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Abstract
Many problems in science and engineering involve nonlinear PDEs which are posed on the
real line (R). Particular examples include a number of important nonlinear wave equations.
A rigorous numerical analysis of such problems is especially challenging due to the spatial
discretization of the nonlinear operators involved in the models. Classically, such problems
have been treated using Fourier pseudo-spectral methods by truncating the spatial domain
and imposing periodic boundary conditions. Unfortunately, in many cases this approach may
not be appropriate to adequately capture the dynamics of the problem on the spatial domain.
In this paper, we consider a Chebyshev-type pseudo-spectral method based on the alge-
braically mapped Chebyshev basis defined in R. The approximation properties of this basis
are naturally described on the scale of weighted Bessel potential spaces and lead to optimal
error estimates for the method. Based on these estimates an efficient spectral scheme for
solving the nonlinear Korteweg-de Vries equation globally in R is proposed. The numerical
simulations presented in the paper confirm our theoretical results.

Keywords Algebraically mapped Chebyshev basis · Spectral methods · Stability and error
analysis

Mathematics Subject Classification 65M70 · 65M12 · 65M15

1 Introduction

Spectral/pseudo-spectral methods belong to a class of techniques that are widely used in
applied mathematics and scientific computing to numerically solve PDEs, ODEs and eigen-
value problems that involve differential equations (for the list of applications see e.g. the
bibliography in [5,6]). In any such method, the numerical solution is expressed as a linear
combination of a specific set of “basis functions” which are defined globally in the spatial
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domain of the equation. The coefficients in the sum may be chosen in a number of ways. In
particular, one can use either collocation, Galerkin or Tau approach, see [5,6] and references
therein. If the computational basis is chosen appropriately, spectral methods are computa-
tionally more efficient than finite difference/finite-element schemes.

For a large class of PDEs posed in the real line, it was found that the algebraically mapped
Chebyshev basis has a great potential both in terms of the numerical accuracy and the com-
putational efficiency, see e.g. [5,6] and discussion therein. Applications of the algebraically
mapped Chebyshev spectral approximations are numerous, ranging from the classical lin-
ear equations of mathematical physics to much more computationally challenging nonlinear
models that involve nonlocal operators, see e.g. [7] where the fractional KdV-Burgers equa-
tion is treated.

Recently, it was shown in [10] that spectral schemes based on algebraically mapped
Chebyshev functions yield very efficient numerical algorithms when applied to the nonlinear
Schrödinger equation. In this paper, we demonstrate that the approximation results of [10]
can be used to construct very accurate and fast computational schemes in the context of many
other nonlinear wave equations posed in the real line.

As a particular instance, we develop a Chebyshev-type pseudo-spectral scheme for the
classical Korteweg-de Vries equation

ut + νux + δuux + σuxxx = f , u(0) = u0, ν, δ, σ ∈ R, δ �= 0, σ > 0. (1)

When the source is trivial ( f = 0), the problem (1) is Hamiltonian (i.e. ut = J∇H(u)),
with

H(u) = 1
2

∫
R

(
νu2 + δ

3u
3 − σu2x

)
dx, (2)

the first order skew-symmetric automorphism of the Hilbert scale Hα(R)α∈R readsJ = −∂x
and the associated duality pairing is given by the standard L2(R) inner product 〈u, v〉. In
this case the Eq. (1) is completely integrable, the exact solutions are obtained via the inverse
scattering transform, see [1] and references therein. In the general situation ( f �= 0), the initial
value problem (1) is well posed, provided the input data (u0, f ) is sufficiently regular. In
particular, u ∈ C([0, T ], Hα(R)) and ∂kt u ∈ C([0, T ], Hα−3k(R)), 0 ≤ k ≤ �α

3 	, provided
u0 ∈ Hα(R) and f ∈ C([0, T ], Hα(R)) and ∂kt f ∈ C([0, T ], Hα−3k(R)), 0 ≤ k ≤ �α

3 	,
see e.g. [3,4].

The paper is organized as follows: Sect. 2 is introductory and contains auxiliary results used
throughout the paper. The Chebyshev-type pseudo-spectral scheme is presented in Sect. 3.
Here, we provide a comprehensive stability and convergence analyses. In particular, we
derive explicit error estimates for the pseudo-spectral approximation in finite time intervals.
Efficient practical implementation as well as numerical simulations are presented in Sect. 4.
Section 5, concludes the paper.

2 Preliminaries

A comprehensive study of the algebraically mapped Chebyshev basis is found in [10]. For
the readers convenience, below we fix the notation and list the key results that are pertinent
for the numerical analysis presented in Sect. 3.
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Chebyshev-type pseudo-spectral method 197

2.1 The algebraically mapped Chebyshev basis

The algebraically mapped Chebyshev basis reads

T Bn(x) =
√

�√
�2+x2

Tn
(

x√
�2+x2

)
, n > 0, � > 0, (3)

where Tn(x) = cos(n arccos x), x ∈ [−1, 1], n ≥ 0, are the Chebyshev polynomials of the
first kind. Parameter � > 0 is used in practical simulations to tune up the convergence speed.

The system {T Bn(x)}n≥0 provides a complete orthogonal basis in L2(R). Furthermore,

〈T Bn, T Bm〉 =
∫
R

T Bn(x)T Bm(x)dx = δnmκn, κn =
{

π, if n = 0,
π
2 , if n > 0,

(4)

and any function f ∈ L2(R) can be represented by its convergent (in the sense of L2)
Chebyshev-Fourier series

f (x) =
∑
n≥0

fn
κn

T Bn(x), fn = 〈T Bn, f 〉. (5)

In connection with the system {T Bn(x)}n≥0, we set PN = span{T Bn}Nn=0 and introduce two
operators: the orthogonal projector PN : L2(R) → PN and the interpolant IN : L2(R) →
PN . The latter is uniquely determined by

IN [ f ](xk,N ) = f (xk,N ), xk,N = � cot (2k+1)π
2(N+1) , 0 ≤ k ≤ N , (6)

and acts as the identity in the finite dimensional space PN , see [10].

2.2 Scale of weighted Bessel potential spaces inR

The approximation properties of {T Bn(x)}n≥0 are naturally described on the scale of
weighted Bessel potential spaces Hα

β (R), α, β ∈ R. These are Hilbert spaces whose inner

products and induced norm are defined in terms of power weights wα(·) = (� + ·2) α
2 and

Fourier multipliers Jα,�[·] = F−1w−α(ξ)F[·]1 associated with the symbol w−α(·):

〈 f , g〉Hα
β

=
∫
R

w2
β J

−α,�[ f ]J−α,�[g]dx, ‖ f ‖2Hα
β

= 〈 f , f 〉Hα
β
, α, β ∈ R,

see [10] for an equivalent definition. For trivial weights (β = 0), the spaces coincide with the
standard Hilbert scale of Sobolev spaces [2], in this case we omit the subscript β and write
Hα(R). Finally, we mention that

‖ f g‖Hα
β

≤ cα,β‖ f ‖Hα
β
‖g‖Hα

β
, (7)

provided that α > 1
2 and β ≥ 0, see [10] for the details.

2.3 Approximation and interpolation errors

The following estimates, reported in [10], are crucial in the analysis presented in Section 3.

1 Here, F is the Fourier transform and ξ is the variable in the frequency space.
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Theorem 1 If 0 < α, 1
2 < γ and max{α, γ } < β. Then

‖(I − PN )[ f ]‖Hα ≤ c(�N )−(β−α)‖ f ‖
Hβ
2β

, (8a)

‖(I − IN )[ f ]‖Hα ≤ c′(�N )
1
2−(β−α−γ )‖ f ‖

Hβ
2β

, (8b)

where c, c′ > 0 do not depend on N or f .

We remark that in contrast with the orthogonal projector PN , the interpolation operator IN
is bounded only as map from Hγ (R) to L2(R), whith γ > 1

2 . This yields a slight reduction
of the convergence rate in the estimate (8b) as compared to (8a).

3 Application to the Korteweg-de Vries equation

3.1 The numerical scheme

To semi-discretize (1) in space, we employ the Galerkin scheme. That is for a fixed N > 0,
we replace (1) with the following problem: find û ∈ C([0, T ],PN ) ∩ C (1)((0, T ),PN ) so
that { 〈

ût + νûx + δûûx + σ ûxxx , φ
〉 = 〈 f̂ , φ〉, for all φ ∈ PN ,

û(0) = û0 := IN [u0], f̂ := IN [ f ]. (9)

Problem (9) represents a coupled system of N + 1 ordinary differential equations (ODEs)
for the unknown discrete spectral coefficients ûn(t). In the sequel of this section, we show
that the numerical solution û converges to the exact one in finite time intervals.

3.2 Stability analysis

We show that the numerical scheme (9) depends continuously on the input data (û0, f ).

Lemma 1 (Stability) Let û1, û2 satisfy (9) equipped with the data (û01, f̂1) and (û02, f̂2),
respectively. Then

‖û1 − û2‖ ≤ c
(
‖û01 − û02‖ + ‖ f̂1 − f̂2‖L2((0,T )×R)

)
, t ∈ [0, T ], (10)

where c > 0 depends on T and ‖û2‖C([0,T ],H2) only.

Proof Straightforward calculations imply that the error ê = û1 − û2 satisfies{ 〈êt + νêx + δêêx + σ êxxx , φ〉 = 〈ĝ, φ〉, for all φ ∈ PN ,

ê0 = û01 − û02,
(11)

where

ĝ = f̂1 − f̂2 + E[ê, û2], E[ê, û2] = −δ(êû2)x .

We let φ = 2ê in the equation above to obtain

d
dt ‖ê‖2 = 2〈 f̂1 − f̂2, e〉 + 2〈E[ê, û2], e〉.

To estimate the last term, we observe that

−2〈E[ê, û2], e〉 = 2δ〈ê, (êû2)x 〉 = δ〈ê2, û2x 〉.
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Chebyshev-type pseudo-spectral method 199

Elementary interpolation inequality ‖u‖∞ ≤ √
2‖u‖1/2 · ‖ux‖1/2 implies

|2〈E[ê, û2], ê〉| ≤ √
2δ‖ê‖2‖û2x‖1/2 · ‖û2xx‖1/2 ≤ √

2δ‖û2‖H2‖ê‖2.
Consequently

d
dt ‖e‖2 ≤ (

1 + √
2δ‖û2‖H2

)‖e‖2 + ‖ f̂1 − f̂2]‖2.
Hence, by Gronwall’s inequality

‖ê‖2 ≤ et
(
1+√

2δ‖û2‖C([0,T ],H2)

) (
‖ê0‖2 +

∫ t

0
‖ f̂1 − f̂2‖2dτ

)
.

The last estimate shows that (10) holds with c = eT
(
1+√

2δ‖û2‖C([0,T ],H2)

)
that is completely

controlled by T and C([0, T ], H2(R)) norm of û2. ��
Lemma 1 implies in particular that numerical solutions û remain L2(R)-bounded in

bounded time intervals. Indeed, letting (û01, f1) = (û, f̂ ) and (û02, f̂2) = (0, 0) in (10), we
infer

‖û‖ ≤ c
(‖û0‖ + ‖IN [ f ]‖L2((0,T )×R)

)
, (12)

with c > 0 that depends on T only. Furthermore, if in addition f = 0, then 〈E[ê, û2], ê〉 = 0
and the L2-norm of the numerical solution is conserved, i.e. d

dt ‖u‖2 = 0.

3.3 Consistency and convergence

For the exact solution u of (1), we let ū = PN [u]. Upon substitution into (9), we infer
{ 〈

ūt + νūx + δūūx + σ ūxxx , φ
〉 = 〈 f̂ + d̄, φ〉, for all φ ∈ PN ,

ū(0) = ū0 = PN [u0], d̄ = (PN − IN )[ f ] + δPN [ūūx − uux ]. (13)

The following result shows that the defect d̄ is small provided u is sufficiently regular.

Lemma 2 (Consistency) Assume γ > 1
2 and β > 1. Then

‖d̄‖L2((0,T )×R) ≤ c(�N )
1
2+γ−β

(
‖ f ‖

L2((0,T ),Hβ
2β (R))

+ ‖u‖2
L4((0,T ),Hβ

2β (R))

)
, (14)

where c > 0 does not depend on N, u or f .

Proof We write d̄ = d̄1 + δd̄2, where d̄1 = (PN − IN )[ f ] and d̄2 = PN [ūūx − uux ]. For
d̄1 we employ Theorem 1 to obtain

‖d̄1‖ = ‖PN (I − IN )[ f ]‖ ≤ ‖(I − IN )[ f ]‖
≤ c(�N )

1
2−(β−γ )‖ f ‖

Hβ
2β

,

with some uniform constant c > 0. To bound d̄2, we recall that ‖u‖∞ ≤ √
2‖u‖H1 and then

apply (8a). This gives

‖d̄2‖ = ‖ux (I − PN )[u] + u(I − PN )[u]x‖
≤ ‖ux‖‖(I − PN )[u]‖∞ + ‖u‖∞‖(I − PN )[u]‖H1

≤ c′′‖u‖H1‖(I − PN )[u]‖H1 ≤ c′′′(�N )1−β‖u‖2
Hβ
2β

,
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200 S. Shindin , N. Parumasur

with c′′, c′′′ > 0 that do not depend on N or u. Adding these estimates together and integrating
over interval [0, T ], we arrive at (14). ��

Lemmas 1 and 2, combined together, yield convergence.

Theorem 2 Assume β ≥ 2 and γ > 1
2 . Then

‖u − û‖L2((0,T )×R) ≤ c(�N )
1
2+γ−β

(
‖u0‖Hβ

2β

+‖ f ‖
L2((0,T ),Hβ

2β (R))
+ ‖u‖2

L4((0,T ),Hβ
2β (R))

)
, (15)

where c > 0 depends on T and ‖u‖C([0,T ],H2) only.

Proof From Theorem 1 it follows immediately that

‖u − ū‖L2((0,T )×R) = ‖(I − PN )[u]‖L2((0,T )×R) ≤ c(�N )−β‖u‖
L2((0,T ),Hβ

2β (R))
,

where c > 0 does not depend on N or u. Both the numerical solution û and the spectral
projection ū satisfy (9) with the input data (û0, f̂ ) and (ū0, f̂ + d̄), respectively. By virtue
of Lemma 1,

‖û − ū‖L2((0,T )×R) ≤ c′(‖û0 − ū0‖ + ‖d̄‖L2((0,T )×R)

)
,

where c′ > 0 depends on T and ‖PN [u]‖C([0,T ],H2) only.While from Theorem 1, we deduce

‖û0 − ū0‖ = ‖PN (I − IN )[u0]‖ ≤ c′′(�N )
1
2+γ−β‖u0‖Hβ

2β
,

with c′′ > 0 independent on N andu0.Hence,Lemma2, combinedwith the triangle inequality
‖u − û‖ ≤ ‖u − ū‖ + ‖û − ū‖, yields (14). ��

Theorem 2 shows that scheme (9) converges spectrally, provided the exact solution is
smooth and decay sufficiently fast at infinity.

4 Numerical simulations

4.1 Practical implementation

The numerical scheme (9) leads to the semi-linear system of ODEs of the form

Ẏ = −(νA + σ B)Y − δCF(Y ) = G(Y ), (16)

where A, B,C ∈ R
(n+1)×(n+1), are realizations of the discrete differentiation operators

AN = PN ∂xPN , BN = PN ∂xxxPN , CN = 1
2PN ∂x

√
�√

�2+x2
,

F(Y ) is the nonlinearity and the neutral symbol Y represents either the vector of pseudo-
spectral coefficients

Û = (ûn, 0 ≤ n ≤ N )T ,

or the vector

U = (û(xk,N ), 0 ≤ k ≤ N ),
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Chebyshev-type pseudo-spectral method 201

containing values of û at Gauss–Chebyshev nodes. The particular structure of A, B,C and
G depends on whether (9) is integrated in Fourier or physical space. For instance, matrix
A is dense in physical, while Ai j = 0 for i + j even in Fourier space. Moreover, in the
latter case it can be written as a sum of two Toeplitz and two Hankel matrices. Similarly, the
nonlinearity is given explicitly by

F(Y ) = 1√
�

([
�2 + x2k,2N

] 1
2 û(xk,2N )2, 0 ≤ k ≤ 2N

)
,

in physical space (note 2N instead of N ), while its representation in Fourier space involves
two discrete convolutions.

The exact solutions to ODE (16) are not known. In practice, it is integrated using an
appropriate time-stepping algorithm. There are two important practical issues that arise in
this connection. First of all, straightforward computation of the vector field G(Y ) would
require O(N 2) operations and, hence, is not numerically feasible for large values of N .
Secondly, the semi-discretization (9) is stiff and, despite the fact that it does not preserve
symplecticity of the continuous flow, (9) remains ρ-reversible (i.e. ρ ◦ G = −G ◦ ρ) under
the reflection map ρ[u](x) = u(−x). A reasonable time-stepping algorithm must be able to
cope with stiffness and at the same time preserve the ρ-reversible of the exact flow. Both
issues are briefly addressed below.

Computing the vector field Direct calculations show that

〈T Bm, ∂x T Bn〉 = n
2�

[ 1
1−(n−m−1)2

− 1
1−(n−m+1)2

]

+ n
2�

[
1

1−(n+m−1)2
+ 1

1−(n+m+1)2

]

− 1
2�

[
1

1−(n−m−1)2
+ 1

1−(n−m+1)2

]

− 1
2�

[
1

1−(n+m−1)2
+ 1

1−(n+m+1)2

]
, 0 ≤ n,m ≤ N ,

when n+m is odd and is zero otherwise. It follows that in terms of Chebyshev-Fouriermodes,
Y = Û , the actionAN [û] is realized as the matrix-vector product with A ∈ R

(n+1)×(n+1) that
is made up of two Toeplitz and two Hankel matrices. For such matrices, multiplication can
be written in the form of discrete convolutions, as a consequence, the product AY requires
only O(N log2 N ) floating point operations. The same observation applies to the product
BY . Indeed, BN [û] = (PNAN+4∂xx )[û], while (see [10])

∂xx T B0(x) = 1
(4�)2

[−6T B4(x) + 8T B2(x) − 2T B0(x)
]
,

∂xx T B2(x) = 1
(4�)2

[−15T B6(x) + 36T B4(x) − 25T B2(x) + 4T B0(x)
]
,

∂xx T Bn(x) = 1
(4�)2

[−(n − 1)(n − 3)T Bn−4(x) + 4(n − 1)2T Bn−2(x)

− (6n2 + 2)T Bn(x) + 4(n + 1)2T Bn+2(x)

− (n + 1)(n + 3)T Bn+4(x)
]
, n = 1, 3, 4, . . . .

As a consequence, computing ∂xx û requires O(N ) operations and the overall complexity of
the product BY is again O(N log2 N ).

The nonlinearity F(Y ) can be evaluated either in physical or in Fourier space. The first
approach involves transformation of the physical data U into its Chebyshev-Fourier coun-
terpart Û . As shown in [10], computational complexity of both operations is O(N log2 N ).
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On another hand, one can employ the elementary identity

2√
�

[
�2 + x2k,2N

] 1
2 T Bm(x)T Bn(x) = T B|m−n|(x) + T Bm+n(x)

to write û2 as a sum of two discrete convolutions involving components of Û . This yields an
alternative algorithm with the same complexity of O(N log2 N ). Finally, we note that

〈
∂x T B0,

√
�√

�2+x2
T Bn

〉
= π

8�
3
2

[−(n − 2)δ0,n−3 + 2nδ0,n−1], n ≥ 0,
〈
∂x T Bm,

√
�√

�2+x2
T B0

〉
= π

4�
3
2

[
δ1,m−2 − δm,1], m ≥ 1,

〈
∂x T Bm,

√
�√

�2+x2
T Bn

〉
= π

16�
3
2

[
δm,n+3(m − 1) − δm,n+1(3m − 1)

+ δm,n−1(3m + 1) − δm,n+3(m + 1)
]
, m ≥ 1, n ≥ 1,

i.e. C is four diagonal in Fourier space, computing the matrix-vector product with matrix C
requires O(N ) operations, and the total cost of evaluating G(Y ) is O(N log2 N ).

Time stepping As mentioned earlier, the semi-discrete problem (16) is stiff and hence
cannot be integrated using an explicit ODE solver. Furthermore, its flow is ρ-reversible. To
copewith the stiffness and to preserve the structure of the flow,we are forced to use symmetric
time-stepping schemes, see e.g. discussion in [8]. In our simulations, we employ the implicit
midpoint rule

Y (τ ) = ΦτY (0) = (
I + τ

2 D
)−1

[
(I − τ

2 D)Y (0) − τδCF
( 1
2 (Y (0) + Y (τ )

)]
, (17)

where D = νA + σ B. The time-discrete map Φτ is unconditionally stable, symmetric, ρ-
reversible and has classical order of convergence p = 2. To lift its order, we observe that
semi-discretization (9) preserves hyperbolicity of (1),2 and hence the symmetric composition
technique applies, see e.g. [8] and references therein. In our simulations, we employ

Φ̂τ = Φγ1τ ◦ · · · ◦ Φγmτ , (18)

with the composition coefficients γi , 1 ≤ i ≤ 35, given in [9], this yields time-stepping
scheme of classical order p = 10.

4.2 Numerical simulations

Below, we present several numerical simulations demonstrating the computational efficiency
of the algorithm (9). To begin, we integrate (1) numerically with f = 0. In this settings, (1)
is completely integrable, the closed form solutions are constructed via the inverse scattering
transform, see e.g. [1]. For instance, the no reflection scenario with ν = 0, δ = −6, σ = 1,
yields the so called J -solitons

u(x, t) = −2∂xx ln det(I + A(x, t)),

A(x, t) =
(
bi e

λ3i t e
−λi x−λ j x

λi+λ j
, 1 ≤ i, j ≤ J

)
,

λi = 1
2
√

vi bi = 2λi e
2φiλi , 1 ≤ i ≤ J , (19)

where vi and φi control the velocity and phase of the traveling waves.

2 In the sense that all the discrete differential operators are skew-symmetric

123



Chebyshev-type pseudo-spectral method 203

−5
0

5
0

2

0

0.5

1

x
t

−û
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Fig. 1 The numerical solution of problem (1) (top to bottom): −û, |u − û|, with N = 27. The right diagram:
‖u − û‖L2(R) (blue), ‖u − û‖L∞(R) (teal), maxt

∣∣‖û(t)‖L2(R) − ‖û0‖L2(R)

∣∣ (red) and maxt
∣∣Ĥ(û(t)) −

Ĥ(û)(0)
∣∣ (orange)

Example 1 In our first numerical example, we integrate (1) in the time interval [0, 4], with
ν = 0, δ = −6, σ = 1 and initial data u0, obtained from (19) with J = 1, v1 = 2 and
φ1 = −2. The exact solution u is a single traveling wave moving in the positive x-direction.
Directly from (19), it follows that u is analytic in a strip containing the x axis and decays
exponentially fast as x → ±∞. The situation is ideal and, in view of Theorem 2, we expect
spectral convergence.

The results of simulations, with 24 ≤ N ≤ 27 and � = 4, (see right diagram in Fig. 1)
confirm that this is indeed the case. Both, L2(R) and L∞(R) (blue and teal lines, respectively)
errors decrease geometrically as N increases. The same observation applies to the Hamil-
tonian H(u) (orange line), it is not preserved but the variation maxt |H(û(t)) − H(û(0))|
decreases geometrically as N increases.

According to the remark that follows immediately after Lemma 1, the quantity ‖û(t)‖L2(R)

is conserved along exact trajectories of (9). This is confirmed by our simulations, the L2 norm
of the numerical solution remains almost independent on the discretization parameter N (the
magnitude of fluctuations remains with in the range [10−13, 10−12]).
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Fig. 2 The numerical solution of problem (1) (top to bottom): −û, |u − û|, with N = 27. The right diagram:
‖u − û‖L2(R) (blue), ‖u − û‖L∞(R) (teal), maxt

∣∣‖û(t)‖L2(R) − ‖û0‖L2(R)

∣∣ (red) and maxt
∣∣Ĥ(û(t)) −

Ĥ(û)(0)
∣∣ (orange)

Example 2 Here, we integrate (1) in the time interval [0, 4], with ν = 0, δ = −6, σ = 1 and
initial data u0, obtained from (19) with J = 2, v1 = 2, v2 = 1 and φ1 = −2, φ2 = 0. The
scenario models elastic collision of two traveling waves ( the collision happens at t = 2). As
in Example 1, the exact solution is analytic in a strip containing the real axis and decays to
zero exponentially at ±∞.

The results of simulations, with 24 ≤ N ≤ 28 and � = 4 are presented in Fig. 2. As in
Example 1, we see that both, L2(R) and L∞(R) (blue and teal lines, respectively) errors
as well as variation in the Hamiltonian maxt |H(û(t)) − H(û(0))| (orange line) decrease
geometrically. As before, the scheme preserves the L2 norm of the solution.

Example 3 As another example, we take ν = 0, δ = −6, σ = 1, J = 3, v1 = 3
2 , v2 = 1,

v3 = 1
2 and φ1 = −3, φ2 = −2 and φ3 = −1. The resulting 3-soliton solution represents

three traveling waves colliding at t = 2.
For 24 ≤ N ≤ 28 and � = 4 the output data are displayed in Fig. 3. Both L2(R) and

L∞(R) (blue and teal lines, respectively) errors and the deviation maxt |H(û(t))−H(û(0))|
(orange line) demonstrate the same qualitative behavior as in all our previous simulations.
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Fig. 3 The numerical solution of problem (1) (top to bottom): −û, |u − û|, with N = 27. The right diagram:
‖u − û‖L2(R) (blue), ‖u − û‖L∞(R) (teal), maxt

∣∣‖û(t)‖L2(R) − ‖û0‖L2(R)

∣∣ (red) and maxt
∣∣Ĥ(û(t)) −

Ĥ(û)(0)
∣∣ (orange)

The convergence is geometric (the error curves are concave). However, the absolute accuracy
drops. The reason is—as the time increases, the waves enter a region with relatively few grid
points, where solutions cannot be resolved accurately. The situation can be improved by
taking larger values for N .

Example 4 In our last example we demonstrate accuracy of (9) in the presence of nontrivial
source. We set ν = δ = σ = 1 and choose the f so that the exact solution is given by
u = e−x2 . The history of simulations, recorded in Fig. 4, confirms excellent numerical
properties of our spectral scheme, provided that the source term is regular and decreases
sufficiently fast at infinity.

5 Conclusions

The main focus of this paper was to demonstrate efficiency of the Chebyshev-type spectral
schemes in context of nonlinear wave equations posed in unbounded spatial domains. In
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Fig. 4 The numerical solution of problem (1) (top to bottom): −û, |u − û|, with N = 27. The right diagram:
‖u − û‖L2(R) (blue), ‖u − û‖L∞(R) (teal)

this regard, we presented a numerical scheme, based on {T Bn(x)}n≥0, which was applied
to the nonlinear Korteweg-de Vries equation. Rigorous theoretical analysis, presented in
Sections 3-4, indicates that the resulting numerical scheme (9) is stable, admits efficient
practical implementation and converges rapidly, provided exact solutions are smooth. The
theoretical conclusions are supported by the numerical simulations, presented in Section 4.
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