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Abstract
In this paper, the authors continue studying more properties of somewhere dense sets. They
derive some interesting results related to them such as the collection of all somewhere
dense subsets of a strongly hyperconnected space (X , τ ) forms a filter on X , and a topo-
logical space which contains at least two disjoint somewhere dense sets is an ST1-space.
Then they introduce and study a concept of S-limit points of a soft set. Depending on
somewhere dense and cs-dense sets, they also define and investigate various maps between
topological spaces, namely SD-continuous, SD-irresolute, SD-open, SD-closed and SD-
homeomorphism maps.
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Mathematics Subject Classification 54A05 · 54A20 · 54C10

1 Introduction

Studying different types of generalized open sets is a major area of research in general
topology during the last few decades. By generalized open sets, mathematicians generalized
many concepts in general topology such as continuity, compactness, connectedness, etc. and
studied their properties. Historically, Stone [23] started the study of generalized open sets in
1937. He presented a notion of regular open sets. Then Levine [18] introduced semi open sets
in 1963 and Njastad [22] introduced α-open sets in 1965. Mashhour et al. [20] in 1982, and
Abd El-Monsef et al. [2], 1983, presented and studied preopen and β-open sets, respectively.
In 1996, Andrijević [8] defined and investigated the concept of b-open sets. Recently, the
concepts of somewhere dense sets and ST1-spaces were introduced and studied in detail by
Al-shami [6]. The class of somewhere dense sets contains all regular open, α-open, preopen,
semi open, β-open and b-open sets with the exception of the empty set. These six types
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of generalized open sets are defined by using interior and closure operators. In a similar
way, these kind of generalized open sets were studied on approximation spaces [1] and
soft topological spaces [3,4,7,9,10,12,14,16,24]. It is worthy note that one of the significant
applications of regular open and semi-open sets in digital topology was presented in [5,13],
respectively.

The purpose of this paper is to investigate further properties of somewhere dense and
cs-dense sets and to define new maps on topological spaces depending on somewhere dense
and cs-dense sets. We point out that the collection of all somewhere dense (resp. cs-dense)
subsets of a strongly hyperconnected spaces forms a filter (resp. an ideal) and a topological
space which contains at least two disjoint somewhere dense sets is an ST1-space. Also, we
introduce a concept of S-limit points of a soft set and derive its main properties with the
help of examples. In the last two sections, we present and study five types of maps, namely
SD-continuous, SD-irresolute, SD-open, SD-closed and SD-homeomorphism maps. Their
main properties are derived and the relationships among some of them are illustrated. In
particular, we investigate under what conditions the restriction of SD-continuous (resp. SD-
open, SD-closed) maps is also SD-continuous (resp. SD-open, SD-closed). Moreover, we
expound of why we omit the empty and universe sets from the definitions of SD-open and
SD-closed maps, respectively.

2 Preliminaries

Hereafter, we use the two ordered pairs (X , τ ) and (Y , θ) to indicate topological spaces on
which no separation axiom is assumed unless otherwise stated, and we use the notation S(τ )

to stand for the collection of all somewhere dense subsets of (X , τ ).

Definition 2.1 A subset E of (X , τ ) is said to be:

(i) regular open [23] if E = int(cl(E)).
(ii) semi-open [18] if E ⊆ cl(int(E)).
(iii) α-open [22] if E ⊆ int(cl(int(E))).
(iv) preopen [20] if E ⊆ int(cl(E)).
(v) β-open [2] if E ⊆ cl(int(cl(E))).
(vi) b-open [8] if E ⊆ int(cl(E))

⋃
cl(int(E)).

(vii) somewhere dense [6] if int(cl(E)) �= ∅. The complement of a somewhere dense set
is said to be cs-dense.

The complement of a ξ -open set is said to be ξ -closed for ξ ∈ {regular , semi, α, pre, β, b}.
Remark 2.2 We note that the term of preopen sets was used under the name of locally dense
by Corson and Michael [11].

Theorem 2.3 [21] If M is an open subset of (X , τ ), then M
⋂

cl(B) ⊆ cl(M
⋂

B) for each
B ⊆ X.

Definition 2.4 [21] A topological space (X , τ ) with no mutually disjoint non-empty open
sets is said to be hyperconnected.

Theorem 2.5 [6] A subset B of (X , τ ) is cs-dense if and only if there is a proper closed subset
F of X such that int(B) ⊆ F.

Theorem 2.6 [6] Every subset of (X , τ ) is somewhere dense or cs-dense.
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Theorem 2.7 [6] The intersection of an open set and a somewhere dense set in a hypercon-
nected space (X , τ ) is somewhere dense.

Theorem 2.8 [6] Let (
∏i=s

i=1 Xi , T ) be a finite product topological space. Then Mi is a some-
where dense subset of (Xi , τi ) for each i = 1, 2, . . . , s if and only if

∏i=s
i=1 Mi is a somewhere

dense subset of (
∏i=s

i=1 Xi , T ).

Definition 2.9 [6] (X , τ ) is called strongly hyperconnected provided that a subset of X is
dense if and only if it is non-empty and open.

Theorem 2.10 [6] If M and N are cs-dense (resp. somewhere dense) subsets of a strongly
hyperconnected space (X , τ ), then M

⋃
N (resp. M

⋂
N) is cs-dense (resp. somewhere

dense).

Theorem 2.11 [6] Every superset of a somewhere dense set is somewhere dense.

Definition 2.12 [6] Let M be a subset of (X , τ ). Then:

(i) The S-interior of M (Sint(M), in short) is the union of all somewhere dense sets
contained in M .

(ii) The S-closure ofM (Scl(M), in short) is the intersection of all cs-dense sets containing
M .

(iii) The S-boundary of M (Sb(M), in short) is the set of elements which belong to
(Sint(M)

⋃
Sint(Mc))c.

Proposition 2.13 [6] Consider a subset M of (X , τ ). Then:

(i) M ⊆ Scl(M); and a set M �= X is cs-dense if and only if M = Scl(M).
(ii) Sint(M) ⊆ M; and a non-empty set M is somewhere dense if and only if M =

Sint(M).
(iii) (Sint(M))c = Scl(Mc) and (Scl(M))c = Sint(Mc).

Definition 2.14 [6] (X , τ ) is called an ST1-space if for any pair of distinct points a, b ∈ X ,
there are two somewhere dense sets such that one of them contains a but not b and the other
contains b but not a.

Theorem 2.15 [6] (X , τ ) is an ST1-space if and only if for each pair of distinct points
a, b ∈ X, there are two disjoint somewhere dense sets one containing a and the other
containing b.

Definition 2.16 [15] A non-empty collection F of subsets of X is called a filter if it meets
the next three axioms

(i) ∅ /∈ F .
(ii) Every superset of any member of F belongs to F .
(iii) The intersection of any two member of F belongs to F .

Definition 2.17 [17] A non-empty collection I of subsets of X is called an ideal if it meets
the following three axioms

(i) X /∈ I .
(ii) Every subset of any member of I belongs to I .
(iii) The union of any two members of I belongs to I .

Definition 2.18 [19] Let f : (X , τ ) → (Y , θ) be a map. Then

(i) The graph of f , usually denoted by G( f ), is the subset {(x, f (x)) : x ∈ X} of the
product space X × Y .

(ii) The graph of f is called closed if it is a closed subset of the product space X × Y .
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3 Further properties of somewhere dense sets

In this section, we continue studying main properties of somewhere dense and cs-dense sets.
We investigate the conditions under which the collection of all somewhere dense (resp. cs-
dense) sets forms a filter (resp. an ideal). Also, we present the concept of S-limit points and
derive main features with the help of examples.

Theorem 3.1 If (X , τ ) is strongly hyperconnected, then S(τ ) forms a filter on X.

Proof It can be seen the following properties for S(τ ):

(i) From the definition of somewhere dense sets, ∅ /∈ S(τ ).
(ii) It follows from Theorem 2.10 that A

⋂
B ∈ S(τ ) for each A, B ∈ S(τ ).

(iii) If A ∈ S(τ ) and A ⊆ B, then from Theorem 2.11, B ∈ S(τ ).

Hence S(τ ) is a filter on X . ��
Theorem 3.2 The collection of all cs-dense subsets of a strongly hyperconnected space (X , τ )

forms an ideal on X.

Proof Let I be the collection of all cs-dense subsets of a strongly hyperconnected space
(X , τ ). Then we have the following properties

(i) Obviously, X /∈ I .
(ii) It follows from Theorem 2.10 that A

⋃
B ∈ I for each A, B ∈ I .

(iii) Let B ∈ I and A ⊆ B. Since the set B is cs-dense, then there is a proper closed
subset H of X satisfies that int(B) ⊆ H . Since int(A) ⊆ H , then from Theorem 2.5,
A ∈ I .

Hence I is an ideal on X . ��
Lemma 3.3 Let a set X be infinite. Then there is an infinite somewhere dense subset E of
(X , τ ) such that Ec is infinite.

Proof Let � = {Ei : i ∈ I } be the family of all infinite somewhere dense subsets of (X , τ ).
Since X ∈ �, then I �= ∅. Suppose that every Ec

i is finite. Then every closed set is finite. Take
an infinite subset A of X such that Ac is infinite as well. Now, cl(A) = cl(Ac) = X . This
implies that the sets A and Ac are both somewhere dense and cs-dense. But this contradicts
our assumption. Hence the lemma holds. ��
Theorem 3.4 Let X be an infinite set. If � = {Ei : i ∈ I } is a collection of all infinite
somewhere dense subsets of (X , τ ) such that Ec

i is infinite for each i ∈ I , then I is infinite.

Proof Let the given conditions be satisfied. Since {Ec
i : i ∈ I } is the collection of all infinite

cs-dense sets, then the collection of all infinite closed sets is contained in {Ec
i : i ∈ I }. Let

Ei0 ∈ �. Then we have the next two cases

(i) Either cl(Ei0) = X . Then {Ei0
⋃{x j } : x j ∈ Ec

i0
} is a collection of infinite somewhere

dense sets. So {Ei0
⋃{x j } : x j ∈ Ec

i0
} ⊆ �.

(ii) Or there exists j ∈ I such that cl(Ei0) = Ec
j . Then the infinite set E

c
j is both somewhere

dense and cs-dense. So {Ec
j

⋃{xk} : xk ∈ E j } is a collection of infinite somewhere
dense sets. Thus {Ec

j

⋃{xk} : xk ∈ E j } ⊆ �.

Since Ec
i0
and E j are infinite in the above both cases, then the index I is infinite. ��
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Corollary 3.5 Let X be an infinite set. Then for each x ∈ X, there is an infinite somewhere
dense subset E of (X , τ ) contains x such that Ec is infinite.

Theorem 3.6 (X , τ ) is an ST1-space if and only if it contains at least two disjoint somewhere
dense sets.

Proof Necessity: The proof comes immediately from Theorem 2.15.
Sufficiency: Let a, b be two distinct points in X and let E and H be two disjoint somewhere
dense subsets of X . Then we have only the following four cases:

(1) a ∈ E and b ∈ H .
(2) a, b ∈ E or a, b ∈ H . Say, a, b ∈ E . Since the set H is somewhere dense, then H

⋃{a}
and H

⋃{b} are two somewhere dense. Obviously, H
⋃{a} and H

⋃{b} containing a
and b, respectively, such that b /∈ H

⋃{a} and a /∈ H
⋃{b}.

(3) a, b /∈ E
⋃

H . Then E
⋃{a} and H

⋃{b} are two disjoint somewhere dense sets
containing a and b, respectively.

(4) E contains only one of the points a, b and H does not contain both points a, b or
H contains only one of the points a, b and E does not contain both points a, b. Say,
(a ∈ E and b /∈ H). Then E and H

⋃{b} are somewhere dense sets containing a and
b, respectively.

Since a and b are chosen arbitrary, then (X , τ ) is an ST1-space. ��
For the sake of brevity, the proofs of the following two propositions have been omitted.

Proposition 3.7 Every non-empty proper regular open subset of (X , τ ) is both somewhere
dense and cs-dense.

Proposition 3.8 If (X , τ ) is hyperconnected, then the collection of somewhere dense sets
coincides with the collection of non-empty β-open sets.

Definition 3.9 Let E be a subset of (X , τ ). Then x is called an S-limit point of E if
[G\{x}]⋂ E �= ∅ for each somewhere dense set G containing x .
All S-limit points of E is called an S-derived set and denoted by Sl(E).

The following example illustrates that the sets of S-limit points and S-closure points (resp.
S-interior points) of a soft set need not be cs-dense (resp. somewhere dense).

Example 3.10 Let τ = {∅,Gn = {n, n + 1, n + 2, ...} : n ∈ N } be a topology on the set of
real numbersN . Let a set M = {2n : n ∈ N }. Then Sl(M) = N and Scl(M) = N which
is not cs-dense. Also, Sint(M) = ∅ which is not somewhere dense.

Proposition 3.11 Suppose M and N are subsets of (X , τ ). Then:

(i) If M ⊆ N, then Sl(M) ⊆ Sl(N ).
(ii) Sl(M

⋂
N ) ⊆ Sl(M)

⋂
Sl(N )

(iii) Sl(M)
⋃

Sl(N ) ⊆ Sl(M
⋃

N ).

We point out in the next example that the inclusion relation in the above proposition can
be proper.

Example 3.12 Assume that (N , τ ) is the same as in Example 3.10. Let M = {2n : n ∈ N },
N = {2n + 1 : n ∈ N }, O = {1, 3} and P = {2}. Then
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(i) Sl(M) = Sl(N ) = N , whereas neither M � N nor N � M .
(ii) Sl(M

⋂
N ) = ∅, whereas Sl(M)

⋂
Sl(N ) = N .

(iii) Sl(O) = {1} and Sl(P) = {1}. So Sl(O)
⋃

Sl(P) = {1}, whereas Sl(O
⋃

P) =
{1, 2}.

Proposition 3.13 If (X , τ ) is strongly hyperconnected, then Sl(M
⋃

N ) = Sl(M)
⋃

Sl(N )

for each subsets M and N of X.

Proof By observing that (X , S(τ )
⋃{∅}) is a topological space, when (X , τ ) is strongly

hyperconnected, the proposition holds. ��
Theorem 3.14 (i) A proper subset M of (X , τ ) is cs-dense if and only if Sl(M) ⊆ M.
(ii) If M

⋃
Sl(M) �= X, then M

⋃
Sl(M) is cs-dense.

(iii) Scl(M) = M
⋃

Sl(M) for each subset M of (X , τ ).

Proof (i) Necessity: Assume that M is a cs-dense set and x /∈ M . Then x ∈ Mc ∈ S(τ ).
As Mc ⋂

M = ∅, then x /∈ Sl(M). Therefore Sl(M) ⊆ M .
Sufficiency: Let x ∈ Mc �= ∅ and Sl(M) ⊆ M . Then x /∈ Sl(M). Therefore there is
a somewhere dense set Ex containing x such that (Ex\{x})⋂

M = ∅. As x ∈ Mc,
then Ex

⋂
M = ∅. Now, Ex ⊆ Mc. Therefore Mc = ⋃{Ex : x ∈ Mc}. Thus M is

cs-dense.
(ii) Let x /∈ (M

⋃
Sl(M)). Then x /∈ M and x /∈ Sl(M). Therefore there is a somewhere

dense set E containing x such that

E
⋂

M = ∅ (3.1)

On the other hand, for each x ∈ E , we have x /∈ M . Therefore (E\{x}) ⋂
M = ∅.

Thus x /∈ Sl(M) and this implies that

E
⋂

Sl(M) = ∅ (3.2)

From (3.1) and (3.2), we obtain E
⋂

(M
⋃

Sl(M)) = ∅ and this implies that x /∈
Sl(M

⋃
Sl(M)). Hence Sl(M

⋃
Sl(M)) ⊆ (M

⋃
Sl(M)). By (i), we getM

⋃
Sl(M)

is cs-dense.
(iii) To prove this result, we consider the following two cases

(1) Either Scl(M) = X . Suppose that there is x ∈ X such that x /∈ (M
⋃

Sl(M)). Then
x /∈ M and x /∈ Sl(M). So there is a somewhere dense set E containing x such that
E

⋂
M = ∅. This implies that M ⊆ Ec �= X . But this contradicts that Scl(M) = X .

Thus Scl(M) = M
⋃

Sl(M).
(2) Or Scl(M) �= X . Then Scl(M) is cs-dense. By (ii), we have Sl(M) ⊆ Scl(M). So

M
⋃

Sl(M) ⊆ Scl(M). Also, Scl(M) is the smallest cs-dense set containing M and
by (ii) M

⋃
Sl(M) is a cs-dense set containing M . Then Scl(M) ⊆ M

⋃
Sl(M). So

Scl(M) = M
⋃

Sl(M).

From (1) and (2), we conclude that Scl(M) = M
⋃

Sl(M) for each subset M of (X , τ ). ��

4 Somewhere dense continuousmaps

The notions of somewhere dense continuous and somewhere dense irresolute maps are intro-
duced and their characterizations are investigated. The equivalent conditions for them are
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More notions and mappings via somewhere dense sets 1017

given. Some results which associate somewhere dense continuous maps with restricted and
graph maps are investigated.

Definition 4.1 Amap g : (X , τ ) → (Y , θ) is said to be somewhere dense continuous (briefly,
SD-continuous) at a ∈ X if for any open setU containing g(a), there is a somewhere dense
set E containing a such that g(E) ⊆ U .

Definition 4.2 Amap g : (X , τ ) → (Y , θ) is said to be SD-continuous if it is SD-continuous
for each a ∈ X .

Theorem 4.3 A map g : (X , τ ) → (Y , θ) is SD-continuous if and only if the inverse image
of each open set is empty or somewhere dense.

Proof To prove the “if” part, letU be an open set in Y . IfU is empty, then the proof is trivial.
So consider U is non-empty. If g−1(U ) = ∅, then this part holds. If g−1(U ) �= ∅, then
for each a ∈ g−1(U ), we have a somewhere dense subset Ea of X containing a such that
g(Ea) ⊆ U . Thus a ∈ Ea ⊆ g−1(U ) and ∪{Ea : a ∈ g−1(U )} = g−1(U ). Hence g−1(U )

is somewhere dense.
To prove the “only if” part, assume that a ∈ X and U is an open set including g(a). Then
g−1(U ) is a somewhere dense set containing a and satisfies that g(g−1(U )) ⊆ U . So g is
SD-continuous at a. Since a is chosen arbitrary, then g is SD-continuous. ��
Corollary 4.4 A surjective map g : (X , τ ) → (Y , θ) is SD-continuous if and only if the
inverse image of each non-empty open set is somewhere dense.

Proposition 4.5 Every j-continuousmap is SD-continuous for each j ∈ {β, b, semi, pre, α}.
Proof Consider that g : (X , τ ) → (Y , θ) is a j-continuous map and let E be a non-empty
open subset of Y . Then g−1(E) is a j-open subset of X for each j ∈ {β, b, semi, pre, α}.
Since any somewhere dense set contains all non-empty j-open set ( j ∈ {β, b, semi, pre, α}),
then it follows from Theorem 4.3 that g−1(E) is empty or somewhere dense. Hence g is SD-
continuous. ��

The next example shows that the above theorem is not conversely.

Example 4.6 Consider τ = {∅, X , {1}, {2}, {1, 2}, {2, 3}} and θ = {∅, Y , {y, z}} are topolo-
gies on X = {1, 2, 3} and Y = {x, y, z}, respectively. Take a map g of (X , τ ) into (Y , θ)

which is defined as: g(1) = y, g(2) = x and g(3) = z. Then g is SD-continuous. Since
g−1({y, z}) = {1, 3} and {1, 3} is not j-open, then a map g is not j-continuous for each
j ∈ {β, b, semi, pre, α}.
Lemma 4.7 If (A, τA) is an open subspace of (X , τ ) and E ⊆ X, then A

⋂
cl(E) =

clA(A
⋂

E).

Proof Consider x /∈ A
⋂

cl(E). Then we have two possible cases

(i) Either x /∈ A. So x /∈ clA(A
⋂

E).
(ii) Or x ∈ A and x /∈ cl(E). This means there is an open subset G of (X , τ ) contain-

ing x such that G
⋂

E = ∅. Now, x ∈ G
⋂

A and A is open. This implies that
(G

⋂
A)

⋂
(E

⋂
A) = ∅. Thus x /∈ clA(A

⋂
E). ��

Thus clA(A
⋂

E) ⊆ A
⋂

cl(E).
On the otherhand, let x /∈ clA(A

⋂
E). Then the subspace (A, τA) containing open set

H satisfies that x ∈ H and H
⋂

(A
⋂

E) = ∅. By hypotheses, A is an open subset of X ,
So H is also an open subset of (X , τ ). Now, H

⋂
(A

⋂
E) = (H

⋂
A)

⋂
E = ∅. then

x /∈ A
⋂

cl(E). Thus A
⋂

cl(E) ⊆ clA(A
⋂

E). Hence the proof is complete. ��
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Theorem 4.8 If f : (X , τ ) → (Y , θ) is SD-continuous and A is an open dense subset of
(X , τ ), then the restriction map fA : (A, τA) → (Y , θ) is SD-continuous.

Proof Let G be an open subset of Y . Then f −1(G) is an empty set or a somewhere dense
set. If the set f −1(G) is empty, then the theorem holds. If the set f −1(G) is somewhere
dense, then there is a non-empty open set U such that U ⊆ cl( f −1(G)). Now, U

⋂
A ⊆

cl( f −1(G))
⋂

A = clA( f −1(G)
⋂

A). Since A is open dense, then U
⋂

A is a non-empty
open set in (A, τA). Therefore f −1(G)

⋂
A is a somewhere dense subset of (A, τA). Thus

f A is SD-continuous. ��
Corollary 4.9 If A is an open subset of a hyperconnected space (X , τ ) and f : (X , τ ) →
(Y , θ) is SD-continuous, then fA : (A, τA) → (Y , θ) is SD-continuous.

The equivalent conditions for an SD-continuous map are presented in the next theorem.

Theorem 4.10 Consider g : (X , τ ) → (Y , θ) is a map. Then we have the next five equivalent
statements:

(i) g is SD-continuous;
(ii) The inverse image of each closed subset of (Y , θ) is X or cs-dense;
(iii) Scl(g−1(K )) ⊆ g−1(cl(K )) for each K ⊆ Y ;
(iv) g(Scl(H)) ⊆ cl(g(H)) for each H ⊆ X;
(v) g−1(int(K )) ⊆ Sint(g−1(K )) for each K ⊆ Y .

Proof (i) ⇒ (ii): Suppose that F is a closed subset of (Y , θ). Then Fc is open. Therefore
g−1(Fc) = X − g−1(F) is empty or somewhere dense. So g−1(F) is X or cs-dense.

(ii) ⇒ (iii): Let K ⊆ Y . Then g−1(cl(K )) is X or cs-dense. So we have two cases

(1) Either g−1(cl(K )) = X . Then Scl(g−1(K )) ⊆ X = g−1(cl(K )).
(2) Or g−1(cl(K )) is cs-dense. Then Scl(g−1(K )) ⊆ Scl(g−1(cl(K ))) = g−1(cl(K )).

(iii) ⇒ (iv): Let H ⊆ X . Then Scl(H) ⊆ Scl(g−1(g(H))). By (i i i), Scl(g−1(g(H))) ⊆
g−1(cl(g(H))). Therefore g(Scl(H) ⊆ g(g−1(cl(g(H)))) ⊆ cl(g(H)).

(iv) ⇒ (v): Let K be any set of Y and H = g−1(Y − K ). By (iv), g(Scl(g−1(Kc)) ⊂
cl(g(g−1(Kc))) ⊂ cL(Kc). Hence Scl((g−1(K ))c) ⊂ g−1((int(K ))c and hence
g−1(int(K )) ⊂ Sint(g−1(K )).

(v) ⇒ (i): Suppose that K is an open subset of Y . By (v), we obtain that
g−1(K ) = g−1(int(K )) ⊆ Sint(g−1(K )). Since Sint(g−1(K )) ⊆ g−1(K ), then g−1(K ) =
Sint(g−1(K )). Therefore g−1(K ) is empty or somewhere dense. Thus g is SD-continuous.

��
Theorem 4.11 Let f be a map of a hyperconnected space (X , τ ) into (Y , θ) and let g :
(X , τ ) → (X × Y , T ) be the graph map of f , where T is the product topology on X × Y .
Then f is SD-continuous if and only if g is SD-continuous.

Proof Necessity: Let a ∈ X and g(a) ∈ W ∈ T . Then there exist G ∈ τ and H ∈ θ

such that g(a) = (a, f (a)) ∈ G × H ⊆ W . Now, a ∈ G and f (a) ∈ H . Since f is
SD-continuous, then there is a somewhere dense subset E of X containing a such that
f (E) ⊆ H . By Theorem 2.7, G

⋂
E is a somewhere dense set containing a. Therefore

g(G
⋂

E) = (G
⋂

E, f (G
⋂

E)) ⊆ (G, f (E)) ⊆ G × H ⊆ W . Thus g is SD-continuous
at a. Since a is an arbitrary point, then g is SD-continuous.

Sufficiency: Let a be any point of X and f (a) ∈ V ∈ θ . Then (a, f (a)) ∈ X × V ∈ T .
Since g is SD-continuous, then there is a somewhere dense subset H of X containing a
such that g(H) ⊆ X × V . Now, g(H) = (H , f (H)) implies that f (H) ⊆ V . Thus f is
SD-continuous. ��
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Theorem 4.12 Let f : (X , τ ) → (Y , θ) be an SD-continuous map and (Y , θ) be a T2-space.
Then the graph of f is a cs-dense subset of X × Y .

Proof Let (x, y) ∈ (G( f ))c. Then y �= f (x). Since (Y , θ) is a T2-space, then there exist two
disjoint open subsets H andW of Y containing y and f (x), respectively. By hypothesis, f is
SD-continuous. Then there is a somewhere dense subsetU containing x such that f (U ) ⊆ W .
From Theorem 2.8, U × H is a somewhere dense subset of X . Since f (U )

⋂
H = ∅, then

(U × H)
⋂

G( f ) = ∅. Therefore (H ×U ) ⊆ (G( f ))c. Since the point (x, y) is arbitrarily
chosen, then (G( f ))c is a somewhere dense subset of X × Y . This completes the proof. ��
Theorem 4.13 Let p : (X , τ ) → (Y , θ) be a surjective i-continuous map for each i ∈
{β, b, semi, pre, α}, and let q : (Y , θ) → (Z , μ) be a j-continuous map for each j ∈
{semi, α}. Then the map q ◦ p is SD-continuous.

Proof It is sufficient to prove the theorem in case of i = β and j = semi , and the other
follow easily.
Let G be an open subset of Z . Then q−1(G) is a semi-open subset of Y .

(1) If q−1(G) = ∅, then p−1(q−1(G)) = ∅.
(2) If q−1(G) �= ∅, then there is a non-empty open subset H of Y satisfies that H ⊆

q−1(G). Now, p−1(H) ⊆ p−1(q−1(G)). Since p is surjective β-continuous, then
p−1(H) is a non-empty β-open subset of X . Therefore p−1(H) is somewhere dense
and this implies that p−1(q−1(G)) is somewhere dense.

Thus q ◦ p is SD-continuous. ��
Theorem 4.14 If p : (X , τ ) → (Y , θ) is a surjective continuous map and q : (Y , θ) →
(Z , μ) is an SD-continuous map, then q ◦ p is SD-continuous.

Proof LetU be a non-empty open subset of Z . Then q−1(U ) is empty or a somewhere dense
subset of Y .

(1) If q−1(U ) = ∅, then p−1(q−1(U )) = ∅.
(2) If q−1(U ) �= ∅, then there is a non-empty open subset H of Y such that H ⊆

cl(q−1(U )). Now, p−1(H) ⊆ p−1(cl(q−1(U ))). Since p is continuous surjective,
then p−1(H) is a non-empty open subset of X . Also, p−1 is continuous implies that
p−1(cl(q−1(U ))) ⊆ cl(p−1(q−1(U ))). Therefore p−1(q−1(U )) is somewhere dense.

Thus q ◦ p is SD-continuous. ��
Definition 4.15 A map g : (X , τ ) → (Y , θ) is said to be SD-irresolute provided that the
inverse image of each somewhere dense subset of Y is empty or a somewhere dense subset
of X .

Proposition 4.16 Every SD-irresolute map is SD-continuous.

Proof The proof is obvious. ��
The above theorem is not conversely as it is illustrated in the next example.

Example 4.17 Let τ = {∅, X , {1, 2}, {1, 2, 3}, {1, 2, 4}} and θ = {∅, Y , {x, y}, {w, z}} be
topologies on X = {1, 2, 3, 4} and Y = {x, y, w, z}, respectively. Take a map g : (X , τ ) →
(Y , θ) which is defined as: g(1) = x , g(2) = z, g(3) = y and g(4) = w. Then the map
g is SD-continuous. On the other hand, {y} is somewhere dense and g−1({y}) = {3} is not
somewhere dense. So the map g is not SD-irresolute.
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Theorem 4.18 For a map g : (X , τ ) → (Y , θ), the following statements are equivalent:

(i) g is SD-irresolute;
(ii) The inverse image of each cs-dense subset of (Y , θ) is cs-dense;
(iii) Scl(g−1(A)) ⊆ g−1(Scl(A)) for each A ⊆ Y ;
(iv) g(Scl(H)) ⊆ Scl(g(H)) for each H ⊆ X;
(v) g−1(Sint(A)) ⊆ Sint(g−1(A)) for each A ⊆ Y .

Proof The proof is similar to that of Theorem 4.10. ��
Theorem 4.19 A map g : (X , τ ) → (Y , θ) is SD-irresolute if one of the next conditions
holds.

(i) cl(g−1(K )) ⊆ g−1(Scl(K )) for each K ⊆ Y .
(ii) g(cl(H)) ⊆ Scl(g(H)) for each H ⊆ X.
(iii) g−1(Sint(K )) ⊆ int(g−1(K )) for each K ⊆ Y .

Proof (i) It is clear that Scl(K ) ⊆ cl(K ) for each K ⊆ Y . If condition (i) holds, then
Scl(g−1(K )) ⊆ cl(g−1(K )) ⊆ g−1(Scl(K )). By (iii) of Theorem 4.18, g is SD-
irresolute.

(ii) It is clear that Scl(H) ⊆ cl(H) for each H ⊆ X . If condition (ii) holds, then
g(Scl(H)) ⊆ g(cl(H)) ⊆ Scl(g(H)). By (iv) of Theorem 4.18, g is SD-irresolute.

(iii) It is clear that int(K ) ⊆ Sint(K ) for each K ⊆ Y . If condition (iii) holds, then
g−1(Sint(K )) ⊆ int(g−1(K )) ⊆ Sint(g−1(K )). It follows from (v) of Theorem 4.18
that g is SD-irresolute. ��

In the following, we present an example to show that the above theorem is not conversely.

Example 4.20 Consider τ is the indiscrete topology on X = {a, b} and θ = {∅, Y , {z}} is a
topology on Y = {x, y, z}. If a map p : (X , τ ) → (Y , θ) is given by the following p(a) = x
and p(b) = y. Then p is SD-irresolute, whereas the three conditions which mentioned in
the above theorem are not satisfied as pointed out in the following:

(i) Let K = {y}. Then cl(p−1(K )) = X and p−1(Scl(K )) = {b}.
Therefore cl(p−1(K )) � p−1(Scl(K )).

(ii) Let H = {a}. Then p(cl(H)) = {x, y} and p(H) = {x}.
Therefore p(cl(H)) � Scl(p(H)).

(iii) Let K = {y, z}. Then p−1(Sint(K )) = {b} and int(p−1(K )) = ∅.
Therefore p−1(Sint(K )) � int(p−1(K )).

Proposition 4.21 Consider a map g : (X , τ ) → (Y , θ) is injective SD-irresolute. If (Y , θ)

is an ST1-space, then (X , τ ) is an ST1-space.

Proof Let a �= b in X and let g be injective. Then g(a) �= g(b). Therefore there are two
disjoint somewhere dense setsG and H containing g(a) and g(b), respectively. Since g−1(G)

and g−1(H) are disjoint somewhere dense sets containing a and b, respectively, then (X , τ )

is an ST1-space. ��

5 SD-closed (SD-open, SD-homeomorphism) maps

We devote this section to introducing SD-closed (SD-open, SD-homeomorphism) maps and
to seeking main properties. In particular, we give the sufficient conditions of restricted maps
of SD-closed (resp. SD-open) maps to be SD-closed (resp. SD-open).
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Definition 5.1 A map g of (X , τ ) into (Y , θ) is said to be SD-closed (resp. SD-open) pro-
vided that the image of each proper closed (resp. non-empty open) subset of X is a cs-dense
(resp. a somewhere dense) subset of Y .

We omit the empty set from the definition of an SD-open map because the image of the
empty set is empty and the empty set is not somewhere dense. Also, we omit the universe
set from the definition of an SD-closed map because the image of the universe set under a
surjective map is the universe set in the codomain and the universe set is not cs-dense.

Theorem 5.2 A map g : (X , τ ) → (Y , θ) is SD-closed if and only if Scl(g(K )) ⊆ g(cl(K ))

for each subset K of X.

Proof Necessity: Assume that g is an SD-closed map. For any subset K of X , we have two
cases:

(1) Either cl(K ) = X . Then g(cl(K )) = g(X). So Scl(g(K )) ⊆ g(X) = g(cl(K )).
(2) Or cl(K ) �= X . Then g(cl(K )) is a cs-dense set. Since g(K ) ⊆ g(cl(K )), then

Scl(g(K )) ⊆ g(cl(K )).

Sufficiency: Assume that K is a proper closed subset of X . By hypothesis, g(K ) ⊆
Scl(g(K )) ⊆ g(cl(K )) = g(K ). Therefore g(K ) = Scl(g(K )). Since g(K ) �= Y , then
g(K ) is cs-dense. So g is SD-closed. ��
Theorem 5.3 Amap g : (X , τ ) → (Y , θ) is SD-open if and only if g(int(K )) ⊆ Sint(g(K ))

for every subset K of X.

Proof Necessity: Assume that g is an SD-open map and let K be a subset of X . Then we
have two cases:

(1) Either int(K ) = ∅. Then the theorem holds.
(2) Or int(K ) �= ∅. Then g(int(K )) is a somewhere dense set. Since g(int(K )) ⊆ g(K ),

then g(int(K )) ⊆ Sint(g(K )).

Sufficiency: Assume that K is a non-empty open subset of X . Then g(int(K )) = g(K ) ⊆
Sint(g(K )). Therefore g(K ) = Sint(g(K )). Thus g is SD-open. ��
Proposition 5.4 A bijective map g of (X , τ ) into (Y , θ) is SD-open if and only if it is SD-
closed.

Proof To prove the ‘if’ part, let G be a proper closed subset of (X , τ ). Since g is SD-open,
then g(Gc) is somewhere dense and since g is bijective, then g(Gc) = (g(G))c. So g(G) is
cs-dense. Hence g is SD-closed.
To prove the ‘only if’ part, we follow similar lines. ��
Proposition 5.5 Let g : (X , τ ) → (Y , θ) be an SD-closed map and A be a closed subset of
X. Then gA : (A, τA) → (Y , θ) is SD-closed.

Proof Suppose that H is a closed subset of (A, τA). Then there exists a closed subset F of
(X , τ ) such that H = F

⋂
A. Since A is a closed subset of (X , τ ), then H is also a closed

subset of (X , τ ). Therefore gA(H) = g(H) which is cs-dense. Thus gA is an SD-closed
map. ��
Proposition 5.6 Let g : (X , τ ) → (Y , θ) be an SD-open map and A be an open subset of
X. Then gA : (A, τA) → (Y , θ) is SD-open.
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Proof The proof is similar to that of Proposition 5.5. ��
The proofs of the next two propositions are easy and so will be omitted.

Proposition 5.7 Every injective j-closed map is SD-closed for each j ∈ {β, b, semi, pre, α}.
Proposition 5.8 Every j-open map is SD-open, for each j ∈ {β, b, semi, pre, α}.
Proposition 5.9 The next four statements hold for the two maps p : (X , τ ) → (Y , θ) and
q : (Y , θ) → (Z , σ ).

(i) If p is i-open for i = {α, semi} and q is j-open for j = {β, b, semi, pre, α}, then
q ◦ p is SD-open.

(ii) If q ◦ p is SD-open and p is continuous surjective, then q is SD-open.
(iii) If q ◦ p is open and q is SD-continuous injective, then p is SD-open.
(iv) If q ◦ p is SD-open and q is SD-irresolute injective map, then p is SD-open.

Proof (i) We only prove in case of i = semi and j = β, and the other follow easily.
Let G be a non-empty open subset of X . Then p(G) is a non-empty semi open subset
of Y . Therefore there is a non-empty open subset H of Y such that H ⊆ p(G). Now,
q(H) ⊆ q(p(G)). Since q is β-open, then q(H) is a non-empty β-open subset of
Z . Therefore q(H) is somewhere dense and this implies that q(p(G)) is somewhere
dense. Thus q ◦ p is somewhere dense.

(ii) Suppose that G �= ∅ is an open subset of Y . Then p−1(G) �= ∅ is an open subset of X .
Therefore (q ◦ p)(p−1(G)) is a somewhere dense subset of Z . Since p is surjective,
then (q ◦ p)(p−1(G)) = q(p(p−1(G))) = q(G). Thus q is an SD-open map.

(iii) Let G �= ∅ be an open subset of X . Then (q ◦ p)(G) �= ∅ is an open subset of
Z . Therefore q−1(q ◦ p(G)) is somewhere dense. Since q is injective, then q−1(q ◦
p(G)) = (q−1q)(p(G)) = p(G). Thus p is an SD-open map.

(iv) The proof is similar to that of (iii). ��
The proof of the next proposition is similar with that of the above proposition.

Proposition 5.10 The following four statements hold for the maps f : (X , τ ) → (Y , θ) and
g : (Y , θ) → (Z , σ ).

(i) If f is injective i-closed for i = {α, semi} and g is injective j-closed for j =
{β, b, semi, pre, α}, then g ◦ f is SD-open.

(ii) If g ◦ f is SD-open and f is surjective continuous, then g is SD-open.
(iii) If g ◦ f is closed and g is injective SD-continuous, then f is SD-closed.
(iv) If g ◦ f is SD-closed and g is SD-irresolute injective map, then f is SD-closed.

Definition 5.11 A bijective map g in which is SD-continuous and SD-open is called an
SD-homeomorphism.

Theorem 5.12 For a bijective map g : (X , τ ) → (Y , θ), the following properties are equiv-
alent:

(i) g is an SD-homeomorphism;
(ii) g and g−1 is SD-continuous;
(iii) g is SD-closed and SD-continuous.

Proof Straightforward. ��
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Theorem 5.13 A bijective map p : (X , τ ) → (Y , θ) is an SD-homeomorphism if and only
if one of the following conditions holds.

(i) p(Scl(E)) ⊆ cl(p(E)) and Scl(p(E)) ⊆ p(cl(E)), for each E ⊆ X.
(ii) p(int(E)) ⊆ Sint(p(E)) and p−1(int(A)) ⊆ Sint(p−1(A)), for each E ⊆ X and

A ⊆ Y .

Proof (i) The proof is obtained from Theorems 4.10 and 5.2.
(ii) The proof is obtained from Theorems 4.10 and 5.3. ��

6 Conclusion

This article is divided into three main sections: Sects. 3, 4 and 5. We devote Sect. 3 to
investigating further properties of somewhere dense sets and to studying a concept of S-limit
points. In Sect. 4, we introduce two new maps depending on somewhere dense sets, namely
SD-continuous and SD-irresolute maps. We characterize them and discuss main properties.
In the last section, we define the notions of SD-closed (SD-open, SD-homeomorphism)
maps and derive main properties. In particular, we give the sufficient conditions of restriction
SD-closed (resp. SD-open) maps to be SD-closed (resp. SD-open). In the upcoming papers,
we plan to apply the concepts initiated in this work to the field of ordered spaces, information
systems and digital topologies.
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