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Abstract
In this paper we study a special type of metric called ∗-Ricci soliton on para-Sasakian
manifold. We prove that if the para-Sasakian metric is a ∗-Ricci soliton on a manifold M ,
then M is eitherD-homothetic to an Einstein manifold, or the Ricci tensor of M with respect
to the canonical paracontact connection vanishes.
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1 Introduction

The study of Ricci solitons on pseudo-Riemannian (Riemannian) manifold is an interesting
topic in modern differential geometry because it covers Einstein metric (as a special case)
and often arise as a fixed of Hamilton’s Ricci flow: ∂

∂t gi j = −2Ri j , viewed as a dynamical
system on the space of Riemannin metrics modulo diffeomorphisms and scalings. A pseudo-
Riemannian metric g on a smooth manifold Mn is said to be a Ricci soliton if there exists a
real number λ such that its Ricci tensor Ric satisfies

£V g + 2Ric = 2λg, (1)

where V is a vector field on M (called the potential vector field) and £V denotes the Lie dif-
ferentiation along the vector field V . Ricci solitons were introduced in Riemannian geometry
[14] as the self-similar solutions of the Ricci flow, and play an important role in understand-
ing its singularities. A wide survey on Riemannian Ricci solitons may be found in [9]. The
classification of Sasakian metric as a Ricci soliton has been done by Ghosh–Sharma [12]
and Sharma–Ghosh [20]. After their introduction in Riemannian case, the study of pseudo-
Riemannian Ricci solitons attracted a growing number of authors.

In parallel with contact and complex structures in the Riemannian case, paracontact metric
structures were introduced by Kaneyuki and Williams [17] in pseudo-Riemannian settings,
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as a natural odd-dimensional counterpart to para Hermitian structures. A systematic study of
paracontact metric manifolds started with the paper [25]. The technical apparatus introduced
in [25] is essential for further investigations of paracontact metric geometry. The problem of
studying Ricci solitons in the context of paracontact metric geometry was initiated by Cal-
varuso and Perrone [6]. The case of Ricci solitons in three-dimensional paracontact geometry
was treated by Bejan and Crasmareanu [2] respectively Calvaruso and Perrone [8]. For some
recent results and further references on pseudo-Riemannian Ricci solitons, we may refer to
[3–5,7,18] and references therein.

The notation of ∗-Ricci soliton has been studied by Kaimakamis and Panagiotidou [16]
within the framework of real hypersurfaces of complex space forms. They essentially modi-
fied the definition of Ricci soliton by replacing the Ricci tensor Ric in (1) with the ∗-Ricci
tensor Ric∗. Here, it is mentioned that the notion of ∗-Ricci tensor was first introduced by
Tachibana [22] on almost Hermitian manifolds and further studied by Hamada [13] on real
hypersurfaces of non-flat complex space forms.

Definition 1 A pseudo-Riemannian metric g on a smooth manifold M is called a ∗-Ricci
soliton if there exists a smooth vector field V and a real number λ, such that

1

2
(£V g)(X , Y ) + Ric∗(X , Y ) = λg(X , Y ), (2)

where

Ric∗(X , Y ) = 1

2
(trace{ϕ · R(X , ϕY )}) , (3)

for all vector fields X , Y on M . Here, ϕ is a tensor field of type (0, 2).

In a recent paper, [11] the authors studied ∗-Ricci solitons in Sasakian manifolds. In the
similar way, in this frame work, we make an effort to study a ∗ -Ricci soliton on paracon-
tact geometry mainly concerned with the special case of para-Sasakian manifold. It may be
mentioned that a para-Sasakian manifold is a paracontact manifold with pseudo-Riemannian
metric, whereas a Sasakian manifold is a contact manifold with Riemannina metric. There-
fore, these two notions are completely different. Para-Sasakian manifolds have been studied
in recent years by many authors, by emphasizing similarities and differences with respect to
the most well known Sasakian case. In this junction, it is suitable to mention that, η-Ricci
solitons on para-Sasakian manifolds were studied in the paper [19].

In the present paper, our main object is to study ∗-Ricci soliton within the frame-work of
para-Sasakian manifold. More precisely, we prove the following theorem:

Theorem 1 Let M(ϕ, ξ, η, g) be a (2n + 1)-dimensional para-Sasakian manifold. If g is a
∗-Ricci soliton on M, then either M is D-homothetic to an Einstein manifold, or the Ricci
tensor of M with respect to canonical paracontact connection vanishes. In the first case,
the soliton vector field is Killing and in the second case, the soliton vector field leaves ϕ

invariant.

2 Preliminaries

In this section we collecting some basic definitions and formulas on paracontact metric
manifolds and para-Sasakian manifolds. All the manifolds are assumed to be connected and
smooth. We may refer to [1,10,19,21,23,25] and references therein for more information
about para-Sasakian geometry.
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Para-Sasakian manifolds and ∗-Ricci solitons 991

An almost paracontact structure on a (2n + 1)-dimensional (connected) smooth manifold
M is a triple (φ, ξ, η), where φ is a (1, 1)-tensor, ξ a global vector field and η a 1-form, such
that

φ(ξ) = 0, η · φ = 0, η(ξ) = 1, φ2 = I d − η ⊗ ξ(1), (4)

and the restriction J of φ on the horizontal distribution kerη is an almost paracomplex
structure (that is, the eigensubbundles D+, D− corresponding to the eigenvalues 1,−1 of J
have equal dimension n). A pseudo-Riemannian metric g on M is compatiblewith the almost
paracontact structure (φ, ξ, η) when

g(φX , φY ) = g(X , Y ) + η(X)η(Y ). (5)

In such a case, (φ, ξ, η, g) is said to be an almost paracontact metric structure. Remark
that, by (4) and (5), η(X) = g(ξ, X) for any compatible metric. Any almost paracontact
structure admits compatible metrics, which, by (5), necessarily have signature (n + 1, n).
The fundamental 2-form φ of an almost paracontact metric structure (φ, ξ, η, g) is defined
by Φ(X , Y ) = g(X , φY ), for all tangent vector fields X , Y . If Φ = dη, then the manifold
(M, η, g) (or M(φ, ξ, η, g)) is called a paracontact metric manifold and g the associated
metric. If the paracontact metric structure M(φ, ξ, η, g) is normal, that is, satisfies [φ, φ] +
2dη ⊗ ξ = 0, then (φ, ξ, η, g) is called para-Sasakian. Equivalently, a para contact metric
structure (φ, ξ, η, g) is para-Sasakian if

(∇Xφ)Y = −g(X , Y )ξ + η(Y )X , (6)

for any vector fields X , Y on M , where ∇ is Levi–Civita connection of g. Alternatively,
a paracontact metric structure on M is said to be para-Sasakian if the metric cone is para-
Kaehler [1]. Any para-Sasakianmanifold is K -paracontact, and the converse also holds when
n = 1, that is for three-dimensional space. From (6), it follows that

∇X ξ = −φX . (7)

Also in a (2n + 1)-dimensional para-Sasakian manifold, the following relations hold:

R(X , Y )ξ = η(X)Y − η(Y )X , (8)

R(X , ξ)ξ = −X + η(X)ξ, (9)

Ric(X , ξ) = −2nη(X), (10)

Qξ = −2nξ, (11)

for any X , Y on M . Here, R denotes the curvature tensor of g and Ric denotes the Ricci
tensor defined by S(X , Y ) = g(QX , Y ), where Q is the Ricci operator.

Lemma 1 Let M(φ, ξ, η, g) be a para-Sasakian manifold. Then

(i) (∇X Q)ξ = QφX + 2nφX, and (ii) ∇ξ Q = −φ.

Proof Taking covariant differentiation of (11) along an arbitrary vector field X onM andusing
(7), we obtain (ii). Next, since ξ is Killing, we have £ξ Ric = 0. This implies (£ξ Q)X = 0
for any vector field X on M . From which it follows that

0 = £ξ (QX) − Q(£ξ X)

= ∇ξ QX − ∇QX ξ − Q(∇ξ X) + Q(∇X ξ)

= (∇ξ Q)X − ∇QX ξ + Q(∇X ξ).
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Using (7) in the above equation gives

∇ξ Q = Qφ − φQ. (12)

On a para-Sasakian manifold (see Eq. (3.39) of [25]), we have Qφ − φQ = −φ. By making
use of this relation in (12) we have (i). This completes the proof.

If the Ricci tensor of a para-Sasakian manifold M is of the form

Ric(X , Y ) = Ag(X , Y ) + Bη(X)η(Y ), (13)

for any vector fields X , Y on M , where A and B being constants, then M is called an η-
Einstein manifold.

The 1-form η is determined up to a horizontal distribution and hence D = Kerη are
connected by η̄ = ση for a positive smooth function σ on a paracontact manifold M .
This paracontact form η̄ defines the structure tensor (φ̄, ξ̄ , ḡ) corresponding to η̄ using the
condition given in the paper [25]. We call the transformation of the structure tensors given by
Lemma 4.1 of [25] a gauge (conformal) transformation of paracontact pseudo-Riemannian
structure. When σ is constant this is a D-homothetic transformation. Let M(φ, ξ, η, g) be a
paracontact manifold and

φ̄ = φ, ξ̄ = 1

α
ξ, η̄ = αη, ḡ = αg + (α2 − α)η ⊗ η, α = const . �= 0 (14)

to be D-homothetic transformation. Then (φ̄, ξ̄ , η̄, ḡ) is also a paracontact structure. Here
the para-Sasakian structure is preserved since the normality conditions is preserved under
D-homothetic transformations. Using the formula appeared in [25] for D-homothetic defor-
mation, one can easily verify that ifM(φ, ξ, η, g) is a (2n+1)-dimensional (n > 1) η-Einstein
para-Sasakian structure with scalar curvature r �= 2n, then there exists a constant α such that
M(φ̄, ξ̄ , η̄, ḡ) is an Einstein para-Sasakian structure. So we adopt the following result.

Lemma 2 Any (2n + 1)-dimensional η-Einstein para-Sasakian manifold with scalar curva-
ture not equal to 2n is D-homothetic to an Einstein manifold.

The canonical paracontact connection on a paracontact manifold was defined by
Zamkovoy [25]. On an integrable paracontact metric manifold such a connection is unique
and is defined in terms of the Levi–Civita connection by

˜∇XY = ∇XY + η(X)φY − η(Y )∇X ξ + (∇Xη)(Y )ξ. (15)

A canonical paracontact connection on a para-Sasakian manifold which seems to be the
paracontact analogue of the (generalized) Tanaka–Webster connection.

In view of (7) in (15), we arrive at

˜∇XY = ∇XY + η(X)φY + η(Y )φX + g(X , φY )ξ (16)

for all vector fields X , Y on M . The connection ˜∇ given by (16) is called a canonical
paracontact connection on a para-Sasakian manifold. Indeed, the Ricci tensor˜Ric of a (2n+
1)-dimensional para-Sasakian manifold with respect to canonical paracontact connection ˜∇
is defined by

˜Ric(X , Y ) = Ric(X , Y ) − 2g(X , Y ) + (2n + 2)η(X)η(Y ) (17)

for all vector fields X , Y on M . For details we refer to [15,25].
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3 Proof of Theorem 1

In this section, before presenting our main result about ∗-Ricci soliton on a para-Sasakian
manifold, we state and prove some lemmas which will be used to prove Theorem 1.

Lemma 3 The∗-Ricci tensor ona (2n+1)-dimensional para-Sasakianmanifold M(φ, ξ, η, g)
is given by

Ric∗(X , Y ) = −Ric(X , Y ) − (2n − 1)g(X , Y ) − η(X)η(Y ) (18)

for any vector fields X , Y on M.

Proof The Ricci tensor Ric of a (2n+1)-dimensional para-Sasakian manifold M(φ, ξ, η, g)
satisfies the relation (c.f. Lemma 3.15 in [25]):

Ric(X , Y ) = 1

2

2n+1
∑

i=1

R′(X , φY , ei , φei )

−(2n − 1)g(X , Y ) − η(X)η(Y ) (19)

for any vector fields X , Y on M . Using the skew-symmetric property of φ, we write

2n+1
∑

i=1

R′(X , φY , ei , φei ) =
2n+1
∑

i=1

(R(X , φY ), ei , φei ) =
2n+1
∑

i=1

g(φR(X , φY ), ei , ei ). (20)

By virtue of this, it follows from (19) that

2n+1
∑

i=1

g(φR(X , φY )ei , ei ) = −2Ric(X , Y ) − 2(2n − 1)g(X , Y ) − 2η(X)η(Y ). (21)

Making use of (3) in (21), we obtain (18).

Lemma 4 For a para-Sasakian manifold, we have the following relation

(£V η)(ξ) = −η(£V ξ) = λ. (22)

Proof By virtue of Lemma 3, the ∗-Ricci soliton Eq. (2) can be expressed as

(£V g)(X , Y ) = 2Ric(X , Y ) + 2(2n − 1 + λ)g(X , Y ) + 2η(X)η(Y ). (23)

Setting Y = ξ in (23) and using (10) it follows that (£V g)(X , ξ) = 2λη(X). Lie-
differentiating the equation η(X) = g(X , ξ) along V and by virtue of last equation, we
find

(£V η)(X) − g(£V ξ, X) − 2λη(X) = 0. (24)

Next, Lie-derivative of g(ξ, ξ) = 1 along V and Eq. (24) completes proof.

Lemma 5 Let M(φ, ξ, η, g) be a (2n + 1)-dimensional para-Sasakian manifold. If g is a
∗-Ricci soliton, then M is an η-Einstein manifold and the Ricci tensor can be expressed as

Ric(X , Y ) = −
[

2n − 1 + λ

2

]

g(X , Y ) +
[

λ

2
− 1

]

η(X)η(Y ). (25)

for any vector fields X , Y on M.
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Proof First, taking covariant differentiation of (23) along an arbitrary vector field Z , we get

(∇Z£V g) (X , Y ) = 2 {(∇Z Ric)(X , Y ) − g(X , φZ)η(Y ) − g(Y , φZ)η(X)} . (26)

According to Yano [24], we get
(

£V∇Z g − ∇Z£V g − ∇[V ,Z ]g
)

(X , Y ) = −g ((£V∇)(Z , X), Y ) − g ((£V∇)(Z , Y ), X) ,

for any vector fields X , Y , Z on M . In view of the parallelism of the pseudo-Riemannian
metric g, we get from the above relation that

(∇Z£V g)(X , Y ) = g((£V∇)(Z , X), Y ) + g ((£V∇)(Z , Y ), X) . (27)

Comparing (26) and (27), we have

g ((£V∇)(Z , X), Y ) + g ((£V∇)(Z , Y ), X)

= 2 {(∇Z Ric)(X , Y ) − g(X , φZ)η(Y ) − g(Y , φZ)η(X)} . (28)

By a straightforward combinatorial combination of (28) gives

g ((£V∇)(X , Y ), Z) = −(∇Z Ric)(X , Y ) + (∇X Ric)(Y , Z)

+(∇Y Ric)(Z , X) + 2g(X , φZ)η(Y )

+2g(Y , φZ)η(X). (29)

Replacing Y by ξ in (29) and Lemma 1, we have

(£V∇)(X , ξ) = 2(2n)φX + 2QφX . (30)

Further, differentiating (30) covariantly along an arbitrary vector field Y on M and then using
the relations (6) and (11), we get

(∇Y £V∇) (X , ξ) + (£V∇)(X , φY )

= 2 {(∇Y Q)φX + η(X)QY + 2nη(X)Y + g(X , Y )ξ} . (31)

Again, according to Yano [24] we have the following commutation formula

(£V R)(X , Y )Z = (∇X£V∇)(Y , Z) − (∇Y £V∇)(X , Z). (32)

Replace Z by ξ in (32) and taking into account of (31), we obtain

(£V R)(X , Y )ξ + (£V∇)(Y , φX) − (£V∇)(X , φY )

= 2 {(∇X Q)φY − (∇Y Q)φX + η(Y )QX − η(X)QY

+2n(η(Y )X − η(X)Y )} . (33)

Taking ξ for Y in (33), then using (11), (30) and Lemma 1, we have

(£V R)(X , ξ)ξ = 4{QX + 2nX + η(X)ξ}. (34)

Next, taking Lie-derivative of (9) along V and taking into account of (8) and (22) one can
get

(£V R)(X , ξ)ξ = (£V η)(X)ξ − g(£V X , ξ) − 2λX . (35)

Comparing (34) with (35), and making use of (24), we obtain the required result.

Now, we state and prove the main result in the following:
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Proof of Theorem 1 Making use of (25), the soliton equation (23) takes the form

(£V g)(X , Y ) = λ{g(X , Y ) + η(X)η(Y )}. (36)

Taking Lie-differentiation of (25) along the vector field V and using (23) we obtain

(£V Ric)(X , Y ) =
(

λ

2
− 1

)

{η(Y )(£V η)(X) + η(X)(£V η)(Y )}

−
(

2n − 1 + λ

2

)

λ {g(X , Y ) + η(X)η(Y )} . (37)

Other hand, differentiating the Eq. (25) covariantly along an arbitrary vector field Z on M
and then using (7) we find

(∇Z Ric)(X , Y ) =
(

1 − λ

2

)

{g(X , φZ)η(Y ) + g(Y , φZ)η(X)}. (38)

In view of (38), Eq. (29) transforms into

(£V∇)(X , Y ) = −λ {η(Y )φX + η(X)φY } . (39)

Differentiating (39) covariantly along an arbitrary vector field Z on M and making use of
(6) and (7) yields

(∇Z£V∇)(X , Y ) = λ {g(Y , φZ)φX + g(X , φZ)φY + g(X , Z)η(Y )ξ

+g(Y , Z)η(X)ξ − 2η(X)η(Y )Z} . (40)

Using (40) in commutation formula (32) and using (7) we produce

(£V R)(X , Y )Z = λ {g(φX , Z)φY − g(φY , Z)φX + 2g(φX , Y )φZ

+g(X , Z)η(Y )ξ − g(Y , Z)η(X)ξ − 2η(Y )η(Z)X

+2η(X)η(Z)Y } . (41)

Contracting (41) over Z , we have

(£V Ric)(Y , Z) = 2λ{g(Y , Z) − (2n + 1)η(Y )η(Z)}. (42)

Comparison of (37) and (42) gives
(

λ

2
− 1

)

{η(Y )(£V η)(Z) + η(Z)(£V η)(Y )}

−
(

2n − 1 + λ

2

)

λ{g(Y , Z) + η(Y )η(Z)}
= 2λ{g(Y , Z) − (2n + 1)η(Y )η(Z)}. (43)

Replacing Y by φ2Y in (43) and then using (4) and (22) we have
(

λ

2
− 1

)

(£V η)(Y )η(Z) = λ

[

1 + 2n + λ

2

]

g(Y , Z) − 2nλ η(Y )η(Z). (44)

Taking account of (44) in (43) and then plugging Z by φZ , we obtain

λ

[

2n + 1 + λ

2

]

g(Y , φZ) = 0. (45)

Since Φ(Y , Z) = g(Y , φZ) �= 0 on M , we can obtain either λ = 0 or λ = −2(2n + 1).
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Case I: If λ = 0, from (36) we see that £V g = 0, that is, V is Killing. From (25) we see
that

Ric(X , Y ) = −(2n − 1)g(X , Y ) − η(X)η(Y ). (46)

Contracting the Eq. (46) we get r = −4n2, where r is the scalar curvature of the manifold
M . This shows that M is an η-Einstein manifold with scalar curvature r �= 2n. Hence, we
conclude that M is D-homothetic to an Einstein manifold.

Case II: If λ = −2(2n + 1), then replacing Z by ξ in (44) and then setting Y by φY of
the resulting equation gives ( λ

2 − 1)(£V η)(φY ) = 0. Since λ = −2(2n+ 1), we have λ �= 2.
thus we have (£V η)(φY ) = 0. Taking Y by φY in the foregoing equation and using (4) and
also Lemma 4, we obtain

(£V η)(Y ) = −2(2n + 1)η(Y ). (47)

Taking exterior differentiation d on (47) we have

(£V dη)(X , Y ) = −2(2n + 1)g(X , φY ), (48)

noting that d commuteswith £V . Further, taking the Lie-derivative of thewell known equation
dη(X , Y ) = g(X , φY ) along the soliton vector field V provides

(£V dη)(X , Y ) = (£V g)(X , φY ) + g(X , (£Vφ)Y ). (49)

From (36) we also deduce

(£V g)(X , φY ) = −2(2n + 1)g(X , φY ). (50)

Using (48) and (50) in (49) we find £Vφ = 0. Hence, the soliton vector field V leaves φ

invariant.
Further, using λ = −2(2n + 1) in (25) it follows that

Ric(X , Y ) = 2g(X , Y ) − (2n + 2)η(X)η(Y ). (51)

Contracting (51) we obtain r = 2n (i.e., the manifold M cannot be D-homothetic to an
Einstein manifold). Then, by taking account of (51) in (17) we obtain˜Ric(X , Y ) = 0. That
is, the Ricci tensor with respect to the connection ˜∇ vanishes. This completes the proof of
our Theorem 1.

4 Conclusion

The study of Ricci solitons on Riemannian manifolds and pseudo-Riemannian manifolds is
an issue, which is of great importance in the area of differential geometry and in physics as
well. Ricci soliton generalizes the notion of Einstein metric on a Riemannian manifold. The
∗-Ricci soliton is a new notion not only in the area of differential geometry but in the area of
physics as well. Note that, a ∗-Ricci soliton is trivial if the vector field V is Killing, and in this
case the manifold becomes ∗-Einstein, i.e., Ric∗ = λg. So far we know that, the notion of ∗-
Ricci tensor appears on complex and contact manifolds only. However, some classifications
are available in the literature in terms of the ∗-Ricci tensor. On the other hand, in the recent
years, many authors have studied and pointed out the importance of paracontact geometry
and, in particular, of para-Sasakian geometry, by giving the relationships with the theory
of para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathematical
physics. Here, making use of the formulas of para-Sasakian manifold one can easily deduce
an expression of the ∗-Ricci tensor. Due to the pressence of some extra terms in the expression

123



Para-Sasakian manifolds and ∗-Ricci solitons 997

of ∗-Ricci tensor the defining condition of the ∗-Ricci soliton is different from Ricci soliton.
Thus, in this connection, we are interested and studied ∗-Ricci solitons within the framework
of para-Sasakian manifold.
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