ̄(((x �
y) � y) � x). Thus μ̄ ∈ FCF(X), therefore FF(X) ⊆ FCF(X), and finally FF(X) = FCF(X).

��
The following two theorems give the homomorphic properties of fuzzy (commutative)

filters.

Theorem 4.10 LetX andY be pseudo-BF algebras and let f : X → Y be a homomorphism.
If ν is a fuzzy (commutative) filter of Y, then f ← (ν) is a fuzzy (commutative) filter of X.

Proof Let x ∈ X . Since f (x) ∈ Y and ν ∈ FF(Y), we have ν(1) ≥ ν( f (x)) = ( f ←(ν))(x),
but ν(1) = ν( f (1)) = ( f ←(ν))(1). Thus we get ( f ←(ν))(1) ≥ ( f ←(ν))(x) for any x ∈ X ,
that is, f ← (ν) satisfies (FF1). Let now x, y ∈ X . Since ν is a filter ofY, we obtain

ν( f (x)) ≥ ν( f (y) → f (x)) ∧ ν( f (y)) = ν( f (y → x)) ∧ ν( f (y))

and hence, f ←(ν)(x) ≥ f ←(ν)(y → x) ∧ f ←(ν)(y). Consequently, f ←(ν) ∈ FF(X).
We now suppose that ν satisfies (FCF1) and let x, y ∈ X . Then

ν( f (y) → f (x)) ≤ ν((( f (x) → f (y)) � f (y)) → f (x)).

Therefore,

ν( f (y → x)) ≤ ν( f (((x → y) � y) → x)).

Hence, f ←(ν)(y → x) ≤ f ←(ν)(((x → y) � y) → x)), so f ←(ν) satisfies (FCF1).
Similarly, if ν satisfies (FCF2), then f ←(ν) satisfies (FCF2). Thus f ←(ν) ∈ FCF(X). ��
Lemma 4.11 Let X andY be pseudo-BE algebras and let f : X → Y be a homomorphism.
If μ̄ ∈ FF(X) and μ̄ is constant on ker f = f ←(1), then f ←( f (μ̄)) = μ̄.

Proof Let x ∈ X and f (x) = y. Hence

( f ←( f (μ̄)))(x) = ( f (μ̄))( f (x)) = ( f (μ̄))(y) =
∨

{μ̄ (a) : a ∈ f ←(y)}.
For all a ∈ f ← (y), we have f (x) = f (a). Hence f (x → a) = 1, i.e., x → a ∈ ker f .
Thus μ̄(x → a) = μ̄(1). Therefore, μ̄(a) ≥ μ̄(x → a) ∧ μ̄(x) = μ̄(1) ∧ μ̄(x) = μ̄(x).
Similarly, μ̄ (x) ≥ μ̄ (a). Then μ̄ (x) = μ̄ (a). Consequently,

( f ← ( f (μ̄))) (x) = ( f (μ̄))(y) =
∨

{μ̄ (a) : a ∈ f ←(y)} = μ̄ (x) ,

that is, f ← ( f (μ̄)) = μ̄. ��
Theorem 4.12 Let X and Y be pseudo-BE algebras and f : X → Y be a surjective homo-
morphism. Let μ̄ be a fuzzy filter of X such that Xμ̄ ⊇ ker f . Then f (μ̄) is a fuzzy filter of
Y. Moreover, if μ̄ is commutative, then f (μ̄) is also commutative.
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Proof Since μ̄ is a fuzzy filter of X and 1 ∈ f ← (1), we have

( f (μ̄)) (1) =
∨

{μ̄ (a) : a ∈ f ←(1)} = μ̄ (1) ≥ μ̄ (x)

for any x ∈ X . Hence

( f (μ̄)) (1) ≥
∨

{μ̄ (x) : x ∈ f ←(y)} = ( f (μ̄)) (y)

for any y ∈ Y . Thus f (μ̄) satisfies (FF1). Observe that f (μ̄) also satisfies (FF2). On the
contrary, suppose that

f (μ̄)(x ′
0) < f (μ̄)(y′

0 → x ′
0) ∧ f (μ̄)(y′

0)

for some x ′
0, y

′
0 ∈ Y . Since f is surjective, there are x0, y0 ∈ A such that f (x0) = x ′

0 and
f (y0) = y′

0. Hence

f (μ̄)( f (x0)) < f (μ̄)( f (y0 → x0)) ∧ f (μ̄)( f (y0)).

Therefore

f ←( f (μ̄))(x0) < f ←( f (μ̄))(y0 → x0)) ∧ f ←( f (μ̄))(y0)).

Since Xμ̄ ⊇ ker f , we conclude that μ̄ is constant on ker f . Hence, by Lemma 4.11, we get

μ̄ (x0) < μ̄ (y0 → x0) ∧ μ̄ (y0) ,

which is a contradiction with a fact that μ̄ is a filter. Therefore, f (μ̄) satisfies (FF2). Thus,
f (μ̄) ∈ FF(Y).
Assume now that μ̄ is commutative. To prove that f (μ̄) satisfies (FCF1), suppose on the

contrary that

f (μ̄)(y′ → x ′) > f (μ̄)(((x ′ → y′) � y′) → x ′)

for some x ′, y′ ∈ Y . Since f is surjective, there are x, y ∈ X such that f (x) = x ′ and
f (y) = y′. We have

f (μ̄)( f (y → x) > f (μ̄)( f (((x → y) � y) → x)).

Hence

f ←( f (μ̄))(y → x) > f ←( f (μ̄))(((x → y) � y) → x).

From Lemma 4.11 we conclude that μ̄(y → x) > μ̄(((x → y) � y) → x), a con-
tradiction. Consequently, f (μ̄) satisfies (FCF1). Similarly, f (μ̄) satisfies (FCF2). Thus
f (μ̄) ∈ FCF(Y). ��

5 Conclusion and future research

This paper begins by considering the notion of fuzzy filter in pseudo-BE algebras (these
algebras are a non-commutative extension of BE algebras and a generalization of pseudo-
BCK algebras). For the general development of pseudo-BE algebras fuzzy filter theory plays
an important role (see, for example, Theorems 3.14 and 4.5).

Various characterizations of fuzzy filters were given and conditions for a fuzzy set to
be a fuzzy filter were provided. It was proved that the set of all fuzzy filters of a pseudo-
BE algebra is a complete lattice. Next, some characterizations of Noetherian pseudo-BE
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algebras by fuzzy filters were obtained. Moreover, we have introduced the notion of fuzzy
commutative filter of pseudo-BE algebras and derived its basic properties. Finally, we have
given the relationships between fuzzy filters and fuzzy commutative filters of a pseudo-BE
algebra and also provided the homomorphic properties of fuzzy (commutative) filters.

The next step in studying fuzzy filters in pseudo-BE algebras may be introducing and
investigating the notions of fuzzy maximal filter and fuzzy prime filter. We shall also study
fuzzy congruence relations on pseudo-BE algebras.

Acknowledgements The authors thank the referees for remarks which were incorporated into this revised
version.
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