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Abstract
In this paper, we introduce Halpern-type proximal point algorithm for approximating a com-
mon solution of monotone inclusion problem and fixed point problem. We obtain a strong
convergence of the proposed algorithm to a common solution of finite family of monotone
inclusion problem and fixed point problem for nonexpansive mappings in complete CAT(0)
spaces. Nontrivial application and numerical example were given. Our results complement
and extend some recent results in literature.

Keywords Monotone inclusion problem · Fixed point · Nonexpansive mapping · Monotone
operators · Resolvent operators

Mathematics Subject Classification 47H09 · 47H10 · 49J20 · 49J40

1 Introduction

Let (X , d) be a metric space and x, y ∈ X . A geodesic path joining x to y is an isometry
c : [0, d(x, y)] → X such that c(0) = x , c(d(x, y)) = y. The image of a geodesic path
joining x to y is called a geodesic segment between x and y. When it is unique, this geodesic
segment is denoted by [x, y]. The metric space (X , d) is said to be a geodesic space if
every two points of X are joined by a geodesic and (X , d) is said to be uniquely geodesic
space if every two points of X are joined by only one geodesic segment. A geodesic triangle
�(x1, x2, x3) in a geodesic space (X , d) consist of three points x1, x2, x3 in X (known as
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the vertices of �) and a geodesic segment between each pair of vertices (known as the edges
of �). A comparison triangle for the geodesic triangle �(x1, x2, x3) in (X , d) is a triangle
�̄(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Euclidean plane R2 such that d(xi , x j ) = dR2(x̄i , x̄ j )
for i, j ∈ {1, 2, 3}.
A geodesic space is called a CAT(0) space if all geodesic triangles satisfies the following
comparison axiom: Let � be a geodesic triangle in X and let �̄ be its comparison triangle
in R

2. Then, � is said to satisfy CAT(0) inequality, if for all x, y ∈ � and all comparison
points x̄, ȳ ∈ �̄,

d(x, y) ≤ dR2(x̄, ȳ). (1.1)

If x, y, z are points in CAT(0) space and y0 is the midpoint of the segment [y, z], then the
CAT(0) inequality implies

d2(x, y0) ≤ 1

2
d2(x, y) + 1

2
d2(x, z) − 1

4
d(y, z). (1.2)

Inequality (1.2) is known as the (CN) inequality of Bruhat and Titis [5]. In fact, a geodesic
space is a CAT(0) space if and only if it satisfies the CN inequality (see [4]).
A complete CAT(0) space is called a Hamadard space. It is generally known that a CAT(0)
space is a uniquely geodesic space (see for example [9]). Examples ofCAT(0) spaces includes:
Euclidean spacesRn , Hilbert spaces, simply connected Riemannianmanifolds of nonpositive
sectional curvature, R-trees, Hilbert ball [13], Hyperbolic spaces [28]. See [4,6,14,16] for
more equivalent definitions and properties of CAT(0) spaces.
Let (1 − t)x ⊕ t y denote the unique point z in the geodesic segment joining x to y for
each x, y in a CAT(0) space such that d(z, x) = td(x, y) and d(z, y) = (1 − t)d(x, y). Set
[x, y] := {(1− t)x ⊕ t y : t ∈ [0, 1]}, then a subset C of X is said to be convex if [x, y] ⊆ C
for all x, y ∈ C .
Let {xn} be a bounded sequence in a complete CAT(0) space (X , d) and let r(x, {xn})
= limn→∞ supd(x, xn). The asymptotic radius of {xn} is given by r({xn}) := inf{r(x, {xn}) :
x ∈ X} and the asymptotic center of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is generally known that in a complete CAT(0) space, A({xn}) consists of exactly one point.
A sequence {xn} in a complete CAT(0) space is said to be �-convergent to a point x ∈ X if
A({xnk }) = {x} for every subsequence {xnk } of {xn}. In this case, wewrite�-limn→∞ xn = x
(see [11]).
Lim [23] introduced the concept of �-convergence in general metric spaces. Kirk and
Panyanak [21] introduced this concept to CAT(0) space and it coincides with weak con-
vergence in the setting of Banach space. Several other authors have also studied the concept
of �-convergence in CAT(0) spaces (see, for example [9,12,30] and the references therein).
Breg and Nikolaev [3] introduced the concept of quasilineartization for CAT(0) spaces. They

denoted a pair (a, b) ∈ X × X by
−→
ab and called it a vector. Quasilinearization is a map

〈., .〉 : (X × X) × (X × X) → R defined by

〈−→ab,−→cd〉 = 1

2

(
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

)
, (a, b, c, d ∈ X).

It can easily be verified that 〈−→ab,−→ab〉 = d2(a, b), 〈−→ba,
−→
cd〉 = −〈−→ab,−→cd〉, 〈−→ab,−→cd〉 =

〈−→ae,−→cd〉+ 〈−→eb,
−→
cd〉 and 〈−→ab,−→cd〉 = 〈−→cd ,

−→
ab〉 for all a, b, c, d, e ∈ X . The space X is said to

satisfy the Cauchy–Schwartz inequality if 〈−→ab,−→cd〉 ≤ d(a, b)d(c, d) ∀a, b, c, d ∈ X . It is
known that a geodesically connected metric space is a CAT(0) space if and only if it satisfies
the Cauchy–Schwartz inequality (see [3, Corollary 3]).
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Based on thework of Breg andNikolaev [3], Kakavandi andAmini [1] introduced the concept
of dual space in a complete CAT(0) space X as follows:
Consider the map � : R × X × X → C(X ,R) define by

�(t, a, b)(x) = t〈−→ab,−→ax〉, (t ∈ R, a, b, x ∈ X) ,

where C(X ,R) is the space of all continuous real-valued functions on X . Then the Cauchy–
Schwartz inequality implies that �(t, a, b) is a Lipschitz function with Lipschitz semi-norm
L(�(t, a, b)) = |t |d(a, b) (t ∈ R, a, b ∈ X), where L(ϕ) = sup

{ϕ(x)−ϕ(y)
d(x,y) : x, y ∈

X , x �= y} is the Lipschitz semi-norm for any function ϕ : X → R. A pseudometric D on
R × X × X is defined by

D((t, a, b), (s, c, d)) = L(�(t, a, b) − �(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X) .

In a completeCAT(0) space (X , d), the pseudometric space (R×X×X , D) can be considered
as a subset of the pseudometric space of all real-valued Lipschitz functions (Lip(X ,R), L).

It is shown in [1], that D((t, a, b), (s, c, d)) = 0 if and only if t〈−→ab,−→xy〉 = s〈−→cd ,
−→xy〉, for

all x, y ∈ X . Thus, D induces an equivalence relation on R× X × X , where the equivalence
class of (t, a, b) is defined as

[t−→ab] :=
{
s
−→
cd : D((t, a, b), (s, c, d)) = 0

}
.

The set X∗ = {[t−→ab] : (t, a, b) ∈ R × X × X} is a metric space with the metric

D([t−→ab], [s−→cd ]) := D((t, a, b), (s, c, d)). The pair (X∗, D) is called the dual space of the
metric space (X , d). It is shown in [1] that the dual of a closed and convex subset of a Hilbert

space H with nonempty interior is H and t(b− a) ≡ [t−→ab] for all t ∈ R, a, b ∈ H . We also
note that X∗ acts on X × X by

〈x∗,−→xy〉 = t〈−→ab,−→xy〉,
(
x∗ = [t−→ab] ∈ X∗, x, y ∈ X

)
.

Let X be a complete CAT(0) space and X∗ be its dual space. A multivalued operator A :
X → 2X

∗
with domain D(A) := {x ∈ X : Ax �= ∅} is monotone if and only if for all

x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 ≥ 0 (see [19]).
A monotone operator A is called a maximal monotone operator if the graph G(A) of A
defined by

G(A) := {
(x, x∗) ∈ X × X∗ : x∗ ∈ A(x)

}
,

is not properly contained in the graph of any other monotone operator. It is easy to see that
a monotone operator is maximal if and only if for each (x, x∗) ∈ X × X∗, 〈y∗ − x∗,−→xy〉 ≥
0, ∀(y, y∗) ∈ G(A) �⇒ x∗ ∈ A(x).
The resolvent of a monotone operator A of order λ > 0 is the multivalued mapping J A

λ :
X → 2X defined by (see [19])

J A
λ (x) :=

{
z ∈ X |

[
1

λ

−→zx
]

∈ Az

}
.

We say that the operator A satisfies the range condition if for every λ > 0, D(J A
λ ) = X (see

[19]). For simplicity, we shall write Jλ for the resolvent of a monotone operator A.
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The concept of monotone operator theory is one of the most important aspect in nonlinear
and convex analysis due to the role it plays in optimization, variational inequalities, semi
group theory, evolution equations, among others. One of the most important problems in
monotone operator theory is the problem of finding the solution of the following monotone
inclusion problem (MIP).

Find x ∈ D(A) such that 0 ∈ Ax, (1.3)

where A : X → 2X
∗
is a monotone operator. The solution set of problem (1.3) is denoted by

A−1(0), which is known to be closed and convex (see [27, Remark 3.1]).
Many mathematical problems such as optimization problems, equilibrium problems, varia-
tional inequality problems, saddle point problems, among others, can be modelled as a MIP
(1.3). Thus, MIP is of central importance in nonlinear and convex analysis. The most popular
method for finding solutions of MIP, is the proximal point algorithm introduced in Hilbert
space by Martinet [24] and Rockafellar [29], as follows:

{
x0 ∈ H ,

xn+1 = J A
λn
xn, n ≥ 0,

(1.4)

where J A
λn

= (I +λn A)−1 is the resolvent of the operator A and {λn} is a sequence of positive
real numbers. Rockafellar [29] proved that the sequence {xn} generated by Algorithm (1.4)
is weakly convergent to a solution of MIP (1.3), provided λn ≥ λ > 0 for each n ≥ 1.
Güler [15] gave an example to show that the sequence {xn} generated by the proximal point
algorithm (1.4) may not converge strongly even if the maximal monotone operator is the
subdifferential of a convex, proper and lower semicontinuous function.
Another important algorithm for approximating solutions of MIP is the Mann-type proximal
point algorithm which was first introduced in Hilbert space by Kamimura and Takahashi
[18]:

{
x0 ∈ H ,

xn+1 = αnxn + (1 − αn)J A
λn
xn, n ≥ 0,

(1.5)

where {αn} ⊂ [0, 1]. Under some suitable conditions, Kamimura and Takahashi [18] proved
weak convergence of (1.5) in Hilbert spaces. In order to obtain strong convergence result,
Kamimura andTakahashi [18] proposed the followingHalpern-type proximal point algorithm
for approximating a solution of MIP (1.3):

{
u, x0 ∈ H ,

xn+1 = αnu + (1 − αn)J A
λn
xn .

(1.6)

Other authors have also studied the MIP (1.3) in the setting of real Banach spaces (see, for
example [26] and the references therein).
In [2], Bačák proved the�-convergence of proximal point algorithm in CAT(0) spaces when
the operator A is the subdifferential of a convex, proper and lower semicontinuous function.
In 2016, Khatibzadeh and Ranjbar [19] introduced and studied the following proximal point
algorithm in CAT(0) spaces:

{
x0 ∈ X ,[

1
λn

−−−−→xnxn−1

]
∈ Axn .

(1.7)

They obtained a strong and �-convergence result of the proximal point algorithm (1.7) to a
solution of MIP (1.3). Very recently, Ranjbar and Khatibzadeh [27] proposed the following
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Strong convergence theorem for monotone inclusion problem in CAT(0) spaces 155

Mann-type proximal point algorithm in a complete CAT(0) space for finding a solution of
(1.3) and obtained a �-convergence result.

{
x0 ∈ X ,

xn+1 = αnxn ⊕ (1 − αn)Jλn xn,
(1.8)

where {λn} ⊂ (0,∞) and {αn} ⊂ [0, 1]. In the same paper, Ranjbar and Khatibzadeh [27]
proposed the following Halpern-type proximal point algorithm in order to obtain a strong
convergence result:

{
u, x0 ∈ X ,

xn+1 = αnu ⊕ (1 − αn)Jλn xn,
(1.9)

where {λn} ⊂ (0,∞) and {αn} ⊂ [0, 1].
In this paper, we propose and study the modified Halpern-type algorithm for approximating a
common solution of finite family of MIP and fixed point problem for nonexpansive mapping
in CAT(0) spaces.We establish the strong convergence of the proposed algorithm. Our results
extend and complement the results of Bačák [2], Khatibzadeh and Ranjbar [19] and Ranjbar
and Khatibzadeh [27].

2 Preliminary

We state some known and useful results which will be needed in the proof of our main
theorem. Throughout this paper, we shall denote the strong and �-convergence by “−→”
and “⇀” respectively.

Lemma 2.1 Let X be a CAT(0) space. Then, for all x, y, z ∈ X and all t ∈ [0, 1]:
(i) d(t x ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z), (see [9]),
(ii) d2(t x ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y), (see [9]),
(iii) d(t x ⊕ (1 − t)y, sx ⊕ (1 − s)y) ≤ |t − s|d(x, y), (see [7]),
(iv) d(t x ⊕ (1 − t)y, t x ⊕ (1 − t)z) ≤ (1 − t)d(y, z), (see [20]).

Lemma 2.2 [8] Let X be a CAT(0) space and a, b, c ∈ X. Then for each λ ∈ [0, 1],
d2(λa ⊕ (1 − λ)b, c) ≤ λ2d2(a, c) + (1 − λ)2d2(b, c) + 2λ(1 − λ)〈−→ac,−→bc〉.

Lemma 2.3 [9,22]Every bounded sequence in a completeCAT(0) space has a�-convergence
subsequence.

Lemma 2.4 [17] Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X.
Then {xn} �-converges to x if and only if limn→∞ sup〈−→xnx,−→yx〉 ≤ 0 ∀y ∈ X .

Lemma 2.5 [10] Let X be a complete CAT(0) space and T : X → X be a nonexpansive
mapping, then the conditions that {xn} �-converges to x and d(xn, T xn) → 0, implies
x = T x.

Lemma 2.6 [31]. Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
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(i) {αn} ⊂ [0, 1], 
∞
n=0αn = ∞,

(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0(n ≥ 0), 
∞

n=0γn < ∞.

Then limn→∞ an = 0.

Lemma 2.7 [25]. Let {an} be a sequence of real numbers such that there exists a subsequence
{n j } of {n} such that an j < an j+1 ∀ j ∈ N. Then there exists a nondecreasing sequence{mk} ⊂
N such that mk → ∞ when the following properties are satisfied by all (sufficiently large)
numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.
Definition 2.8 Let X be a complete CAT(0) space and C be a nonempty closed and convex
subset of X . A point x ∈ C is called a fixed point of a nonlinear mapping T : C → C , if
T x = x . The set of fixed points of T is denoted by F(T).
The mapping T is said to be

(i) firmly nonexpansive if (see [19])

d2(T x, T y) ≤ 〈−−−→
T xT y,−→xy〉 ∀x, y ∈ C,

(ii) nonexpansive if

d(T x, T y) ≤ d(x, y) ∀x, y ∈ C .

From Cauchy–Schwartz inequality, it is clear that the class of nonexpasive mappings is more
general than the class of firmly nonexpansive mappings.

Theorem 2.9 [19] Let X be a CAT(0) space and Jλ be the resolvent of the operator A of
order λ. We have

(i) For any λ > 0, R(Jλ) ⊂ D(A), F(Jλ) = A−1(0).
(ii) If A is monotone then Jλ is a single-valued and firmly nonexpansive mapping.

We make the following remark which is a consequence of Theorem 2.9.

Remark 2.10 If X is a CAT(0) space and Jλ is the resolvent of a monotone operator A of
order λ, then

d2(u, Jλx) + d2(Jλx, x) ≤ d2(u, x)

for all u ∈ A−1(0), x ∈ D(Jλ) and λ > 0.

Indeed for any u ∈ A−1(0), x ∈ D(Jλ) and λ > 0, we obtain from Theorem 2.9 (i) and (ii),
and by the definition of firmly nonexpansive mapping that

d2(Jλx, u) ≤ 〈−−−→
Jλx u,

−→xu〉
= 1

2

(
d2(Jλx, u) + d2(u, x) − d2(Jλx, x)

)
,

which implies

d2(u, Jλx) + d2(Jλx, x) ≤ d2(u, x).
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Strong convergence theorem for monotone inclusion problem in CAT(0) spaces 157

3 Main results

Theorem 3.1 Let X be a complete CAT(0) space and X∗ be its dual space. Let T : X → X
be a nonexpansive mapping and for each i = 1, 2, . . . N, let J iλ be the resolvent of monotone
operators Ai of order λ > 0. Then

F
(
T ◦ J N

λ ◦ J N−1
λ ◦ · · · ◦ J 2λ ◦ J 1λ

)

= F(T ) ∩ F
(
J N
λ

)
∩ F

(
J N−1
λ

)
∩ · · · ∩ F

(
J 2λ

) ∩ F
(
J 1λ

)
.

Proof Clearly, F(T ) ∩ F(J N
λ ) ∩ F(J N−1

λ ) ∩ · · · ∩ F(J 2λ ) ∩ F(J 1λ ) ⊆ F(T ◦ J N
λ ◦ J N−1

λ ◦
· · · ◦ J 2λ ◦ J 1λ ). We now show that F(T ◦ J N

λ ◦ J N−1
λ ◦ · · · ◦ J 2λ ◦ J 1λ ) ⊆ F(T ) ∩ F(J N

λ ) ∩
F(J N−1

λ ) ∩ · · · ∩ F(J 2λ ) ∩ F(J 1λ ).

Let �N
λ = J N

λ ◦ J N−1
λ ◦ · · · ◦ J 2λ ◦ J 1λ and �0

λ = I , then for any x ∈ F(T ◦ �N
λ ) and

y ∈ F(T ) ∩ F(J N
λ ) ∩ F(J N−1

λ ) ∩ · · · ∩ F(J 2λ ) ∩ F(J 1λ ), we have that

d2(x, y) = d2
(
T�N

λ x, T�N
λ y

)

≤ d2
(
�N

λ x,�N
λ y

)

= d2
(
�N

λ x, y
)

. (3.1)

From Remark 2.10 and (3.1), we have

d2
(
J N
λ

(
�N−1

λ x
)

,�N−1
λ x

)
≤ d2

(
�N−1

λ x, y
)

− d2
(
J N
λ

(
�N−1

λ x
)

, y
)

...

≤ d2(x, y) − d2
(
�N

λ x, y
)

≤ d2
(
�N

λ x, y
)

− d2
(
�N

λ x, y
)

,

which implies

�N
λ x = �N−1

λ x, (3.2)

where the last inequality follows from (3.1).
Also, from Remark 2.10 and (3.1), we have

d2
(
�N−1

λ x,�N−2
λ x

)
≤ d2

(
�N−2

λ x, y
)

− d2
(
�N−1

λ x, y
)

...

≤ d2(x, y) − d2
(
�N−1x, y

)

≤ d2
(
�N

λ x, y
)

− d2
(
�N

λ x, y
)

,

which implies

�N−1
λ x = �N−2

λ x . (3.3)

Continuing in this manner, we obtain that

�N
λ x = �N−1

λ x = �N−2
λ x = �N−3

λ x = · · · = �2
λx = �1

λx = �0
λx = x . (3.4)
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From (3.4), we obtain

x = J 1λ x . (3.5)

From (3.4) and (3.5), we obtain

x = �2
λx = J 2λ

(
J 1λ x

) = J 2λ x . (3.6)

Continuing in this manner, we obtain

x = J 1λ x = J 2λ x = · · · = J N−1
λ x = J N

λ x . (3.7)

Finally, from (3.4), we get

x = T
(
�N

λ x
)

= T x . (3.8)

Thus, we have from (3.7) and (3.8) that F(T ◦ J N
λ ◦ J N−1

λ ◦· · ·◦ J 2λ ◦ J 1λ ) ⊆ F(T )∩F(J N
λ )∩

F(J N−1
λ ) ∩ · · · ∩ F(J 2λ ) ∩ F(J 1λ ), which completes the proof. ��

Theorem 3.2 Let X be a complete CAT(0) space and X∗ be its dual space. Let Ai : X →
2X

∗
, i = 1, 2, . . . , N be multivalued monotone mappings that satisfies the range condition

and T be a nonexpansive mapping on X. Suppose that � := F(T ) ∩
(
∩N
i=1A

−1
i (0)

)
�= ∅.

Let u, x1 ∈ X be arbitrary and the sequence {xn} be generated by
{
yn = J N

λ ◦ J N−1
λ ◦ · · · ◦ J 2λ ◦ J 1λ (xn),

xn+1 = αnu ⊕ (1 − αn)T yn, n ≥ 1,
(3.9)

where λ ∈ (0,∞) and {αn} ⊂ [0, 1], satisfying the following conditions

C1: limn→∞ αn = 0,
C2:

∑∞
n=1 αn = ∞,

C3:
∑∞

n=1 |αn − αn−1| < ∞.

Then {xn} converges strongly to an element of �.

Proof Let p ∈ �, �N
λ = J N

λ ◦ J N−1
λ ◦ · · · ◦ J 2λ ◦ J 1λ , where �0

λ = I . Then from (3.9), we
have

d(xn+1, p) = d (αnu ⊕ (1 − αn)T yn, p)

≤ αnd(u, p) + (1 − αn)d(T yn, p)

≤ αnd(u, p) + (1 − αn)d
(
�N

λ xn, p
)

≤ αnd(u, p) + (1 − αn)d
(
�N−1

λ xn, p
)

...

≤ αnd(u, p) + (1 − αn)d(xn, p)

≤ max{d(u, p), d(xn, p)},
which implies by mathematical induction that

d(xn, p) ≤ max{d(u, p), d(x1, p)}, ∀n ≥ 1. (3.10)

Therefore, {d(xn, p)} is bounded. Consequently, {xn}, {yn} and {T yn} are all bounded.
We now divide our proof into two cases.
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Strong convergence theorem for monotone inclusion problem in CAT(0) spaces 159

Case 1: Suppose that {d(xn, p)} is monotone sequence, then we assume that {d(xn, p)} is
monotone decreasing. Then limn→∞ d(xn, p) exists. Consequently,

lim
n→∞

[
d(xn+1, p) − d(xn, p)

] = 0. (3.11)

From Lemma 2.1 and Remark 2.10, we have

d2(xn+1, p) = d2 (αnu ⊕ (1 − αn)T yn, p)

≤ αnd
2(u, p) + (1 − αn)d

2(T yn, p) − αn(1 − αn)d
2(u, T yn)

≤ αnd
2(u, p) + (1 − αn)d

2(T yn, p)

≤ αnd
2(u, p) + (1 − αn)d

2(yn, p)

≤ αnd
2(u, p) + d2(yn, p) (3.12)

≤ αnd
2(u, p) + d2

(
�N−1

λ xn, p
)

− d2
(
�N−1

λ xn, yn
)

,

which implies

d2(yn,�
N−1
λ xn) ≤ αnd

2(u, p) + d2
(
�N−1

λ xn, p
)

− d2(xn+1, p)

≤ αnd
2(u, p) + d2(xn, p) − d2(xn+1, p) → 0, as n → ∞.

That is

lim
n→∞ d2

(
yn,�

N−1
λ xn

)
= 0. (3.13)

From (3.12), we have

d2(xn+1, p) ≤ αnd
2(u, p) + d2(yn, p)

≤ αnd
2(u, p) + d2

(
�N−1

λ xn, p
)

≤ αnd
2(u, p) + d2

(
�N−2

λ xn, p
)

− d2
(
�N−2

λ xn,�
N−1
λ xn

)
,

which implies

d2
(
�N−1

λ xn,�
N−2
λ xn

)
≤ αnd

2(u, p) + d2
(
�N−2

λ xn, p
)

− d2(xn+1, p)

≤ αnd
2(u, p) + d2(xn, p) − d2(xn+1, p) → 0, as n → ∞.

That is

lim
n→∞ d2

(
�N−1

λ xn,�
N−2
λ xn

)
= 0. (3.14)

Continuing in the same manner, we have that

lim
n→∞ d2

(
�N−2

λ xn,�
N−3
λ xn

)
= · · · = lim

n→∞ d2
(
�2

λxn,�
1
λxn

)

= lim
n→∞ d2

(
�1

λxn,�
0
λxn

) = 0. (3.15)

Thus,

d(yn, xn) ≤ d2
(
yn,�

N−1
λ xn

)
+ d2

(
�N−1

λ xn,�
N−2
λ xn

)

+ · · · + d2
(
�2

λxn,�
1
λxn

) + d2
(
�1

λxn, xn
)
,
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which implies from (3.13), (3.14) and (3.15) that

lim
n→∞ d(yn, xn) = lim

n→∞ d(�N
λ xn, xn) = 0. (3.16)

From (3.9) and Lemma (2.1), we have

d(xn+1, xn) = d(αnu ⊕ (1 − αn)T yn, αn−1u ⊕ (1 − αn−1)T yn−1)

≤ d(αnu ⊕ (1 − αn)T yn, αnu ⊕ (1 − αn)T yn−1)

+ d(αnu ⊕ (1 − αn)T yn−1, αn−1u ⊕ (1 − αn−1)T yn−1)

≤ (1 − αn)d(T yn, T yn−1) + |αn − αn−1|d(u, T yn−1)

≤ (1 − αn)d(yn, yn−1) + |αn − αn−1|d(u, T yn−1)

≤ (1 − αn)d(xn, xn−1) + |αn − αn−1|d(u, T yn−1). (3.17)

By applying condition C2 and C3 in (3.17), we have from Lemma 2.6 that

lim
n→∞ d(xn+1, xn) = 0. (3.18)

From (3.9), (3.16),(3.18), Lemma 2.1 (i) and condition C1, we obtain

d(xn, T xn) ≤ d(xn, xn+1) + d(xn+1, T yn) + d(T yn, T xn)

≤ d(xn, xn+1) + d(αnu ⊕ (1 − αn)T yn, T yn) + d(yn, xn)

≤ d(xn, xn+1) + αnd(u, T yn) + d(yn, xn) → 0, as n → ∞.

That is

lim
n→∞ d(xn, T xn) = 0. (3.19)

From (3.16) and (3.19), we have

d(xn, T yn) ≤ d(xn, T xn) + d(T xn, T yn)

≤ d(xn, T xn) + d(xn, yn) → 0 as n → ∞.

That is

lim
n→∞ d(xn, T yn) = lim

n→∞ d
(
xn, T�N

λ xn
)

= 0. (3.20)

Since {xn} is bounded and X is a complete CAT(0) space, then from Lemma 2.3, there
exists a subsequence {xnk } of {xn} such that �-limk→∞ xnk = z. Also, since T ◦ �N

λ is the
composition of nonexpansive mappings, it implies that T ◦ �N

λ is nonexpansive. Thus, it
follows from (3.20) and Lemma 2.5 that z ∈ F(T ◦�N

λ ). Hence, by Theorem 3.1, we obtain
that z ∈ �.
Furthermore, from Lemma 2.4, we obtain

lim sup
k→∞

〈−→uz,−−→xnk z
〉 ≤ 0. (3.21)

By using the quasilinearization properties, we obtain
〈−→uz,−−→T ynk z

〉
=

〈−→uz,−−−−−→
T ynk xnk

〉
+ 〈−→uz,−−→xnk z

〉

≤ d(u, z)d(T ynk , xnk ) + 〈−→uz,−−→xnk z
〉
,

which implies from (3.20) and (3.21) that

lim sup
k→∞

〈−→uz,−−−→
T ynk z

〉
≤ 0. (3.22)
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By condition C1 and inequality (3.22), we get

lim sup
k→∞

(
αnd

2(u, z) + 2(1 − αn)〈−→uz,−−−→
T ynk z〉

)
≤ 0. (3.23)

Next, we show that {xn} converges strongly to z. From (3.9) and Lemma 2.2, we obtain

d2(xn+1, z) ≤ α2
nd

2(u, z) + (1 − αn)
2d2(T yn, z) + 2αn(1 − αn)〈−→uz,−−−→

T yn z〉,
which implies

d2(xn+1, z) ≤ (1 − αn)d
2(xn, z) + αn

(
αnd

2(u, z) + 2(1 − αn)〈−→uz,−−−→
T yn z〉

)
. (3.24)

It follows from (3.23) and Lemma 2.6 that {xn} converges strongly to z.
Case 2: Suppose that {d(xn, p)} is not monotone decreasing sequence. Then, there exists a
subsequence {d(xni , p)} of {d(xn, p)} such that d(xni , p) < d(xni+1, p) for all i ∈ N. Thus,
by Lemma 2.7, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞

d(xmk , p) ≤ d(xmk+1, p) and d(xk, p) ≤ d(xmk+1, p) ∀k ∈ N.

Thus, we have

0 ≤ lim
k→∞

(
d(xmk+1, p) − d(xmk , p)

)

≤ lim sup
n→∞

(d(xn+1, p) − d(xn, p))

≤ lim sup
n→∞

(αnd(u, p) + (1 − αn)d(xn, p) − d(xn, p))

≤ lim sup
n→∞

αn (d(u, p) − d(xn, p)) = 0,

which implies

lim
k→∞

(
d(xmk+1, p) − d(xmk , p)

) = 0. (3.25)

Using C2 and C3 in (3.17), we obtain from Lemma 2.6 that

lim
k→∞ d(xmk+1, xmk ) = 0.

Following the same line of argument as in Case 1, we obtain

d(xmk , T xmk ) → 0 as k → ∞ and d(xmk , T ymk ) → 0 as k → ∞.

Also, as in Case 1, we obtain

lim
k→∞

(
αmk d

2(u, z) + 2(1 − αmk )〈−→uz,
−−−→
T ymk z〉

)
≤ 0. (3.26)

Also from (3.24), we have

d2(xmk+1, z) ≤ (1 − αmk )d
2(xmk , z) + αmk

(
αmk d

2(u, z) + 2(1 − αmk )〈−→uz,
−−−−→
T ymk z〉

)
.

Since d(xmk , z) ≤ d(xmk+1, z), we have

d2(xmk , z) ≤
(
αmk d

2(u, z) + 2(1 − αmk )〈−→uz,
−−−−→
T ymk z〉

)
,

which implies from (3.26) that

lim
k→∞ d(xmk , z) = 0. (3.27)
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Since d(xk, z) ≤ d(xmk+1, z), we obtain from (3.27) and (3.25) that limn→∞ d(xk, z) = 0.
Thus, from Case 1 and Case 2, we conclude that {xn} converges to z ∈ �. ��
By setting N = 1 in Theorem 3.2, we obtain the following result.

Corollary 3.3 Let X be a complete CAT(0) space and X∗ be its dual space. Let A : X →
2X

∗
be a multivalued monotone mapping that satisfies the range condition and T be a

nonexpansive mapping on X. Suppose that � := F(T ) ∩ A−1(0) �= ∅. Let u, x1 ∈ X be
arbitrary and the sequence {xn} be generated by

{
yn = Jλ(xn),

xn+1 = αnu ⊕ (1 − αn)T yn, n ≥ 1,
(3.28)

where λ ∈ (0,∞) and {αn} ⊂ [0, 1], satisfying the following conditions

C1: limn→∞ αn = 0,
C2:

∑∞
n=1 αn = ∞,

C3:
∑∞

n=1 |αn − αn−1| < ∞.

Then {xn} converges strongly to an element of �.

By setting T = I (I is the identity mapping on X ) in Theorem 3.2, we obtain the following
result.

Corollary 3.4 Let X be a complete CAT(0) space and X∗ be its dual space. Let Ai : X →
2X

∗
, i = 1, 2, . . . , N be multivalued monotone mappings that satisfy the range condition.

Suppose that ∩N
i=1A

−1
i (0) �= ∅. Let u, x1 ∈ X be arbitrary and the sequence {xn} be

generated by

xn+1 = αnu ⊕ (1 − αn)J
N
λ ◦ J N−1

λ ◦ · · · ◦ J 2λ ◦ J 1λ (xn), n ≥ 1, (3.29)

where λ ∈ (0,∞) and {αn} ⊂ [0, 1], satisfying the following conditions

C1: limn→∞ αn = 0,
C2:

∑∞
n=1 αn = ∞,

C3:
∑∞

n=1 |αn − αn−1| < ∞.

Then {xn} converges strongly to an element of ∩N
i=1A

−1
i (0).

4 Application and numerical example

4.1 Application tominimization problem

Let X be a complete CAT(0) space and X∗ be its dual space. Let f : X → (−∞,∞] be a
proper lower semicontinuous and convex function with domain D( f ) := {x ∈ X : f (x) <

+∞}. Then the subdifferential of f is a set-valued function ∂ f : X → 2X
∗
defined by

∂ f (x) =
{

{x∗ ∈ X∗ : f (z) − f (x) ≥ 〈x∗,−→xz〉, (z ∈ X)}, if x ∈ D( f ),

∅, otherwise.

It has been shown in [1] that:

(i) ∂ f is a monotone operator,
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Fig. 1 Case I(a): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

(ii) ∂ f satisfies the range condition. That is, D(J ∂ f
λ ) = X for all λ > 0,

(iii) f attains its minimum at x ∈ X if and only if 0 ∈ ∂ f (x).

Now, consider the following minimization problem (MP): find x ∈ X such that

f (x) = min
y∈X f (y). (4.1)

It follows from (iii) above that the above MP (4.1) can be formulated as follows: find x ∈ X
such that

0 ∈ ∂ f (x).

Thus, in view of (i) and (ii) above, and by setting A = ∂ f in Theorem 3.2, we obtain the
following result (Figs. 1, 2, 3).

Theorem 4.1 Let X be a complete CAT(0) space and X∗ be its dual space. Let fi :
X → (−∞,∞], i = 1, 2, . . . , N be a finite family of proper, lower semicontinuous
and convex function and let T be a nonexpansive mapping on X. Suppose that �∗ :=
F(T )∩

(
∩N
i=1∂ f −1

i (0)
)

�= ∅. Let u, x1 ∈ X be arbitrary and the sequence {xn} be generated
by
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Fig. 2 Case I(b): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

{
yn = J ∂ fN

λ ◦ J ∂ fN−1
λ ◦ · · · ◦ J ∂ f2

λ ◦ J ∂ f1
λ (xn),

xn+1 = αnu ⊕ (1 − αn)T yn, n ≥ 0,
(4.2)

where λ ∈ (0,∞) and {αn} ⊂ [0, 1] satisfying the following conditions

C1: limn→∞ αn = 0,
C2:

∑∞
n=1 αn = ∞,

C3:
∑∞

n=1 |αn − αn−1| < ∞.

Then {xn} converges strongly to an element of �∗.

4.2 Numerical example

We give a numerical example in (R2, ||.||2) (where R2 is the Euclidean plane) to support our
main result. Let N = 2 in Theorem 3.2, then for i = 1, we define A1 : R2 → R

2 by

A1(x) = (x1 + x2, x2 − x1).

Then A1 is a monotone operator (Figs. 4, 5, 6).
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Fig. 3 Case II(a): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

Recall that [t−→ab] ≡ t(b − a), for all t ∈ R and a, b ∈ R
2 (see [1]). Using this, we have for

each x ∈ R
2 that

J 1λ (x) = z ⇐⇒ 1

λ
(x − z) = A1z

⇐⇒ x = (I + λA1)z

⇐⇒ z = (I + λA1)
−1x .

Hence, we compute the resolvent of A1 as follows:

J 1λ (x) =
([

1 0
0 1

]
+

[
λ λ

−λ λ

])−1 [
x1
x2

]

=
[
1 + λ λ

−λ 1 + λ

]−1 [
x1
x2

]

= 1

1 + 2λ + 2λ2

[
1 + λ −λ

λ 1 + λ

] [
x1
x2

]
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Fig. 4 Case II(b): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

=
(

(1 + λ)x1 − λx2
1 + 2λ + 2λ2

,
λx1 + (1 + λ)x2
1 + 2λ + 2λ2

)
.

Thus,

J 1λ (x) =
(

(1 + λ)x1 − λx2
1 + 2λ + 2λ2

,
λx1 + (1 + λ)x2
1 + 2λ + 2λ2

)
.

Now, for i = 2, let A2 : R2 → R
2 be defined by

A2(x) = (x2, − x1).

So that by the same argument as in above, we obtain

J 2λ (x) =
(
x1 − λx2
1 + λ2

,
x2 + λx1
1 + λ2

)
.
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Fig. 5 Case III(a): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

Thus for i = 1, 2, we obtain

J 2λ (J 1λ x) =
(

(1 + λ − λ2)x1 − (2λ + λ2)x2
(1 + λ2)(1 + 2λ + 2λ2)

,
(2λ + λ2)x1 + (1 + λ − λ2)x2

(1 + λ2)(1 + 2λ + 2λ2)

)
.

Let T : R2 → R
2 be defined by T (x1, x2) = (−x2, x1). Then T is a nonexpansive mapping.

Take αn = 1
n+1 , then {αn} satisfies the conditions in Theorem 3.2.

Hence, for u, x1 ∈ R
2, our Algorithm (3.9) becomes:

{
yn = J 2λ (J 1λ xn),

xn+1 = u
n+1 + n

2(n+1) yn, n ≥ 1.
(4.3)

Case I

(a) Take x1 = (0.5, 0.25)T , u = (1, 0.5)T and λ = 0.001.
(b) Take x1 = (0.5, 0.25)T , u = (1, 0.5)T and λ = 0.000002.

Case II

(a) Take x1 = (1, 0.5)T , u = (−1, 0.5)T and λ = 0.0002.
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Fig. 6 Case III(b): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right)

(b) Take x1 = (0.1, 0.03)T , u = (0.3, 0.1)T and λ = 0.0002.

Case III

(a) Take x1 = (−1, − 0.5)T , u = (−0.5, 0.1)T and λ = 0.00004.
(b) Take x1 = (0.3, 0.06)T , u = (0.2, 0.9)T and λ = 0.000009.

Mathlab version R2014a is used to obtain the graphs of errors against number of iterations,
execution time against accuracy and number of iterations against accuracy.
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