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Abstract
In this paper, we extend the β-Weil pairing, initially introduced in the setting of ordinary
elliptic curves with even embedding degree by Aranha et al. [2], to ordinary elliptic curves of
any embedding degree. We also propose a new optimal pairing which is the product of some
rational functionswith the sameMiller loop andhaving a simplefinal exponentiation. Thenew
pairing is appropriated for using the multi-pairing technique for an efficient implementation.
We focus our computation at high security level. Exploiting the fact that the β-Weil pairing is
suitable for parallel execution, we first show that calculating the extended β-Weil pairing over
pairing-friendly elliptic curves with embedding degree 27 is more efficient than calculating
the optimal ate pairing. Finally we show that calculating our new pairing over Barreto–Lynn–
Scott curves with embedding degree 12 (BLS12) and pairing-friendly elliptic curves with
embedding degree 15 is more efficient than calculating the optimal ate pairing.
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1 Introduction

Nowadays, one can enumerate many cryptographic protocols which are based on pairings
such as: Joux’s one round three party key agreement protocol [20], the Identity-Based Cryp-
tosystem [9], Identity-Based Encryption [12], the Identity-Based undeniable signature [22],
short signatures [10] or Broadcast encryption [16]. A pairing is a non-degenerate bilinear
map of the form b : G1×G2 −→ G3 i.e. b is linear in each component and for each P ∈ G1

there exists Q ∈ G2 such that b(P, Q) �= 1, where we consider G1, G2 to be additive groups
andG3 a multiplicative group. The first pairings used in cryptography were theWeil [24] and
Tate pairings. The majority of papers proposed in the literature concentrates on improving
efficiency of the computation of Tate-type pairings because Tate pairing and its variants offer
more effectiveness than the Weil pairing [7,14,21,29,32]. Recently, Aranha et al. [2] intro-
duced an optimal pairing in the form of Weil-type pairing which is appropriate for parallel
execution and called the β-Weil pairing. Let E be an ordinary elliptic curve over Fp where
Fp is a prime field, p an odd prime. Let r be a large prime divisor of �E(Fp), the order of the
group of rational points of the elliptic curve E . Let k be the embedding degree i.e. the smallest
positive integer such that r divides pk − 1. The definition of β-Weil pairing proposed by
Aranha et al. focusses only on ordinary elliptic curves with even embedding degree. On the
other hand, one notes that in many cryptographic protocols, the evaluation of the products of
s pairings (s an integer≥ 1) is required instead of the evaluation of single pairing [1,8,11,30].
For efficient implementation of these products of pairing, separately Scott [28] and Granger
et al. [18] proposed an efficient method for their computation, and some curves are suitable
for its computation [15]. This method is usually named multi-pairing technique which only
requires a single squaring in the extension field per doubling instead of s squarings in the
naive way. Also, the multi-pairing technique can be used to calculate a single pairing defined
as the products of some rational functions with the same Miller loop.
The few works that applied the multi-pairing technique to calculate a single pairing are those
of Sakemi et al. [26] and Zhang et al. [32]. Sakemi et al. applied the multi-pairing technique
to improve the computation of the twisted ate pairing on the Barreto–Naehrig curves. On the
other hand, Zhang et al. suggested a newpairing and pairing lattices on pairing-friendly curves
defined over an extension field when assuming their existence, on which the multi-pairing
technique is adequate for acquiring efficient implementation.

In this work, we show that when we consider any proper divisor of the embedding degree
k, the β-Weil pairing can be extended to the ordinary elliptic curves with any embedding
degree. Also, we show that calculating theβ-Weil pairing over pairing-friendly elliptic curves
with embedding degree 27 is more efficient than calculating the optimal ate pairing. We also
propose a new optimal pairing which is defined as the product of some rational functions
with the same Miller loop. The computation of this new pairing requires a simple final
exponentiation. We then show that calculating the proposed pairing over BLS12 and pairing-
friendly elliptic curves with embedding degree 15 is more efficient than calculating the
optimal ate pairing. Note that we compare the different pairings computed in this work by
the number of elementary operations.

The rest of this paper is organized as follows: Sect. 2 recalls the mathematical background
on pairings over elliptic curves. In Sect. 3, we first recall the definition of β-Weil pairing
proposed by Aranha et al. then we show how to extend the β-Weil pairing on ordinary elliptic
curveswith any embedding degree,we compute theβ-Weil pairing on pairing-friendly elliptic
curves with embedding degree 27 and compare its cost versus the optimal ate pairing cost
on the same curve. In Sect. 4, we propose a new optimal pairing on ordinary elliptic curves
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Beta Weil pairing revisited 373

of embedding degree 12 (BLS12) and pairing-friendly curves with embedding degree 15.
In particular we show that calculating the proposed pairing over Barreto–Lynn–Scott curves
with embedding degree 12 (BLS12) and pairing-friendly elliptic curves with embedding
degree 15 is more efficient than calculating the optimal ate pairing.

2 Mathematical background

In this section, we recall the definition of the reduced Tate pairing, the Weil pairing, an
optimal pairing, the optimal ate pairing and the β-Weil pairing which has been introduced
by Aranha et al. [2] and defined only on curves with even embedding degree.

2.1 Definitions and notations

Let E be an ordinary elliptic curve over Fp and O be the neutral element of the group of
rational points of E , l a proper divisor of k, t the trace of Frobenius and ρ = logp/logr .
Denote by μr the group of r th roots of unity in F

×
pk
. For m ∈ Z, the multiplication by m is

denoted by [m] and defined as [m] : E → E : S �→ mS. Denote by E[r ] the set of r -torsion
points on E i.e. the set of the points S ∈ E such that r S = O.

Let πp be the Frobenius endomorphism, πp : E → E : (x, y) �→ (x p, y p). Set G1

= E[r ] ∩ Ker(πp − [1]), G2 = E[r ] ∩ Ker(πp − [p]), let P ∈ G1 and Q ∈ G2. Denote

by E (pi ) the curve defined by raising the coefficients of the equation of E to the pi -power
for some i . Let πpi be the pi -power Frobenius isogeny from E to E (pi ). By isogeny, we
mean that πpi is a morphism satisfying πpi (O) = O, its dual is denoted π̂pi and π∗

pi

is the pullback of πpi . Let E
′ over Fp be a twist of degree d of E i.e. E ′ is an elliptic

curve defined over Fp which is isomorphic to E over an algebraic closure of Fp and d is
the smallest integer such that E and E ′ are isomorphic over Fpd . Let n = gcd(k, d) and
e = k/n. For each a ∈ Z and S ∈ E[r ], let fa,S be the normalized Fpk -rational function with
divisor div( fa,S) = a(S) − ([a]S) − (a − 1)(O). Let h(z) = ∑c

i=0hi z
i ∈ Z[z] an optimal

polynomial obtained by using a lattice-based method such that h(p) ≡ 0(mod r). Denote
by fa,h,S the extended Miller function to be the normalized rational function with divisor∑c

i=0hi ((a
i S) − (O)).

Denote sλ = pλ (mod r), where 1 ≤ λ ≤ k − 1.

Define θsλ : G1 × G2 → μr : (P, Q) �→
(

fsλ,P (Q)

fsλ,Q(P)

)pl−1

and

θsλ,h : G1 × G2 → μr : (P, Q) �→
(

fsλ,h,P (Q)

fsλ,h,Q(P)

)pl−1

.

In this paper, we assume that all elliptic curves are pairing-friendly elliptic curves defined
by a parameterized family (p(x), r(x), t(x)) [13] where x ∈ Z.

And we consider the following notations:
Mk , Sk , Ik : Cost of multiplication, squaring and inversion in the field Fpk , for any integer

k.

Definition 1 The reduced tate pairing
The reduced Tate pairing [5] tr is a non-degenerate bilinear map defined as

tr : G1 × G2 → μr : (P, Q) �→ fr ,P (Q)
pk−1
r
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374 E. Fouotsa et al.

Definition 2 The Weil pairing
Let R, S ∈ E[r ] and R �= S. Let fr ,R and fr ,S two rational functions on E such that

div( fr ,R) = r(R) − r(O) and div( fr ,S) = r(S) − r(O). The Weil pairing [24] is a non-
degenerate bilinear map defined as

ew : E[r ] × E[r ] −→ μr (R, S) �→ (−1)r
fr ,R(S)

fr ,S(R)
.

Definition 3 The optimal pairing
Let b : G1×G2 −→ G3 be a non degenerate, bilinear pairing withG1,G2,G3 subgroups

of order r where G3 ⊂ F
×
pk
, then b(., .) is an optimal pairing [29] if it can be computed

approximately in log2r/ϕ(k) + ε(k) basic Miller iterations, with ε(k) ≤ log2k.

The following theorem from [29] explains the construction of an optimal ate pairing.

Theorem 1 ([29],Theorem 1)
Let λ = mr be a multiple of r such that r � m and write λ = ∑l

i=0 ci p
i = h(p),

(h(z) ∈ Z[z]). For i = 0, · · · l set si = ∑l
j=i c j p

j ; then

bo : G2 × G1 → μr

(Q, P) �−→
(

l∏

i=0
f p

i

ci ,Q
(P) ·

l−1∏

i=0
h[si+1]Q,[ci pi ]Q(P)

) pk−1
r (1)

defines a bilinear pairing which is non degenerate if mkpk−1 �= ((pk − 1)/r) ·∑l
i=0 ici p

i−1 mod r .

Note that the coefficients ci , with i ∈ {0, . . . , l}, can be obtained from the short vector
obtained from the lattice

L =

⎛

⎜
⎜
⎜
⎜
⎝

r 0 0 · · · 0
−p 1 0 · · · 0
−p2 0 1 · · · 0
· · · · · · · · · · · · · · ·

−pϕ(k)−1 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

(2)

Therefore, an optimal polynomial h(z) can be obtained such that |ci | ≤ r1/ϕ(k) by applying
a lattice-based method.

The following theorem from [2] gives the definition of the β-Weil pairing. Note that the
β-Weil pairing is a variant of the Weil pairing which is suitable for parallel execution and
the domain of the pairing is G1 × G2.

Theorem 2 ([2], Theorem 3)
There exists h = ∑c

i=0hi z
i ∈ Z[z] such that |hi | ≤ r1/ϕ(k) and

β : G1 × G2 → μr : (P, Q) �→
e−1∏

i=0

(
fsλ,h,[pi ]P (Q)

fsλ,h,Q([pi ]P)

)(pk/2−1)pe−1−i

is a pairing.

3 Extendedˇ-Weil pairing

In order to extend the β-Weil pairing to curves with any embedding degree; we now show
that when we consider any proper divisor of k, it is possible to define the β-Weil pairing to
curves with any embedding degree. For, we first recall some useful results.
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Lemma 1 Let R ∈ E and let u, v, w, s be integers. Then we have:

1. fuv,R = f uv,R . fu,[v]R = f v
u,R . fv,[u]R

2. fu,[v][w]R = fu,[v]([w]R)

3. In particular, if R ∈ E[r ] then f sr ,R = fsr ,R

Proof 1. We have that div( fuv,R) = uv(R) − ([uv]R) − (uv − 1)(O), div( f uv,R)

= udiv( fv,R) = uv(R) − u([v]R) − u(v − 1)(O) and div( fu,[v]R) = u([v]R) −
([u][v]R) − (u − 1)(O). Since div( f uv,R fu,[v]R) = div( f uv,R) + div( fu,[v]R) and
[uv] = [u][v], it follows that div( fuv,R) = div( f uv,R fu,[v]R); Hence fuv,R =
f uv,R fu,[v]R .

2. This equality holds because [v][w]R = [v]([w]R).
3. Assume that R ∈ E[r ] i.e. r R = O, according to the property (1) above, we have that

fsr ,R = f sr ,R . fs,[r ]R = f sr ,R since fs,[r ]R = fs,O = 1.

�

Corollary 1 ([34], Theorem 1) Let P ∈ G1 and Q ∈ G2, the following map

b̃ : G1 × G2 → μr : (P, Q) �→
(

f pe,P (Q)

f pe,Q(P)

)pl−1

is a pairing.

Lemma 2 ([17], Lemma 6) Let P ∈ G1, Q ∈ G2 then if lc∞( f p,Q) = 1 with respect to any
Fp-rational uniformizer u∞ at O then f p,Q(P) is a pairing where the leading coefficient of
f p,Q at O is denoted by lc∞( f p,Q).

Theorem 3 ([33], Theorem 1) Let G1, G2 and μr be defined as above. Let I be a pairing
fromG1×G2 toμr satisfying I (P, Q) = 1μr where P ∈ G1, Q ∈ G2 and 1μr is the identity
in μr . Then the set of all pairings from G1 × G2 to μr is a multiplicative group with identity
I .

Lemma 3 For 1 ≤ λ ≤ k − 1, the map G1 × G2 → μr : (P, Q) �→
(

∏e−1
i=0

(
fsλ,[pi ]P (Q)

fsλ,[pi ]Q(P)

)pe−1−i )pl−1

is a pairing and the following identity holds:

(
∏e−1

i=0

(
fsλ,[pi ]P (Q)

fsλ,[pi ]Q(P)

)pe−1−i )pl−1

=
e−1∏

i=0
θsλ([pi ]P, Q)p

e−1−i
.

Proof According to the results in Corollary 1, the map (P, Q) �→
(

f pe,P (Q)

f pe,Q(P)

)pl−1

is a

pairing. Using the fact that fab,R = f ab,R fa,bR from Lemma 1 with a, b integers and R ∈ E ,
we have that

f pe,P =
e−1∏

i=0

(
f p,[pi P]

)pe−1−i

.
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Since sλ = pλ (mod r) and f pλ,P = ∏λ−1
j=0

(
f p,[p j ]P

)pλ−1− j

, we have that:

e−1∏

i=0

(
f pλ,[pi ]P

)pe−1−i =
e−1∏

i=0

⎛

⎝
λ−1∏

j=0

( f p,[pi ][p j ]P )p
λ−1− j

⎞

⎠

pe−1−i

=
e−1∏

i=0

⎛

⎝
λ−1∏

j=0

( f p,[pi ][p j ]P )p
λ−1− j pe−1−i

⎞

⎠ .

Set ai j = ( f p,[pi ][p j ]P )p
λ−1− j pe−1−i

So,
e−1∏

i=0

(
f pλ,[pi ]P

)pe−1−i =
e−1∏

i=0

⎛

⎝
λ−1∏

j=0

ai j

⎞

⎠

=
λ−1∏

j=0

(
e−1∏

i=0

ai j

)

=
λ−1∏

j=0

(
e−1∏

i=0

( f p,[pi ]([p j ]P))
pe−1−i

)pλ−1− j

=
λ−1∏

j=0

( f pe,[p j ]P )p
λ−1− j

.

Hence,
e−1∏

i=0

(
f pλ,[pi ]P

)pe−1−i =
λ−1∏

j=0

(
f pe,[p j ]P

)pλ−1− j

(3)

It follows from (3) that

⎛

⎝
e−1∏

i=0

(
f pλ,[pi ]P (Q)

f pλ,[pi ]Q(P)

)pe−1−i ⎞

⎠

pl−1

=
⎛

⎝
λ−1∏

j=0

(
f pe,[p j ]P (Q)

f pe,[p j ]Q(P)

)pλ−1− j ⎞

⎠

pl−1

(4)

and
⎛

⎝
λ−1∏

j=0

(
f pe,[p j ]P (Q)

f pe,[p j ]Q(P)

)pλ−1− j ⎞

⎠

pl−1

=
⎛

⎝
λ−1∏

j=0

(
f pe,[p j ]P (Q)

f pe,Q([p j ]P)

)pλ−1− j
⎞

⎠

pl−1

(5)

the equality of (5) holds because f pe,[p j ]Q(P) = f pe,Q([p j ]P) since the map
(P, Q) �→ f pe,Q(P) is a pairing by the Lemma 2.

Thus

⎛

⎝
e−1∏

i=0

(
f pλ,[pi ]P (Q)

f pλ,[pi ]Q(P)

)pe−1−i ⎞

⎠

pl−1

is a product of pairings since the map (P, Q) �→
(

f pe,P (Q)

f pe,Q(P)

)pl−1

is a pairing. So the first part of lemma holds by Theorem 3. Furthermore,

since the map (P, Q) �→ f pλ,Q(P) is a pairing by the Lemma 2, we have that:
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⎛

⎝
e−1∏

i=0

(
f pλ,[pi ]P (Q)

f pλ,[pi ]Q(P)

)pe−1−i ⎞

⎠

pl−1

=
⎛

⎝
e−1∏

i=0

(
f pλ,[pi ]P (Q)

f pλ,Q([pi ]P)

)pe−1−i ⎞

⎠

pl−1

and

⎛

⎝
e−1∏

i=0

(
f pλ,[pi ]P (Q)

f pλ,Q([pi ]P)

)pe−1−i ⎞

⎠

pl−1

=
e−1∏

i=0
θpλ([pi ]P, Q)p

e−1−i
. 
�

The main result of this section is summarized in the following theorem.

Theorem 4 (Extended β-Weil Pairing) There exists a polynomial h such that |hi | ≤ r1/ϕ(k)

and the map βk : G1 ×G2 → μr : (P, Q) �→ ∏e−1
i=0θp,h([pi ]P, Q)p

e−1−i
is a pairing. More

precisely, If r � spe−1−i and r � h j , for all 0 ≤ i ≤ e − 1 and 0 ≤ j ≤ n, then the map βk is
non-degenerate.

Proof Let h(z) = ∑n
i=0hi z

i an optimal polynomial such that h(p) = rs. Since f sr ,P =
f p,h,P .

∏n
j=0 f

h j

p j ,P
, we have that

(
fr ,P (Q)

fr ,Q(P)

)s

= fr ,h,P (Q)

fr ,h,Q(P)
.

n∏

j=0

(
f p j ,P (Q)

f p j ,Q(P)

)h j

i.e.

(
fr ,P (Q)

fr ,Q(P)

)s(pl−1)

=
(

fr ,h,P (Q)

fr ,h,Q(P)

)pl−1

.

⎛

⎝
n∏

j=0

(
f p j ,P (Q)

f p j ,Q(P)

)h j
⎞

⎠

pl−1

i.e. θr (P, Q)s = θp,h(P, Q).

n∏

j=0

θp j (P, Q)h j .Thus

βk(P, Q) =
e−1∏

i=0

θp,h([pi ]P, Q)p
e−1−i

and

e−1∏

i=0

θp,h([pi ]P, Q)p
e−1−i =

e−1∏

i=0

⎛

⎝θr ([pi ]P, Q)s .

n∏

j=0

θp j ([pi ]P, Q)−h j

⎞

⎠

pe−1−i

i.e. βk(P, Q) =
e−1∏

i=0

θr ([pi ]P, Q)sp
e−1−i

.

n∏

j=0

(
e−1∏

i=0

θp j ([pi ])P, Q)p
e−1−i

)−h j

.

Hence the map βk is a product of pairings by Lemma 3 ; so βk is a pairing by Theorem 3.
On the other hand, βk is non-degenerate if r � spe−1−i and r � h j , for all 0 ≤ i ≤ e − 1
and 0 ≤ j ≤ n since the map θr ([pi ]P, Q) is a fixed power of the Weil pairing and
∏e−1

i=0θp j ([pi ])P, Q)p
e−1−i

is a pairing according to Lemma 3. 
�
Remark 1 In this remark, we establish that the application of Theorem 4 on elliptic curves
with even embedding degree coincides to the definition of β-Weil proposed by Aranha et al.
in [2].We choose the Barreto–Lynn–Scott curves with embedding degree 24 (BLS 24) [6] for
this verification. This family of elliptic curves is defined in Fp by the following polynomials:

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x
r(x) = x8 − x4 + 1
t(x) = x + 1

(6)
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and has ρ-value 1.25 and a twist order 6. According to Table 3 in [2], the optimal function
h(z) = x − z ∈ Z[z]. Since k = 24, we have e = k/gcd(k, d) = 4. We can take l = 12
since 12 is a proper divisor of k. Applying the Theorem 4, we obtain the following result:
The β-pairing over the pairing-friendly curves with k = 24, denote by β24, is bilinear and
non degenerate map:

β24 : G1 × G2 → μr : (P, Q) �→
[

3∏

i=0

(
fx,[pi ]P (Q)

fx,Q([pi ]P)

)p3−i ](p12−1)

Furthermore, since r � p4+1, thenβ24(P, Q)p
4+1 =

[
∏3

i=0

(
fx,[pi ]P (Q)

fx,Q([pi ]P)

)p3−i ](p12−1)(p4+1)

is also a pairing. And β24(P, Q)p
4+1 is the β-Weil pairing defined on BLS24-curves by

Aranha et al. in [2].

3.1 The extendedˇ-Weil pairing on pairing-friendly curves with k = 27

The parameterized elliptic curves with embedding degree 27 is defined in [6]. This family
has ρ-value 10/9 and is parameterized by the following polynomials:

p(x) = (x − 1)2(x18 + x9 + 1)/3 + x
r(x) = (x18 + x9 + 1)/3
t(x) = x + 1

(7)

Zhang and Lin [31] found the optimal function h(z) = ∑17
i=0ci z

i = x−z ∈ Z[z] such that
h(p) ≡ 0 (mod r ) for elliptic curves with k = 27. We then have f p,h,R = f p,x−p,R = fx,R
with R ∈ E[r ]. Note that this family of elliptic curves has a cubic twist, i.e., d = 3. Since
k = 27, we have e = k/gcd(k, d) = 9. We can take l = 3 since 3 is a proper divisor of k.
Applying the Theorem 4, we obtain the following result:

Proposition 1 The Extended β-Weil pairing over the pairing-friendly curves with k = 27 is
the bilinear and non degenerate map:

β27 : G1 × G2 → μr : (P, Q) �→
[

8∏

i=0

(
fx,[pi ]P (Q)

fx,Q([pi ]P)

)p8−i ](p3−1)

According to the previous work in [25] on elliptic curves with k = 27 at the 192-bit security
level, Fouotsa et al. found the value x = 225 + 214 + 217 + 24 + 1 so that r has a prime
factor of 410 bits length and the prime p has a bit length of 511. Recall that fx,P (Q) and
fx,Q(P) are called Miller lite and full Miller respectively. The computation of the Miller lite
fx,P (Q) and full Miller fx,Q(P) are done by execution of Miller’s Algorithm. In this case,
for k = 27, we compute the Miller function in affine coordinates, since the affine formulas
provide a fast pairing computation [31].

In Algorithm 1, lR,S is the straight line containing R and S and vR+S is the corresponding
vertical line passing through R + S with R and S two arbitrary points on the elliptic curve.
So the Miller Lite loop fx,P (Q) and Full Miller loop fx,Q(P) requires 25 doublings step, 4
additions step, 24 squarings in Fp27 , 27 multiplications in Fp27 . We assume that the points
[pi ]P , (1 ≤ i ≤ 8) are precomputed. We consider the following additional notations.
MLite := the cost of the Miller lite loop
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Beta Weil pairing revisited 379

Algorithm 1:Miller’s algorithm

Input: n=
s∑

j=0
n j2

j ∈ N, n j ∈ {−1, 0, 1}, P ∈ G1, Q ∈ G2

Output: fn,Q(P), [n]Q
1 f ← 1, T ← Q
2 for j from s − 1 downto 0 do
3 f ← f 2.lT ,T (P)/v[2]T (P); T ← [2]T Doubling step
4 if n j = 1 then
5 f ← f .lT ,Q(P)/vT+Q(P); T ← T + Q Addition step

6 if n j = −1 then
7 f ← f .lT ,−Q(P)/vT−Q(P); T ← T − Q Addition step

8 return f .

FullM := the cost of full Miller loop
FS := the cost of the final step
FE := the cost of the final exponentiation

3.1.1 Final exponentiation by (p3 − 1) and final step

Weuse the costs of the arithmetic given inTable 2 in [25]. Thefinal exponentiation costs : 1 p3-
Frobenius, 1 multiplication inFp27 and 1 inversion inFp27 ; therefore: 18M1+1M27+1I27 =
18M1 + 216M1 + 1I1 + 387M1 + 62S1 = 1I1 + 621M1 + 62S1. The 18 Miller functions
of extended β Weil pairing defined above can be computed in parallel using 6 processors.
Each processor computes three Miller functions. We denote by f1, f2 and f3 the functions
computed by the first processor, the second processor and the third processor. And g1, g2, g3
the functions computed by the fourth processor, the fifth processor and the sixth processor.
The execution path for computing the extended β Weil pairing for elliptic curves with k = 27
on 6 processors is the following:

1. The first processor computes f1 = f p
8

x,P (Q). f p
7

x,[p]P (Q). f p
6

x,[p2]P (Q); so it executes three

Miller lite loops, one p8-Frobenius, one p7-Frobenius, one p6-Frobenius and 2 multi-
plications in Fp27 . ie. 3× MLite+ 2× 26M1 + 18M1 + 2M27 = 3× MLite+ 502M1.

2. The second processor computes f2 = f p
5

x,[p3]P (Q). f p
4

x,[p4]P (Q). f p
3

x,[p5]P (Q); so it exe-

cutes three Miller lite loops, one p5-Frobenius, one p4-Frobenius, one p3-Frobenius and
2multiplications inFp27 . ie.3×MLite+2×26M1+18M1+2M27 = 3×MLite+502M1.

3. The third processsor computes f3 = f p
2

x,[p6]P (Q). f p
x,p7]P (Q). fx,[p8]P (Q); so it executes

three Miller lite loops, one p2-Frobenius, one p-Frobenius and 2 multiplications in Fp27 .
ie. 3 × MLite + 2 × 26M1 + 2M27 = 3 × MLite + 484M1.

4. The 4th processor computes g1 = f p
8

x,Q(P). f p
7

x,Q([p]P). f p
6

x,Q([p2]P); so it executes

three full Miller loops, one p8-Frobenius, one p7-Frobenius, one p6-Frobenius and 2
multiplications inFp27 . ie. 3×FullM+2×26M1+18M1+2M27 = 3×FullM+502M1.

5. The 5th processor computes g2 = f p
5

x,Q([p3]P). f p
4

x,Q([p4]P). f p
3

x,Q([p5]P); so it exe-

cutes three full Miller loops, one p5-Frobenius, one p4-Frobenius, one p3-Frobenius
and 2 multiplications in Fp27 . ie. 3 × FullM + 2 × 26M1 + 18M1 + 2M27 =
3 × FullM + 502M1.
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Table 1 Cost of the full Miller loop in affine coordinates, the final step and the final exponentiation

Full Miller loop Final step Final exponentiation

29I1 + 11052M1 + 4798S1 1I1 + 1467M1 + 62S1 1I1 + 621M1 + 62S1
[25] (this work) (this work)

Table 2 Cost comparison of the
extended β-Weil pairing and the
optimal ate pairing in affine
coordinates

Coordinates system G1+FS+FE Optimal ate pairing

Affine 31I1 + 18062M1 30I1 + 94628M1

(this work) [25]

6. The 6th processor computes g3 = f p
2

x,Q([p6]P). f px,Q([p7]P). fx,Q([p8]P); so it exe-

cutes three full Miller loops, one p2-Frobenius, one p-Frobenius and 2 multiplications
in Fp27 . ie. 3 × FullM + 2 × 26M1 + 2M27 = 3 × FullM + 484M1.

So the final step consists of the computation of ( f1 × f2 × f3) × (g1 × g2 × g3)−1 which
costs 1 inversion and 5 multiplications in Fp27 ie. 1I1 + 1467M1 + 62S1.

Since the cost of Miller lite is cheaper than the cost of full Miller, we will ignore the
cost of Miller lite in the rest of this work. We summarize in Table 1, the cost of the full
Miller obtained in [25] in affine coordinates, the cost of the final step and the cost of the final
exponentiation.

3.2 Comparison

In order to compare optimal ate and extended β-Weil pairing for curves with embedding
degree k = 27, our comparison focuses only on the overall cost of optimal ate pairing with
the cost of g1 to which is added the final step and the final exponentiation by (p3 − 1) since
the cost of g1 is the most costly. If we assume that the cost of a squaring is the same as the
cost of a multiplication (mk = sk). Denote by G1 the cost of g1.

Table 2 gives a comparison of the cost of the extended β-Weil pairing obtained in this
work on curve with embedding degree 27 and the cost of the optimal ate pairing on the same
curve proposed in [25]. From Table 2, we remark that our computation of extended β-Weil
pairing saves 76,566 multiplications minus 1 inversion in Fp , about 49,05% multiplications
in Fp .

4 A new optimal pairing

4.1 Definition of the new optimal pairing ˆ̌k
We note that when the polynomial h(z) = x − z, we can define another pairing which is
more efficient than the βk pairing defined in Theorem 4. The following theorem summarises
this result.

Theorem 5 For all parameterized pairing-friendly curves p(x), r(x), t(x) where the Ver-
cauteren polynomial is of the form h(z) = x − z such that h(p) ≡ 0(mod r), the map
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β̃k : G1 × G2 → μr : (P, Q) �→
(∏e−1

i=0 fx,[pi ]P (Q)p
e−1−i

)pl−1
is a pairing. More pre-

cisely if r � (pl − 1)pe−1, then the new pairing β̃k is non-degenerate.

Proof Since h(z) = x − z and h(p) ≡ 0 (mod r), the extended Miller function f p,h,R =
f p,x−p,R = fx,R ; in this case, we have that βk(P, Q) = ∏e−1

i=0

(
fx,[pi ]P (Q)

fx,Q([pi ]P)

)(pl−1)pe−1−i

.

Since βk and the map (P, Q) �→ fx,Q(P) are pairings respectively by the Theorem 4 and

Lemma 2, we have that:
∏e−1

i=0 fx,[pi ]P (Q)(p
l−1)pe−1−i = βk(P, Q)

· ∏e−1
i=0 fx,Q([pi ]P)(p

l−1)pe−1−i
is a pairing by Theorem 3. Furthermore,

∏e−1
i=0 fx,[pi ]P (Q)(p

l−1)pe−1−i =
(∏e−1

i=0 fx,[pi ]P (Q)p
e−1−i

)pl−1 = β̃k(P, Q). On the other

hand, β̃k is non-degenerate if r � (pl − 1)pe−1 since the map βk and fx,Q([pi ]P) are
non-degenerate. 
�
Lemma 4 ([32], Theorem 3) For P ∈ G1 and Q ∈ G2, then

f p,[pi ]P (Q) = f p,π̂pi (P)(πpk−i (Q))p
i
.

Finally, using the relation from Lemma 4, the new pairing in Theorem 5 can be modified
as the products of some rational functions with the same Miller loop.

Theorem 6 For all parameterized pairing-friendly curves p(x), r(x), t(x) where the Ver-
cauteren polynomial is of the form h(z) = x − z such that h(p) ≡ 0(mod r), the map

β̂k : G1 × G2 → μr : (P, Q) �→
(∏e−1

i=0 fx,π̂pi (P)(πpk−i (Q))
)(pl−1)pe−1

is a pairing.

Remark 2 1. Since π̂pi ◦ πpi = [pi ] on E , it follows that π̂pi ◦ πpi (P) = [pi ]P and since
πpi (P) = P; then we have that π̂pi (P) = [pi ]P .

2. Note that we can used the multi-pairing technique (see Algorithm 2) to calculate our new
pairing β̂k since it is defined as the product of some rational functions with the same
Miller loop.

In Algorithm 2, lR,S is the straight line containing R and S and vR+S is the corresponding
vertical line passing through R + S with R and S two arbitrary points on the elliptic curve.

4.2 Computation of the new optimal pairing ˆ̌k
Set Pi = [pi ]P and Qi = πpk−i (Q) for 0 ≤ i ≤ e − 1. In order to compute β̂k , we assume

that the points Pi and Qi for 1 ≤ i ≤ e−1 are precomputed. The computation of β̂k involves
two mains steps: the product of e Miller functions and the simple final exponentiation. In
this case, the Miller function consists of the computing of fx,Pi (Qi ). Since our new pairing
β̂k is the product of several rational functions with the same Miller loop, we can used the
multi-pairing technique for computing β̂k . So to evaluate the cost of the computation of β̂k ,
we have to compute at first:

C1: Full squarings in the Miller loop;
C2: Other operations in the Miller loop (point operations and line evaluations);
C3: the cost of simple final exponentiation by (pl − 1)pe−1

Then the overall cost of β̂k is the sum of C1, eC2 and C3.
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Algorithm 2: Miller’s algorithm for multi-pairing

Input: n=
L∑

j=0
n j2

j ∈ N, n j ∈ {−1, 0, 1}, {P1, P2, ..., Pe−1}, {Q1, Q2, ..., Qe−1}

Output:
e−1∏

i=0
fn,Pi (Qi ), {[n]P0, [n]P2, ..., [n]Pe−1}

1 f ← 1
2 for i from e − 1 downto 0 do
3 Ti ← Pi

4 for j from L − 1 downto 0 do
5 f ← f 2

6 for i from e − 1 downto 0 do
7 f ← f .lTi ,Ti (Qi )/v[2]Ti (Qi ); Ti ← [2]Ti
8 if n j = 1 then
9 for i from e − 1 downto 0 do

10 f ← f .lTi ,Pi (Qi )/vTi+Pi (Qi ); Ti ← Ti + Pi

11 if n j = −1 then
12 for i from e − 1 downto 0 do
13 f ← f .lTi ,−Pi (Qi )/vTi−Pi (Qi ); Ti ← Ti − Pi

14 return f .

4.3 The new ˆ̌k pairing on pairing-friendly curves with k = 15 and on BLS12 curves

In this section, we apply Theorem 6 on pairing-friendly curves with embedding degrees
k = 15 and k = 12 at 128-bit security level.

4.3.1 Computation on pairing-friendly curves with k = 15

This family of elliptic curves has embedding degree 15 and a ρ-value 1.5 and is parameterized
by :

p(x) = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x + 1)/3
r(x) = x8 − x7 + x5 − x4 + x3 − x + 1
t(x) = x + 1

(8)

The Vercauteren approach described in [29] enabled us to obtain the following optimal
function h(z) = x − z ∈ Z[z]. Notice that this family of elliptic curves has a cubic twist, i.e.,
d = 3. Since k = 15, we have e = k

(k,d)
= 5. We can take l = 3 since 3 is a proper divisor

of k. According to Theorem 6, we obtain this following result:

Proposition 2 The β̂k-pairing over pairing-friendly curves with k = 15 is bilinear and non
degenerate map:

ˆβ15 : G1 × G2 → μr : (P, Q) �→
(

4∏

i=0

fx,Pi (Qi )

)(p3−1)p4

.

Following the recommendation from Table 4 in [25] at the 128-bit security level,Fouotsa
et al. find with a Pari/GP code the value x = 231 + 219 + 25 + 22 so that r(x) is a prime
of 249 bits and p(x) is a prime of 371 bits. In this case, the Miller function consists of
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the computing of fx,Pi (Qi ). So the Miller loop executes 31 point doubling with associated
line evaluations, 3 point additions with line evaluations, 30 squarings in Fp15 and 33 sparse
multiplications in Fp15 . Following the above explanation, we have that for evaluating the cost

of the computation of ˆβ15, we have to compute at first:

C1: Full squarings in the Miller loop;
C2: Other operations in the Miller loop (point operations and line evaluations);
C3: the cost of simply final exponentiation by (p3 − 1)p4

Then to find the overall cost of ˆβ15, we have to sum C1, 5C2, and C3. Using the
cost of arithmetic operations in Table 4 in [25]. In this case, for k = 15, we com-
pute the Miller function in projective coordinates, since the projective formulas allow a
fast pairing computation according Aranha et al. [2]. Following the cost of Doubling and
addition step in the Table 3 in projective coordinates, we obtain a Miller loop cost of
31(9S1 + 37M1) + 3(5S1 + 53M1) + 30S15 + 33M15 = 2791M1 + 1644S1 = 4435M1

(when we assume that 1S1 = 1M1) and the full squaring in Miller loop costs C1 is
30S15 = 30 × 45S1 = 1350S1 = 1350M1; thus C2 = 3085M1. Finally, the final expo-
nentiation requires 1 p3-Frobenius map, 1 p4-Frobenius map, 1 inversion in Fp15 and 1
multiplication in Fp15 . Thus, C3 = 2× 14M1 + 1I1 + 149M1 + 45M1 = 1I1 + 222M1. The

overall cost of θ̂ isC1+5C2+C3 = 1350M1+5×3085M1+222M1+ I1 = 16997M1+ I1.

4.3.2 Computation on pairing-friendly curves with k = 12 (BLS12)

In 2002, Barreto, Lynn and Scott proposed in [6] amethod to generate pairing-friendly elliptic
curves over a prime field Fp with embedding degree k = 12. BLS12 are defined over Fp by
following polynomials:

p(x) = (x − 1)2(x4 − x2 + 1)/3 + x
r(x) = x4 − x2 + 1
t(x) = x + 1

(9)

The Vercauteren approach described in [29] enabled us to obtain the following optimal
function h(z) = x − z ∈ Z[z]. Notice that this family of elliptic curves has a sextic twist,
i.e., d = 6. Since k = 12, we have e = k

(k,d)
= 2. We can take l = 6 since 6 is a proper

divisor of k. According to Theorem 6, we obtain this following result:

Proposition 3 The β̂k-pairing over pairing-friendly curves with k = 12 is bilinear and non
degenerate map:

ˆβ12 : G1 × G2 → μr : (P, Q) �→
(

1∏

i=0

fx,Pi (Qi )

)p(p6−1)

.

According to recent works of Barbulescu et al. in [4], they found the new parameters and
recommend to use x = −277 + 250 + 233. This gives p(x) a prime of 461 bits and a prime
factor of r(x) of 273 bits. In this case, the Miller function consists of the computation of
fx,Pi (Qi ). So the Miller loop executes 77 point doublings with associated line evaluations,
2 point additions with line evaluations, 76 squarings in Fp12 and 78 sparse multiplications in
Fp12 . Following the above explanation,we have that for evaluating the cost of the computation

of ˆβ12, we have to compute:
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Table 5 Efficiency comparison of the computation of optimal ate and β̂k pairings for BLS12 and pairing-
friendly curves with k=15

Curves Pairings Overall cost of pairing

BLS12-curves optimal ate 16003M1 + I1 [4]

β̂k-pairing 12082M1 + I1 (this work)

Pairing-friendly with k=15 optimal ate 25919M1 + I1 [25]

β̂k-pairing 16997M1 +I1 (this work)

C1: Full squarings in the Miller loop;
C2: Other operations in the Miller loop (point operations and line evaluations);
C3: the cost of simply final exponentiation by p(p6 − 1).

Then to find the overall cost of ˆβ12, we have to sum C1, 2C2 and C3. Using the cost of
arithmetic operations inTable 4 in [2]. In this case, for k = 12,we compute theMiller function
in projective coordinates, since the projective formulas allow a fast pairing computation
according Aranha et al. [2]. Following the cost of doubling and addition step in the Table 4 in
projective coordinates, we obtain a Miller loop cost of 77(7S1 + 12M1)+ 3(2S1 + 27M1)+
76(36M1) + 78(39M1) = 6783M1 + 545S1 = 7328M1 and the full squaring in Miller
loop costs C1 is 76S12 = 76 × 36M1 = 2736M1; thus C2 = 4592M1. Finally, the final
exponentiation requires 1 p-Frobenius map, 1 multiplication in Fp12 and 1 inversion in Fp12

since raising to the power p6 is equivalent to one conjugation [7]. Thus C3 = 11M1 + 1I1 +
97M1 + 54M1 = 1I1 + 162M1. The overall cost of θ̂ = C1 + 2C2 + C3 = 2736M1 + 2 ×
4592M1 + 162M1 + I1 = 12082M1 + I1.

4.4 General comparison

In order to compare the new pairing β̂k and optimal ate pairing, we summarize the overall cost
of the computation of these pairing in the Table 5. Table 5 gives a comparison of the cost of
β̂k pairings for BLS12 and pairing-friendly curves with k = 15 obtained in this work against
the cost of the optimal ate pairing on pairing-friendly curves with k = 15 proposed in [25]
and optimal ate on BLS12 proposed in [4]. From Table 5, we remark that our computation of
our new optimal pairing saves 3921M1 for BLS12 and 8922M1 for pairing-friendly curves
with k = 15.

5 Conclusion

In this paper, we first extended the β-Weil pairing to ordinary elliptic curves with any
embedding degree and we propose a new optimal pairing which is suitable for multi-pairing
technique for efficient implementation. We then show that the proposed new optimal pairing
is more efficient than optimal ate pairing and the extended β-Weil pairing is more efficient
than optimal ate pairing as well.
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