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Abstract
We consider abstract quasilinear evolution equations of Sobolev type in a Hilbert setting. We
propose two fully discrete schemes and prove some error estimates under minimal assump-
tions. Various examples that enter into our abstract framework are considered, for each of
them our theoretical results are confirmed by several numerical experiments.
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1 Introduction

The purpose of our paper is to study different numerical schemes for the abstract quasilinear
Sobolev equation{

A1(t, u)ut + A2(t, u)u = f (t, u), in V ′, 0 < t ≤ T ,

u(0) = u0, in V ,
(1.1)

where A1(t, u) is an isomorphism from a Hilbert space V into its dual V ′, while A2(t, u) is
a bounded operator from V into V ′ (plus some assumptions specified below).

The linear or semilinear case, corresponding to the situation when Ai (t, u) do not depend
neither on t nor on u, will retain some particular interests.

Such problems are interesting not only because they are generalizations of a standard
parabolic problem but also because they arise naturally in a large variety of applications
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(model of fluid flow in fissured porous media [4], two-phase flow in porous media with
dynamical capillary pressure [12,20], heat conduction in two-temperature systems [9,42]
and shear in second order fluids [11,41]).

Existence results for such problems are proved for semi-linear or non-autonomous equa-
tions (i.e., the case when A1 and A2 depends only on t) in [7,16,27,38–40] for instance,
where the authors exploit the fact that A1 is invertible. This allows to reduce the problem into
a first order evolution equation (see (2.3) below) with a bounded (non-autonomous) operator
and existence results easily follow. The same idea is here used to show existence results in
the quasilinear situation by using the results from [23].

A large numbers of papers are devoted to the discretization of pseudoparabolic equations.
Crank-Nicolson/explicit multistep approximation in time is combined with a finite element
method in [2,8,15,28,43], with a Petrov-Galerkin method in [3,14] and with a discontinuous
Galerkin method in [17,31,32]. The discretization along characteristics is applied in [34],
while a Fourier-Galerkin method is used in [35]. In all these references, the operators A1 and
A2 are (eventually non linear) second order elliptic operators. Hence in the spirit of [8] our
main goal is to perform a general analysis for a fully discrete scheme by combining some
error estimates of explicit semi-discrete schemes in time of ordinary differential equations
(adapted to Hilbert valued equations) with new error estimates of the corresponding fully
discrete schemes based on some ”regularity” assumptions (see assumption H7) and interpo-
lation error estimates. Altogether, if Un,h is the fully discrete approximation of the solution
u at time tn obtained by the Euler scheme or the Runge–Kutta scheme of order 2, we prove
the error estimate

‖u(tn) − Un,h‖ ≤ C((�t)p + hq(s)), (1.2)

for all n = 1, . . . , N , where p = 1 (resp. p = 2) for the Euler (resp. Runge–Kutta) scheme
and q(s) is related to our abstract assumptions (but in practice it depends on the regularity of
the initial datum and the chosen finite element space), andC is a positive constant independent
of h and �t . Similarly to [8, see p. 14], the operatorA(t, u) = A1(t, u)−1A2(t, u) (involved
in (2.3)) satisfies an appropriated Lipschitz property (see Corollary 2.3 below), hence its
associated evolution problem is nonstiff. Due to this property, we do not have to impose
mesh restrictions, like the CFL one. Note that, contrary to [8], our approach does not require
any smallness restriction on the time step and on the meshsize.

We finally illustrate our abstract framework by various examples, like the case when the
Ai ’s are (linear, non-autonomous, quasilinear) second order differential operators in smooth
and non-smooth domains. In each case, new analytic results are proved to check that our
general assumptions hold and some numerical tests that confirm the orders of convergence
are presented.

In the whole paper, the norm of V will be denoted by ‖ · ‖ and we will write a � b, for
the existence of a generic positive constant C that can depend on the final time T and on the
norm of the data but is always independent of a, b, of the time step �t and the meshsize
parameter h such that a ≤ Cb.

The paper is organized as follows. In Sect. 2, we give the basic assumptions that allow
to obtain existence results. Section 3 is devoted to the introduction of the semi-discrete and
the fully discrete problems and to the proof of error estimates. Some illustrative examples
and numerical tests are presented in Sects. 4 and 5 for semi-linear and quasi-linear equa-
tions.
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2 Existence results

We associate to each operator Ai (t, u) : V → V ′, t ∈ [0, T ], u ∈ V , i = 1, 2, a bilinear
form ai (t; u; ·, ·), via the relation

ai (t; u; v,w) = 〈Ai (t, u)v,w〉V ′,V , ∀v,w ∈ V . (2.1)

In this section, we give some (local) existence results for problem (1.1) under the following
assumptions.

H1 (uniform continuity of ai (t; u; ·, ·) with respect to t and u) for i = 1, 2, there exists a
constant Mi > 0 independent of t and u such that for all t ∈ [0, T ] and u, v, w ∈ V ,

|ai (t; u; v,w)| ≤ Mi‖v‖‖w‖.
H2 (uniform coerciveness of a1(t; u; ·, ·) with respect to t and u) there exists a constant

α > 0 independent of t and u such that for all t ∈ [0, T ] and u, v ∈ V ,

a1(t; u; v, v) ≥ α‖v‖2. (2.2)

The hypothesis H1 is equivalent to the uniform (in t and u) continuity of Ai (t, u) from V
into V ′, with ‖Ai (t, u)‖L(V ,V ′) ≤ Mi , for any t ∈ [0, T ] and u ∈ V ; while the hypothesis
H2 and Lax-Milgram’s lemma guarantees that the operator A1(t, u), t ∈ [0, T ], u ∈ V is an
isomorphism from V into V ′, with ‖A1(t, u)−1‖L(V ′,V ) ≤ 1

α
, for any t ∈ [0, T ] and u ∈ V .

As the operator A1(t, u), t ∈ [0, T ], u ∈ V is invertible, we can compose the two sides
of the first identity of (1.1) by A1(t, u)−1 and obtain the equivalent problem{

ut + A(t, u)u = g(t, u), in V , 0 < t ≤ T ,

u(0) = u0, in V ,
(2.3)

whereA(t, u) = A1(t, u)−1A2(t, u) is a bounded operator from V into itself (uniformlywith
respect to t and u owing to H1 and H2 with ‖A(t, u)‖L(V ,V ) ≤ M2

α
, for any t ∈ [0, T ] and

u ∈ V ) and g(t, u) = A1(t, u)−1 f (t, u). This problem enters into the framework of Kato’s
theory [23, Theorem 6], hence it suffices to check that the assumptions of this theorem are
satisfied to obtain a local existence result. This is made under some additional assumptions
on the sesquilinear forms ai and on f . Before let us make the following definition.

Definition 2.1 Let E and F be two Hilbert spaces. A mapping f : [0, T ] × E −→ F is
called (E, F)-Lipschitz continuous with respect to the second variable uniformly in t , if there
exists a positive constant L independent of t such that

‖ f (t, v) − f (t, w)‖F ≤ L‖v − w‖E , ∀v,w ∈ E, ∀t ∈ [0, T ].
If E = F, we will say that f is E-Lipschitz continuous with respect to the second variable
uniformly in t .

For a fixed open ball W of V , we now introduce the next assumptions:

H3 there exists γ ∈ (0, 1] such that for i = 1 or 2,∣∣ai (t; y; u, v)−ai (s; z; u, v)
∣∣ �

(|t−s|γ+‖y−z‖)‖u‖‖v‖, ∀y, z, u, v ∈ V , t, s ∈ [0, T ].
(2.4)

H4 f is (V , V ′)-Lipschitz continuous with respect to the second variable uniformly in t .
H5 f is bounded from [0, T ] × V into V ′:

‖ f (t, v)‖V ′ � 1, ∀ t ∈ [0, T ], ∀ v ∈ V .
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H6 For all v ∈ W , the mapping t → f (t, v) is continuous from [0, T ] into V ′.

We now give some consequences of these assumptions.

Lemma 2.2 Under the hypotheses H1–H3, the function (t, v) → A1(t, v)−1 is Lipschitz
continuous on [0, T ] × V for the norm of L(V ′, V ) uniformly in t, v, namely

‖A1(t, v)−1 − A1(t0, v0)
−1‖L(V ′,V ) � |t − t0|γ + ‖v − v0‖, ∀t, t0 ∈ [0, T ], v, v0 ∈ V .

(2.5)

Proof Let v, v0 ∈ V and t, t0 ∈ [0, T ] be arbitrarily fixed. Then by definition we have

‖A1(t, v)−1 − A1(t0, v0)
−1‖L(V ′,V ) = sup

h∈V ′,h �=0

‖A1(t, v)−1h − A1(t0, v0)−1h‖
‖h‖V ′

.

Now for h ∈ V ′, h �= 0, if we set φ1 = A1(t, v)−1h, and φ2 = A1(t0, v0)−1h, then{
a1(t; v;φ1, ψ) = 〈h, ψ〉V ′,V , ∀ψ ∈ V ,

a1(t0; v0;φ2, ψ) = 〈h, ψ〉V ′,V , ∀ψ ∈ V ,

which yields

a1(t; v;φ1 − φ2, ψ) = a1(t0; v0;φ2, ψ) − a1(t; v;φ2, ψ), ∀ψ ∈ V .

Choosing ψ = φ1 − φ2, and using the hypotheses H2 and H3, we obtain

‖φ1 − φ2‖ � (|t − t0|γ + ‖v − v0‖)‖φ2‖ = (|t − t0|γ + ‖v − v0‖)‖A1(t0, v0)
−1h‖

� (|t − t0|γ + ‖v − v0‖)‖h‖V ′ ,

which proves the estimate (2.5). �
Corollary 2.3 Under the hypotheses H1–H3, the function (t, v) → A(t, v) is Lipschitz con-
tinuous on [0, T ] × V for the norm of L(V ) uniformly in t, v, namely

‖A(t, v) − A(t0, v0)‖L(V ) � |t − t0|γ + ‖v − v0‖, ∀t, t0 ∈ [0, T ], v, v0 ∈ V . (2.6)

As a consequence, we have

‖A(t, v)v − A(t, w)w‖ � (1 + ‖w‖)‖v − w‖, ∀t ∈ [0, T ], ∀v,w ∈ V . (2.7)

Proof By definition, for t, t0 ∈ [0, T ], u, v, v0 ∈ V arbitrarily fixed with u �= 0, we have

‖A(t, v) − A(t0, v0)‖L(V ) ≤ ‖A1(t, v)−1(A2(t, v) − A2(t0, v0))‖L(V )

+‖(A1(t, v)−1 − A1(t0, v0)
−1)A2(t0, v0)‖L(V )

≤ ‖(A1(t, v)−1‖L(V ′,V )‖A2(t, v) − A2(t0, v0)‖L(V ,V ′)

+‖A1(t, v)−1 − A1(t0, v0)
−1‖L(V ′,V )‖A2(t0, v0)‖L(V ,V ′).

Since the assumption H3 for i = 2 is equivalent to

‖A2(t, v) − A2(t0, v0)‖L(V ,V ′) � |t − t0|γ + ‖v − v0‖,
we conclude that (2.6) holds owing to (2.5) and the assumptions H1 and H2. �
Corollary 2.4 Under the hypotheses H1 to H6, the function g(t, u) = A1(t, u)−1 f (t, u)

satisfies the next properties:
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1. g is bounded on [0, T ] × V , i. e.,

‖g(t, v)‖ � 1, ∀u, v ∈ V , ∀t ∈ [0, T ].
2. g is V -Lipschitz continuous with respect to the second variable uniformly in t,

‖g(t, v) − g(t, v0)‖ � ‖v − v0‖, ∀v, v0 ∈ V , ∀t ∈ [0, T ]. (2.8)

3. for all v ∈ W , the mapping t → g(t, v) is continuous from [0, T ] into V .

Proof 1. Direct consequence of the hypotheses H2 and H5.

2. Let v, v0 ∈ V and t, t0 ∈ [0, T ], then by the assumption H2, we may write

‖g(t, v) − g(t0, v0)‖ ≤ ‖A1(t, v)−1 ( f (t, v) − f (t0, v0)) ‖
+‖ (A1(t, v)−1 − A1(t0, v0)

−1) f (t0, v0)‖
� ‖ f (t, v) − f (t0, v0)‖V ′ + ‖A1(t, v)−1

−A1(t0, v0)
−1‖L(V ′,V )‖ f (t0, v0)‖V ′ .

Hence by our assumption H5 and (2.5), we obtain

‖g(t, v) − g(t0, v0)‖ ≤ ‖ f (t, v) − f (t0, v0)‖V ′ + |t − t0|γ + ‖v − v0‖. (2.9)

If in particular t0 = t , this estimate and the Lipschitz property of f then yield (2.8).
3. If v0 = v ∈ W in the estimate (2.9), we get

‖g(t, v) − g(t0, v)‖ ≤ ‖ f (t, v) − f (t0, v)‖V ′ + |t − t0|γ ,

and the continuity property on g follows from the assumption H6. �
We are ready to prove our existence result.

Theorem 2.5 Fix an open ball W of V and suppose that u0 ∈ W . Under the assumptions
H1–H6, there exists T ′ ∈ (0, T ] such that problem (2.3) (or (1.1)) admits a unique strong
solution u in [0, T ′], i.e., with the regularity u ∈ C([0, T ′]; W ) ∩ C1([0, T ′]; V ).

Proof We apply Theorem 6 from [23] with the Hilbert space X = Y = V and the fixed
open ball W from the statement. The assumptions (A1), (A2) and (A4) of this Theorem are
trivially satisfied because the operatorsA(t, v) are bounded in V , the assumption (A3) holds
owing to Corollary 2.3, while assumption (f1) holds owing to Corollary 2.4. �
Remark 2.6 Note that in the linear or semilinear case and under the assumption
f ∈ C1([0, T ] × V ; V ′) and H1–H2, Theorem 6.1.5 of [33] guarantees the existence of
a global solution u ∈ C1([0, T ]; V ) for any initial data in V .

We end up this section with the following comment. If we suppose that there exists another
Hilbert space H such that V is continuously embedded into H (denoted by V ↪→ H ) and
such that V is a dense subspace of H , then we can introduce the restriction of Ai (t, u) to
H (that, for shortness, is still denoted by Ai (t, u)), namely we can define the unbounded
operator from H into itself by

D(Ai (t, u)) = {v ∈ V : ∃gv ∈ H such that ai (t; u; v,w) = (gv, w)H for all w ∈ V },
and

Ai (t, u)v = gv, ∀v ∈ D(Ai (t, u)).
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3 Discretizations of the problem

3.1 Explicit semi-discretization in time

We notice that problem (1.1) can be equivalently written as{
ut = F(t, u), in V , 0 < t ≤ T ,

u(0) = u0, in V ,
(3.1)

where F(t, u) = g(t, u) −A(t, u)u, which is Hilbert-valued nonlinear ordinary differential
equation. Since in our case, F(·, ·) is bounded, we can use standard explicit schemes, like
the Euler or Runge–Kutta methods as in the case of finite-dimensional ODE. More precisely,
we now consider a regular subdivision (ti = i�t)N

i=0 of the interval [0, T ′], where T ′

is the life time of u, N ∈ N
∗ and �t = T ′

N the time step. Given a continuous function
φ : [0, T ] × V × [0,�t] −→ V , starting from u(t0 = 0) = u0, we try to estimate the
solution u of (3.1) at the points (tn+1), n = 0, . . . , N − 1, by estimating step by step the
values of u(tn+1) using the variation of constants formula

u(tn+1) = u(tn) +
∫ tn+1

tn
F(τ, u(τ ))dτ.

Here we restrict ourselves to a one step method that consists to approach the expression∫ tn+1
tn

F(τ, u(τ ))dτ by �tφ(tn, u(tn),�t), i.e., the approximated solution of problem (3.1)
is given by {

U0 = u0,

Un+1 = Un + �tφ(tn, Un,�t), n = 0, . . . , N − 1.
(3.2)

The convergence of this numerical scheme is based on the estimation of the local consistency
error.

Definition 3.1 The local consistancy error El relative to the exact solution u of (3.1) is defined
by

El(tn+1) = u(tn+1) − u(tn) − �tφ(tn, u(tn),�t), ∀n = 0, . . . , N − 1. (3.3)

The next Theorem is a direct generalization of a well-known result for ODE in the form
ut = F(t, u), where F has values in Rk, k ∈ N

∗ (see for example Theorem 3.5 of [19]).

Theorem 3.2 Let the assumptions of Theorem 2.5 be satisfied (or Remark 2.6 in the linear
or semilinear case). Let u be the exact solution of problem (3.1). Suppose that φ is locally
Lipschitz continuous with respect to the second variable uniformly in t, i.e., there exists a
positive constant L independent of t and �t such that

‖φ(t, u,�t) − φ(t, v,�t)‖ ≤ L‖u − v‖, ∀t ∈ [0, T ], u ∈ W , v ∈ V , (3.4)

and suppose that there exists p ∈ N such that the local errors satisfy

‖El(tn+1)‖ � (�t)p+1, ∀n = 0, 1, . . . , N − 1.

Then the global errors en = u(tn) − Un satisfy

‖en‖ � (�t)p, ∀n = 0, 1, . . . , N . (3.5)

Proof We have from (3.3),

u(tn+1) = u(tn) + �tφ(tn, u(tn),�t) + El(tn+1), n = 0, 1, . . . , N .

123



Fully discrete approximation of general nonlinear Sobolev. . . 59

Then, from (3.2), the Lipschitz property on φ and the fact that u ∈ C([0, T ′], W ), we obtain

‖en+1‖ ≤ ‖en‖ + �t‖φ(tn, u(tn),�t) − φ(tn, Un,�t)‖ + ‖El(tn+1)‖
≤ (1 + L�t)‖en‖ + C(�t)p+1. (3.6)

By induction on n, we deduce that

‖en‖ ≤ (1 + L�t)n‖e0‖ + C(�t)p+1
n−1∑
k=0

(1 + L�t)n−k−1, ∀ 1 ≤ n ≤ N .

Since e0 = 0, we find that (3.5) holds. �
Lemma 3.3 Assume that u0 ∈ W . Under the assumptions H1–H5, the function F is locally
Lipschitz with respect to the second variable uniformly in t, i.e., for all t ∈ [0, T ],

‖F(t, u) − F(t, v)‖ � ‖u − v‖, ∀u ∈ W , ∀v ∈ V .

Proof By definition of F, it is easy to see that

‖F(t, u) − F(t, v)‖ ≤ ‖g(t, u) − g(t, v)‖ + ‖A(t, v)v − A(t, u)u‖.
The result follows thanks to Corollary 2.2, (2.7) and the fact that u ∈ W . �
Remark 3.4 In the linear or semilinear case, the assumptions H1, H2 and H4 guarantee that
F is V -Lipschitz continuous with respect to the second variable uniformly in t .

We now concentrate on two particular schemes.

3.1.1 Explicit Euler scheme

This scheme corresponds to the choice φ(t, u,�t) = F(t, u), and then takes the form{
U0 = u0.

Un+1 = Un + �t F(tn, Un), n = 0, . . . , N − 1.
(3.7)

In this case, we have the next error estimate.

Proposition 3.5 Under the assumptions of Theorem 2.5, assume that the solution u of (1.1)
has the extra regularity C2([0, T ′]; V ). If Un is the approximated solution given by the explicit
Euler scheme (3.7), then the local errors El satisfy the following estimate

‖El(tn+1)‖ � (�t)2, ∀ 0 ≤ n ≤ N − 1. (3.8)

Furthermore the global errors satisfy

‖u(tn) − Un‖ � �t, ∀ 0 ≤ n ≤ N . (3.9)

Proof By a Taylor development with integral remainder at order 1, we have

u(tn+1) = u(tn) + �tu′(tn) +
∫ tn+1

tn
(tn+1 − τ)u′′(τ )dτ.

Consequently, one has

El(tn+1) =
∫ tn+1

tn
(tn+1 − τ)u′′(τ )dτ
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and we conclude that (3.8) holds by our assumption.
For the second assertion, we simply notice that Lemma 3.3 guarantees that

φ(t, u,�t) = F(t, u) satisfies (3.4) and we conclude by Theorem 3.2. �

Remark 3.6 In the linear or semilinear case, it is not difficult to check that the assumption
f ∈ C1([0, T ′]× V ; V

′
) implies the extra regularity u ∈ C2([0, T ′]; V ). In the general situ-

ation, we further need that the mapping (t, v) → Ai (t, v), i = 1, 2, is Fréchet differentiable
on [0, T ′] × V , with∥∥∥∥∂ Ai

∂t
(t, v)

∥∥∥∥L(R;L(V ;V ′))
+
∥∥∥∥∂ Ai

∂v
(t, v)

∥∥∥∥L(V ;L(V ;V ′))
� 1, ∀t ∈ [0, T ], v ∈ V .

3.1.2 Heun’s scheme (or Runge–Kutta of order 2)

This scheme corresponds to the choice

φ(t, u,�t) = 1

2
(F(t, u) + F(t + �t, u + �t F(t, u))),

and then may be written as
⎧⎨
⎩

U0 = u0

U∗
n+1 = Un + �t F(tn, Un),

Un+1 = Un + �t
2 [F(tn, Un) + F(tn+1, U∗

n+1)], n = 0, . . . , N − 1.
(3.10)

Proposition 3.7 Under the assumptions of Theorem 2.5, assume that the solution u of (1.1)
has the extra regularity C3([0, T ′]; V ). If Un is the approximated solution given by the
Runge–Kutta scheme, then

‖El(tn+1)‖ � (�t)3, ∀ 0 ≤ n ≤ N − 1.

As a consequence, we have

‖u(tn) − Un‖ � (�t)2, ∀ 0 ≤ n ≤ N .

Proof The first assumption follows by a Taylor development with integral remainder at the
order 2. Thanks to Lemma 3.3, we easily check that

‖φ(t, u,�t) − φ(t, v,�t)‖ � (1 + �t)‖u − v‖, ∀t ∈ [0, T ], u ∈ W , v ∈ V ,

which implies that φ satisfies (3.4). The second assertion then follows from Theorem 3.2. �

Remark 3.8 In the linear or semilinear case, the assumption f ∈ C2([0, T ′]×V ; V
′
) implies

the extra regularity u ∈ C3([0, T ′]; V ). In the general situation, we further need that the
mapping (t, v) → Ai (t, v), i = 1, 2, is twicely Fréchet differentiable on [0, T ′] × V , with

∥∥∥∥∂2Ai

∂t2
(t, v)

∥∥∥∥L(R,R;L(V ;V ′))
+
∥∥∥∥∂2Ai

∂v2
(t, v)

∥∥∥∥L(V ,V ;L(V ;V ′))

+
∥∥∥∥∂2Ai

∂t∂v
(t, v)

∥∥∥∥L(R,V ;L(V ;V ′))
� 1, ∀t ∈ [0, T ], v ∈ V .
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3.2 Fully discrete scheme

For a positive parameter h (that plays the rule of a mesh size), we suppose given a finite
dimensional subspace Vh of V and build a fully discrete approximation of problem (1.1). For
that purpose, let us introduce some useful notations. For an arbitrary element uh in Vh , we
consider the approximation Ai,h(t, uh) of Ai (t, uh), i = 1, 2, defined by

〈Ai,h(t, uh)vh, wh〉V ′
h ,Vh

= ai (t; uh; vh, wh), ∀vh, wh ∈ Vh . (3.11)

For further uses, for any t ∈ [0, T ] and any u ∈ V , we define the orthogonal projection
Ph(t, u) associated with the bilinear form a1(t; u; ·, ·), i.e., for any v ∈ V , Ph(t, u)v ∈ Vh

is the unique solution of

a1(t; u; Ph(t, u)v,wh) = a1(t; u; v,wh), ∀wh ∈ Vh .

Similarly we introduce the orthogonal projection Qh in V on Vh associated with the inner
product (·, ·)V .

We first consider the discrete (in space) version of (1.1), namely we look for uh ∈
C1([0, T ], Vh) solution of{

A1,h(t, uh)uh,t + A2,h(t, uh)uh = fh(t, uh), in Vh, 0 < t ≤ T ,

uh(0) = Ph(t0, u0)u0, in Vh,
(3.12)

where fh(t, uh) = Ih f (t, uh) and Ih : V ′ → V ′
h is the linear and continuous operator

defined by

〈 fh(t, uh), vh〉V ′
h ,Vh

= 〈 f (t, uh), vh〉V ′,V , ∀vh ∈ Vh .

As in the continuous case, the operator A1,h(t, uh), t ∈ [0, T ], uh ∈ Vh being invertible, this
problem is then equivalent to{

uh,t + Ah(t, uh)uh = gh(t, uh), in Vh, 0 < t ≤ T ,

uh(0) = Ph(t0, u0)u0, in Vh,
(3.13)

where Ah(t, uh) = A1,h(t, uh)−1A2,h(t, uh) and gh(t, uh) = A1,h(t, uh)−1 fh(t, uh). The
next Lemma shows that the operatorAh(t, uh) is bounded (uniformly with respect to h) from
Vh into itself.

Lemma 3.9 Under the hypotheses H1 and H2, for any t ∈ [0, T ] and vh ∈ Vh, one has

‖Ah(t, vh)‖L(Vh ) ≤ M2

α
. (3.14)

Proof Let us fix t ∈ [0, T ] and vh ∈ Vh . Then by definition we have

‖Ah(t, vh)‖L(Vh ) = sup
wh∈Vh ,wh �=0

‖Ah(t, vh)wh‖
‖wh‖ .

For a fixedwh ∈ Vh, wh �= 0, we set v′
h = A1,h(t, vh)−1A2,h(t, vh)wh, then owing to (3.11),

v′
h ∈ Vh is the unique solution of

a1(t; vh; v′
h, ϕh) = a2(t; vh;wh, ϕh), ∀ϕh ∈ Vh .

Taking ϕh = v′
h and using the hypotheses H1 and H2, we find that

α‖v′
h‖2 ≤ a2(t; vh;wh, v′

h) ≤ M2‖wh‖‖v′
h‖,

which implies (3.14). �
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Note that problem (3.13) can be equivalently written as an ODE in Vh :{
uh,t = Fh(t, uh), in Vh, 0 < t ≤ T ,

uh(0) = Ph(t0, u0)u0, in Vh,
(3.15)

where Fh(t, uh) = gh(t, uh)−Ah(t, uh)uh .Therefore its approximation by an explicit Euler
scheme or by a Runge–Kutta scheme of order 2, takes the respective forms{

U0,h = Ph(t0, u0)u0

Un+1,h = Un,h + �t Fh(tn, Un,h), n = 0, . . . , N − 1.
(3.16)

or ⎧⎨
⎩

U0,h = Ph(t0, u0)u0

U∗
n+1,h = Un,h + �t Fh(tn, Un,h),

Un+1,h = Un,h + �t
2 [Fh(tn, Un,h) + Fh(tn+1, U∗

n+1,h)], n = 0, . . . , N − 1.
(3.17)

Remark 3.10 For any uh ∈ Vh, the hypotheses H1 and H2 yield

gh(t, uh) = Ph(t, uh)g(t, uh), ∀t ∈ [0, T ]. (3.18)

Indeed as A1,h(t, uh)gh(t, uh) = Ih f (t, uh), we obtain

a1(t; uh; gh(t, uh), vh) = 〈 f (t, uh), vh〉V ′,V , ∀vh ∈ Vh .

On one hand, the definition of Ph(t, uh) implies that

a1(t; uh; Ph(t, uh)g(t, uh), vh) = a1(t; uh; g(t, uh), vh) = a1(t; uh; A−1
1 (t, uh) f (t, uh), vh),

on the other hand, by the definition of the bilinear form a1(t; uh; ·, ·), we find that

a1(t; uh; gh(t, uh), vh) = a1(t; uh; Ph(t, uh)g(t, uh), vh), ∀vh ∈ Vh .

This proves (3.18) by Lax–Milgram’s lemma.

Our error analysis of the fully discrete scheme is based on the following assumptions.

H7 There exist two Hilbert spaces Ds and D̃s−1 (s ≥ 1 being a parameter that could take
different occurrence or not) such that Ds ↪→ V and such that A1(t, u) is an isomorphism
from Ds into D̃s−1, while A2(t, u) is only supposed to be bounded from Ds into D̃s−1,

with

‖A1(t, u)−1‖L(D̃s−1,Ds )
+ ‖A2(t, u)‖L(Ds ,D̃s−1)

� 1,

for all t ∈ [0, T ] and u ∈ V .
H8 For each parameter s from assumptionH7, there exists a positive real number q(s) such

that
‖ϕ − Qhϕ‖ � hq(s)‖ϕ‖Ds , ∀ϕ ∈ Ds . (3.19)

In practice, under the assumption that V ↪→ H , Ds corresponds to the domain of powers of
A1(t, u) or a subdomain of it (hence D̃s−1 = A1(t, u)Ds), while the estimate (3.19) follows
from an interpolation error estimate. In particular for s = 1, we can chose D1 = D(A1(t, u))

and D̃0 = H , if D(A1(t, u)) is independent of t and u, and if we can check the above
assumptions. We refer to Sects. 4 and 5 for some concrete illustrations.

Now, if we denote by

‖ · ‖t,v = √
a1(t; v; ·, ·),

123



Fully discrete approximation of general nonlinear Sobolev. . . 63

the norm on V associated with the bilinear form a1(t; v; ·, ·), by the continuity and the
uniform coercivity of a1(t; v; ·, ·) (hypotheses H1 and H2), we notice that

√
α‖u‖ ≤ ‖u‖t,v ≤ √

M1‖u‖, ∀t ∈ [0, T ],∀u, v ∈ V . (3.20)

Proposition 3.11 Let the hypotheses H1–H8 be satisfied. If we suppose that f ∈ C([0, T ] ×
V ; D̃s−1), then for all t ∈ [0, T ] and (v, vh) ∈ Ds × Vh, we have

‖Fh(t, vh) − F(t, v)‖ � (1 + ‖v‖)‖v − vh‖ + hq(s)(‖v‖Ds + ‖ f (t, v)‖D̃s−1
). (3.21)

Proof Fix t ∈ [0, T ] and (v, vh) ∈ Ds × Vh . By the triangular inequality, we have

‖Fh(t, vh) − F(t, v)‖ ≤ ‖gh(t, vh) − g(t, v)‖ + ‖A(t, v)v − Ah(t, vh)vh‖.
We start by the estimating the first term of this right-hand side. The identity (3.18) yields

‖gh(t, vh) − g(t, v)‖ ≤ ‖gh(t, vh) − Ph(t, vh)g(t, v)‖ + ‖(Ph(t, vh) − I )g(t, v)‖
= ‖Ph(t, vh)(g(t, vh) − g(t, v))‖ + ‖(Ph(t, vh) − I )g(t, v)‖.

On one hand using (3.20), we obtain

‖Ph(t, vh)(g(t, vh) − g(t, v))‖ ≤ 1√
α

‖Ph(t, vh)(g(t, vh) − g(t, v))‖t,vh

≤ 1√
α

‖g(t, vh) − g(t, v)‖t,vh

≤
√

M1

α
‖g(t, vh) − g(t, v)‖

�
√

M1

α
‖v − vh‖,

where the last estimate is due to Corollary 2.4, 2. On the other hand, using again (3.20) we
obtain

‖(Ph(t, vh) − I )g(t, v)‖ ≤ 1√
α

‖(Ph(t, vh) − I )g(t, v)‖t,vh

≤ 1√
α

‖(Qh − I )g(t, v)‖t,vh

≤
√

M1

α
‖(Qh − I )g(t, v)‖.

Owing to the hypothesis (3.19), we find

‖(Ph(t, vh) − I )g(t, v)‖ � hq(s)‖g(t, v)‖Ds � hq(s)‖ f (t, v)‖D̃s−1
.

For the second term, we may write

‖A(t, v)v − Ah(t, vh)vh‖ ≤ ‖A(t, v)v − A(t, vh)v‖ + ‖(I − Ph(t, vh))A(t, vh)v‖
+‖Ph(t, vh)A(t, vh)v − Ah(t, vh)vh‖. (3.22)

Corollary 2.3 directly furnishes

‖A(t, v)v − A(t, vh)v‖ � ‖v − vh‖‖v‖.
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Further owing to (3.20), we have

‖(I − Ph(t, vh))A(t, vh)v‖ ≤
√

M1

α
‖(I − Qh)A(t, vh)v‖.

As A(t, vh)v ∈ Ds due to the assumption v ∈ Ds, we deduce from the estimate (3.19) that

‖(I − Ph(t, vh))A(t, vh)v‖ � hq(s)‖A(t, vh)v‖Ds � hq(s)‖v‖Ds .

It then remains to estimate the last term of the right-hand side of (3.22). For that purpose,
setting w = A(t, vh)v and wh = Ah(t, vh)vh, by the definition of a1 and a2, we have

a1(t; vh;w,ψ) = a2(t; vh; v,ψ), ∀ψ ∈ V ,

a1(t; vh;wh, ψh) = a2(t; vh; vh, ψh), ∀ψh ∈ Vh,

and by the definition of Ph(t, vh), we also have

a1(t; vh; Ph(t, vh)w,ψh) = a1(t; vh;w,ψh), ∀ψh ∈ Vh .

Hence

a1(t; vh; Ph(t, vh)w − wh, ψh) = a2(t; vh; v − vh, ψh), ∀ψh ∈ Vh . (3.23)

Choosing in (3.23) ψh = Ph(t, vh)w − wh, we obtain owing to the hypotheses H1 and H2

‖Ph(t, vh)w − wh‖ � ‖v − vh‖.
Consequently

‖Ph(t, vh)A(t, v)v − Ah(t, vh)vh‖ � ‖v − vh‖.
Altogether we have shown that (3.21) is valid. �

Lemma 3.12 Suppose that u0 ∈ Ds, that f ∈ C([0, T ] × V ; D̃s−1) is (V , D̃s−1)-Lipschitz
continuous with respect to the second variable uniformly in t, and that H7 hold. Then the
sequence (Un)N

n=1 defined by (3.10) is (uniformly) bounded in Ds, i.e.,

‖Un‖Ds � 1, ∀n = 1, . . . , N .

Proof By construction (see (3.10)), we have

‖Un+1‖Ds ≤ ‖Un‖Ds +
�t

2

(‖F(tn, Un)‖Ds +‖F
(
tn+1, Un +�t F(tn, Un)

)‖Ds

)
.(3.24)

We then estimate each term of this right-hand side separately by using the assumptions that
A1(t, v)−1 is (uniformly) bounded from D̃s−1 into Ds, that A(t, v) is (uniformly) bounded
in Ds and taking into account the Lipschitz hypothesis on f .

For the first term, by the triangle inequality, for any u ∈ Ds we have

‖F(tn, u)‖Ds ≤ ‖F(tn, u) − F(tn, 0)‖Ds + ‖F(tn, 0)‖Ds . (3.25)

Since F(tn, 0) = A1(tn, 0)−1 f (tn, 0), we directly get

‖F(tn, 0)‖Ds � ‖ f (tn, 0)‖D̃s−1
, ∀ n = 0, 1, . . . , N . (3.26)

Furthermore for any u ∈ Ds, and for any t ∈ [0, T ], we can write
‖F(t, u) − F(t, 0)‖Ds ≤ ‖A(t, u)u‖Ds + ‖g(t, u) − g(t, 0)‖Ds

≤ ‖A(t, u)u‖Ds + ‖A1(t, u)−1 f (t, u) − A1(t, 0)
−1 f (t, 0)‖Ds
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� ‖u‖Ds + ‖A1(t, u)−1( f (t, u) − f (t, 0))‖Ds

+‖A1(t, u)−1 f (t, 0) − A1(t, 0)
−1 f (t, 0)‖Ds

� ‖u‖Ds + ‖ f (t, u) − f (t, 0)‖D̃s−1
+ ‖ f (t, 0)‖D̃s−1

By the Lipschitz property on f , we then conclude that

‖F(t, u) − F(t, 0)‖Ds � ‖u‖Ds + ‖ f (t, 0)‖D̃s−1
. (3.27)

These two estimates in (3.25) leads to

‖F(tn, u)‖Ds � ‖u‖Ds + ‖ f (tn, 0)‖D̃s−1
. (3.28)

To estimate the second term of the right-hand side of (3.24), writting

F
(
tn+1, Un + �t F(tn, Un)

) = F
(
tn+1, Un + �t F(tn, Un)

)− F
(
tn+1, 0

)+ F
(
tn+1, 0

)
,

and using (3.26) and (3.27), we obtain

‖F
(
tn+1, Un + �t F(tn, Un)

)‖Ds � ‖Un + �t F(tn, Un)‖Ds + ‖ f (tn+1, 0)‖D̃s−1

� ‖Un‖Ds + �t‖F(tn, Un)‖Ds + ‖ f (tn+1, 0)‖D̃s−1
.

Therefore (3.28) allows to conclude that

‖F
(
tn+1, Un+�t F(tn, Un)

)‖Ds � (1+�t)‖Un‖Ds +�t‖ f (tn, 0)‖D̃s−1
+‖ f (tn+1, 0)‖D̃s−1

.

Using this estimate and (3.28) in (3.24) leads to

‖Un+1‖Ds � (1 + �t)‖Un‖Ds + �t‖ f (tn, 0)‖D̃s−1
+ �t‖ f (tn+1, 0)‖D̃s−1

.

By iteration, we find

‖Un‖Ds � (1+ �t)n‖u0‖Ds + �t
n−1∑
k=0

(1+ �t)n−1−k(‖ f (tk, 0)‖D̃s−1
+ ‖ f (tk+1, 0)‖D̃s−1

)
.

As for all 0 ≤ k ≤ N

(1 + �t)k ≤ (1 + �t)N � eT ,

the result follows since f is continuous from [0, T ] × V into D̃s−1. �
Lemma 3.13 Let the hypotheses H1 to H8 and the hypotheses of Lemma 3.12 hold. Let Un

(resp. Un,h) be the approximated solution given by (3.10) (resp. (3.17)). Then the error
en,h = Un − Un,h is bounded as follows

‖en,h‖ � hq(s). (3.29)

Proof By the triangular inequality, we can write

‖en+1,h‖ ≤ ‖en,h‖ + �t

2
‖Fh(tn, Un,h) − F(tn, Un)‖

+ �t

2
‖Fh

(
tn+1, Un,h + �t Fh(tn, Un,h)

)− F
(
tn+1, Un + �t F(tn, Un)

)‖.
As Un ∈ Ds, for all 1 ≤ n ≤ N , Proposition 3.11 and Lemma 3.12 lead to

‖Fh(tn, Un,h) − F(tn, Un)‖ � ‖en,h‖ + hq(s)(‖Un‖Ds + ‖ f (tn, Un)‖D̃s−1

)
.
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Using again this proposition and the previous estimate, we find

‖Fh
(
tn+1, Un,h + �t Fh(tn, Un,h)

)− F
(
tn+1, Un + �t F(tn, Un)

)‖ � (1 + �t)‖en,h‖
+hq(s)(‖Un‖Ds + ‖ f (tn, Un)‖D̃s−1

+ ‖ f
(
tn+1, Un + �t F(tn, Un)

)‖D̃s−1

)
.

Consequently

‖en+1,h‖ � (1 + �t)‖en,h‖ + hq(s)�t
(‖Un‖Ds + ‖ f (tn, Un)‖D̃s−1

+‖ f (tn+1, Un + �t F(tn, Un))‖D̃s−1

)
.

By iteration we deduce that

‖en,h‖ � (1 + �t)n‖e0,h‖ + hq(s)�t
n−1∑
k=0

(1 + �t)n−k−1(‖Uk‖Ds (3.30)

+‖ f (tk, Uk)‖D̃s−1
+ ‖ f (tk+1, Uk + �t F(tk, Uk))‖D̃s−1

)
.

As u0 ∈ Ds, our hypothesis (3.19) guarantees that

‖e0,h‖ = ‖u0 − Ph(t0, u0)u0‖ � hq(s)‖u0‖Ds . (3.31)

By the Lipschitz continuity of f and since Ds is continously embedded into V , we obtain

‖ f (tk, Uk)‖D̃s−1
� ‖Uk‖Ds + ‖ f (tk, 0)‖D̃s−1

. (3.32)

Similarly one has

‖ f (tk+1, Uk + �t F(tk, Uk)‖D̃s−1
� ‖Uk‖Ds + �t‖F(tk, Uk)‖Ds + ‖ f (tk+1, 0)‖D̃s−1

With the help of the estimate (3.28), we obtain

‖ f (tk+1, Uk +�t F(tk , Uk)‖D̃s−1 �(1 + �t)‖Uk‖Ds +‖ f (tk+1, 0)‖D̃s−1 +�t‖ f (tk, 0)‖D̃s−1 .

Inserting this estimate, as well as (3.31) and (3.32) into (3.30), we deduce owing to Lemma
3.12 and the continuity of f from [0, T ] × V into D̃s−1 that (3.29) is valid. �

Remark 3.14 Under the same hypotheses of Lemma 3.13, if the Euler scheme (3.16) is used
to approximate the solution of problem (1.1), then the error estimate (3.29) remains valid.

Corollary 3.15 Under the hypotheses H1 to H8, we suppose that u0 ∈ W ∩ Ds, f ∈
C([0, T ] × V ; D̃s−1), that f is (V , D̃s−1)-Lipschitz continuous with respect to the sec-
ond variable uniformly in t. Assume that the solution u of problem (1.1) exists and belongs
to C p+1([0, T ′]; V ), p = 1 or 2. Let Un,h be its approximated solution given by (3.16) for
p = 1 (resp. (3.17) for p = 2). Then we have the global error estimate

‖u(tn) − Un,h‖ � (�t)p + hq(s), ∀n = 1, . . . , N . (3.33)

Proof Direct consequence of Proposition 3.5 and Remark 3.14 for the Euler scheme, and of
Proposition 3.7 and Lemma 3.13 for the Runge–Kutta scheme. �
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4 Applications to particular semi-linear equations

4.1 Elliptic operators of order two: the regular case

Let � be a bounded domain of Rd , d ≥ 1 with a Lipschitz boundary. For i = 1, 2, let Li be
two elliptic operators of order two of the form

Li (x, Dx )u = −
d∑

k,�=1

∂k(a
(i)
k,�(x)∂�u) +

d∑
k=1

b(i)
k (x)∂ku + c(i)(x)u, (4.1)

where a(i)
k,� = a(i)

�,k ∈ C0,1(�̄), b(i)
k , c(i) ∈ L∞(�). Moreover we suppose that L1 is strongly

elliptic, namely that there exists α∗ > 0 such that

d∑
k,�=1

a(1)
k,�(x)ξ�ξk ≥ α∗|ξ |2, ∀ξ ∈ R

d .

In this case, we may introduce the continuous bilinear forms ai on H1
0 (�) × H1

0 (�) by

ai (u, v)=
∫

�

⎛
⎝ d∑

k,�=1
a(i)

k,�(x) ∂�u ∂kv+
d∑

k=1
b(i)

k (x)∂ku v+c(i)(x)u v

⎞
⎠ dx,∀u, v ∈ H1

0 (�).

Hence their associated operator Ai

〈Ai u, v〉V ′,V = ai (u, v), ∀u, v ∈ H1
0 (�),

are continuous from H1
0 (�) into its dual H−1(�). These operators satisfy the hypotheses

from Sect. 2 with V = H1
0 (�) and H = L2(�), if we assume that a1 is coercive on H1

0 (�)

(that is the case if divb(1) = ∑d
k=1 ∂kb(1)

k = 0 and c(1) ≥ 0 for example).
Consequently the problem⎧⎨

⎩
L1ut + L2u = f (t, u), in � × (0, T ),

u = 0, on ∂� × (0, T ),

u(0) = u0, in H1
0 (�),

(4.2)

is well-posedness for an initial datum u0 ∈ H1
0 (�) and f continuously differentiable from

[0, T ] × H1
0 (�) into H−1(�). This system is a semi-linear Sobolev equation in � that

has been analyzed in [2,15,28,31,32,39] in some particular situations with Neumann type
boundary conditions. Such boundary conditions also enter into our framework by simply
replacing H1

0 (�) by H1(�) (and assuming that a1 is coercive in H1(�)).
In order to check the assumptionsH7 andH8, we will characterize the domains of A1 (as

an unbounded operator in H ) and of A
3
2
1 in some particular situations. In the first case we

make use of Kadlec’s result.

Lemma 4.1 Under the previous hypotheses on the coefficients of Li , i = 1, 2, and if � is
convex or has a boundary of class C1,1, then

D(A1) = H2(�) ∩ H1
0 (�) ↪→ D(A2). (4.3)

Proof For i = 1, or 2, we recall that

D(Ai ) = {u ∈ H1
0 (�) : Ai u ∈ L2(�)}.
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Hence u ∈ H1
0 (�) belongs to D(A1) if and only if there exists f ∈ L2(�) such that

a1(u, v) =
∫

�

f v dx, ∀v ∈ H1
0 (�).

This is equivalent to

∫
�

d∑
k,�=1

a(1)
k,�(x)∂�u∂kv dx =

∫
�

hv dx, ∀v ∈ H1
0 (�),

where h = f − ∑d
k=1 b(1)

k ∂ku − c(1)u belongs to L2(�). Hence owing to Kadlec’s result
[22] (see also [18, Thm 3.2.1.3]), we conclude that u ∈ H2(�). This proves the embedding

D(A1) ↪→ H2(�) ∩ H1
0 (�).

The inverse embedding being trivial, we have shown that

‖u‖D(A1) ∼ ‖u‖H2(�), ∀u ∈ D(A1).

Clearly we have D(A1) = H2(�) ∩ H1
0 (�) ⊂ D(A2), and therefore for u ∈ D(A1), L2u

belongs to L2(�) with

‖u‖D(A2) = ‖u‖H1
0 (�) + ‖L2u‖L2(�) � ‖u‖H2(�),

which proves the continuous embedding of D(A1) into D(A2). �
With the help of this result, as a first guess we can take D1 = D(A1) and D̃0 = H ,

since A1 is an isomorphism from D(A1) into H and A2 is bounded from D(A1) into H . The

characterization of the domain of D(A
3
2
1 ) and additional assumptions on the coefficients of

A2 allow to build a second choice of pairs Ds, D̃s−1.

Lemma 4.2 Suppose that the boundary of � is of class C2,1, that a(i)
k,� = a(i)

�,k ∈ C1,1(�̄),

and that b(i)
k , c(i) ∈ C0,1(�). Then

D(A3/2
1 ) = A−1

1 H1
0 (�) = {u ∈ H3(�) ∩ H1

0 (�) : A1u = 0 on ∂�}. (4.4)

If furthermore we have

a(2)
k,l = a(1)

k,l and d(2) · n = d(1) · n on ∂�, (4.5)

where n is the unit outward normal vector along the boundary and for d(i) = (d(i)
l )d

l=1 is the
vector given by

d(i)
l = −

d∑
k

∂ka(i)
k,l + b(i)

l .

Then A2 is continuous from D(A3/2
1 ) into H1

0 (�).

Proof Let u ∈ D(A3/2
1 ). Then there exists h ∈ H1

0 (�) such that

A1u = h.

By [18, Theorem 2.5.1.1, p. 128], we deduce that u ∈ H3(�), hence the embedding

D(A3/2
1 ) ↪→ {u ∈ H3(�) ∩ H1

0 (�) : A1u = 0 sur ∂�}.
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The converse embedding being trivial, the first assertion is proved.
Let us go on with the second assertion. Let us then fix u ∈ D(A3/2

1 ), then by the regularity
of the coefficients of L2, we directly see that A2u = L2u belongs to H1(�). Hence it remains
to show that it is zero on the boundary. For that purpose, we notice that

Li u = −
d∑

k,�=1

a(i)
k,�∂k∂�u + d(i) · ∇u + c(i)u.

Hence on the boundary, splitting the gradient of u into its tangential part and its normal one,
and recalling that u = 0 on the boundary, we have

Li u = −
d∑

k,�=1

a(i)
k,�∂k∂�u + (d(i) · n)∂nu on ∂�.

Our assumption (4.5) then implies that

L2u = L1u on ∂�,

which finishes the proof since L1u is zero on the boundary. �
Let us notice that a similar result may remain valid for less regular boundaries. Indeed it

holds for instance for a square and for L1 reduces to the Laplace operator.

Lemma 4.3 If � is the unit square (0, 1)2 of the plane and L1 = �, then (4.4) remains valid.

Proof We use an argument from the proof of Lemma 2.4 in [21]. Let v ∈ D(A3/2
1 ) ↪→

D(A1) = H2(�) ∩ H1
0 (�), then g = �v ∈ H1

0 (�). Hence from elliptic regularity, v ∈
H3(� \ V ), where V is any neighborhood of the corners. It then remains to show the H3

regularity near the corners. By symmetry, it suffices to show such a regularity near 0. Let
us then fix a radial cut-off function η such that η = 1 near 0 with supp η ⊂ B(0, 1

2 ).

Consequently u = ηv (extended by zero outside its support) belongs to H2((0,∞)2) ∩
H1
0 ((0,∞)2) and satisfies

�u = ηg + 2
∂η

∂r

∂v

∂r
+ v�η = f̃ ∈ H1

0 ((0,∞)2).

We now set

U (x, y) = u(|x |, |y|) sign xy, and F(x, y) = f̃ (|x |, |y|) sign xy,

and easily check that

�U = F,

in the distributional sense. But as F ∈ H1(R2) by [37, p.85], we conclude thatU ∈ H3(R2),

and consequently u ∈ H3((0,∞)2) and finally v ∈ H3(�). �

In conclusion if (4.4) and (4.5) are valid, we can take D3/2 = D(A
3
2
1 ) and D̃1/2 =

D(A
1
2
1 ) = H1

0 (�).
Now to build a fully discrete scheme, we shall use a finite element method based on a

triangulation of �. To this end, we consider a family of meshes {Th}h of�, where each mesh
is made of tetrahedral (or triangular) elements K . To simplify the analysis, we assume that
the boundary of � is exactly triangulated, and therefore, we consider curved Lagrange finite
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elements as described in [5]. Also, for each element K , we denote byFK the mapping taking
the reference element K̂ to K .

With the help of this triangulation Th , we define the approximation space Vh ⊂ H1
0 (�)

by

Vh =
{
vh ∈ H1

0 (�) : vh |K ◦ F−1
K ∈ Pp(K̂ ) ∀K ∈ Th

}
, (4.6)

where Pp(K̂ ) stands for the set of polynomials of total degree less than or equal to p.
In this setting, owing to Corollary 5.2 of [5] (see also Theorem 3.2.2 of [10]), the assump-

tion (3.19) is satisfied for s = 1 (under the assumption (4.3)) or s = 3
2 (under the assumptions

(4.4) and (4.5)), with q(s) = 2s − 1 and the choice p ≥ q(s), i.e., for all f ∈ Ds , one has

‖ f − Qh f ‖ � hq(s)‖ f ‖Ds .

Finally the fully discrete schemes of problem (4.2) can be formulated as follows: The
explicit Euler scheme consists in looking for Un+1,h ∈ Vh solution of

a1
(
Un+1,h, χh

) = a1(Un,h, χh) − �ta2(Un,h, χh) + �t( f (tn, Un,h), χh), ∀χh ∈ Vh,

(4.7)
that allows to compute Un+1,h by the knowledge of Un,h and of f (tn, Un,h).

Similarly, by the Runge–Kutta method, we look for U∗
n+1,h ∈ Vh solution of

a1(U
∗
n+1,h, χh) = a1(Un,h, χh) + �t( fh(tn, Un,h), χh) − �ta2(Un,h, χh), ∀χh ∈ Vh .

and then Un+1,h ∈ Vh solution of

a1(Un+1,h, χh) = a1(Un,h, χh)

+�t

2

[(
f (tn, Un,h)+ f (tn+1, U∗

n+1,h), χh
)−a2(Un,h + U∗

n+1,h, χh)
]
, ∀χh ∈ Vh .

(4.8)

4.2 Elliptic operators of order two: the singular case

We now extend the previous results to the case where the domain � is a non-smooth two-
dimensional domain and the principal part of L1 and L2 are piecewise constant. In that
case, Lemma 4.1 is no more valid in general (see [24–26,30] for instance), but the use of
weighted Sobolev spaces of Kondratiev’s type [18,36] will allow to put (4.2) into our abstract
framework.

Let us start with the definition of the weighted Sobolev spaces in a polygonal domain D
of R2 (see [36] or [18, Def. 8.4.1.1]).

Definition 4.4 Let r(x) be the distance from a point x of D to the vertices of D. For α ∈ R

and k ∈ N
∗, we define

L2
α(D) = {u ∈ L2

loc(D) : rαu ∈ L2(D)},
V k

α (D) = {u ∈ L2
α−k(D) : rα+|β|−k Dβu ∈ L2(D),∀β ∈ N

2 : |β| ≤ k}.
These spaces are Hilbert spaces equipped with their natural norms:

‖u‖L2
α(D) = ‖rαu‖L2(D), ‖u‖2V k

α (D)
=

∑
|β|≤k

‖rα+|β|−k Dβu‖2L2(D)
.
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For any edge e of D, the trace space of V 1
α (D) onto e is denoted by V

1
2

α (e) (see [29, Thm

1.31]). Note that V
1
2

α (e) has its own definition, see [29, Def. 1.9], in particular we have

V
1
2

α (e) ↪→ L2
α− 1

2
(e). (4.9)

We now suppose that � is a polygonal domain of R2 that is partitioned into sub-domains
� j , j = 1, . . . , J , with a positive integer J so that the � j ’s are disjoint open polygonal
domains and that

�̄ = ∪J
j=1�̄ j .

Let us further denote by e�, � = 1, . . . , L , the set of interior edges, namely the set of straight
segments that are the intersection of �̄ j ∩ �̄ j ′ with j �= j ′ (hence they are not included into
the boundary of �). Similarly the set S of vertices of � is simply the set of vertices of all
� j ’s.

In the following we need piecewise weighted Sobolev spaces Vk
α(�), more precisely, we

set

Vk
α(�) = {v ∈ L2

α−k(�) : v j ∈ V k
α (� j ), ∀ j = 1, . . . , J },

where v j := v|� j denotes the restriction of v to � j . Again these spaces are Hilbert spaces
equipped with their natural norms.

Now we suppose that the operators Li are elliptic of order 2 in the previous form (4.1)
but with coefficients a(i)

k,� = a(i)
�,k piecewise regular, in other words the restriction of a(i)

k,� to

� j are regular (C∞(�̄ j )). As before we assume that the bilinear form a1 associated with A1

is coercive so that A1 is an isomorphism from H1
0 (�) into H−1(�).

To facilitate the presentation, for i = 1 or 2, let us introduce the symmetric matrix
Mi = (a(i)

k,�)k,�=1,2 and the gradient jumps of u through an edge e� as follows

[[
Mi∇u · n

]]
�

=
(
(Mi∇u)|� j − (Mi∇u)|� j ′

)
· n�,

when e� = �̄ j ∩ �̄ j ′ and n� is the unit normal vector along e� orientated from � j to � j ′ .
We now recall Corollary 4.4 of [30] that is valid in dimension 2 under the assumption

γ < 1 since there exists r > 1 such that

L2
γ (�) ↪→ Lr (�). (4.10)

Theorem 4.5 Suppose that γ ∈ (0, 1) and the segment (0, 1 − γ ] does not contain singular

exponent of A1 at all corners of �. Then for all f ∈ L2
γ (�) and h� ∈ V

1
2

γ (e�), � = 1, . . . , L,

there exists a unique solution u ∈ H1
0 (�) ∩ V2

γ (�) to problem

{
L1u j = f j in � j , j = 1, · · · , J ,[[

M1∇u · n
]]

�
= h� on e�, � = 1, · · · , L,

(4.11)

in the sense that

a1(u, v) = F(v), ∀v ∈ H1
0 (�),
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where the linear form F is given by

F(v) =
∫

�

f (x)v(x) dx +
L∑

�=1

∫
e�

h�γ v(x) dσ(x), ∀v ∈ H1
0 (�).

Note that F is well-defined on H1
0 (�) since for all γ ∈ (0, 1), there exists r ∈ (1, 2] such

that

V
1
2

γ (e�) ↪→ Lr (e�). (4.12)

Indeed by (4.9), any w ∈ V
1
2

γ (e�) satisfies

rγ− 1
2 w ∈ L2(e�).

If γ ≤ 1
2 , we directly obtain w ∈ L2(e�), on the contrary if γ ∈ (0, 1

2 ), as

r
1
2−γ ∈ Lt (e�),

for all t < (γ − 1
2 )

−1, owing to Hölder’s inequality we show that w ∈ Lr (e�) for some
r > 1.

This Theorem allows to check the assumption H7 with D1 = V2
γ (�) ∩ H1

0 (�) and

D̃0 = L2
γ (�)×∏L

�=1 V
1
2

γ (e�), for all γ ∈ (1−λa, 1), whenλa is the smallest positive singular
exponent associated with A1. Indeed, the previous result asserts that A1 is an isomorphism
from D1 into D̃0, therefore it remains to check the boundedness property of A2:

Lemma 4.6 A2 is bounded from D1 into D̃0.

Proof Fix v ∈ V2
γ (�) ∩ H1

0 (�), then A2v belongs to H−1(�) and is given by

〈A2v,w〉 = a2(v,w)

=
∫

�

⎛
⎝ 2∑

k,�=1

a(2)
k,�(x) ∂�v ∂kw +

2∑
k=1

b(2)
k (x)∂kv w + c(2)(x)v w

⎞
⎠ dx,

for all w ∈ H1
0 (�). As b(2)

k ∂kv and c(2)v are in L2(�), it remains to transform the first term
of this right-hand side. For that purpose, we first fixw ∈ D(�). By an application of Hölder’s
inequality, there exists r > 1 such that

∂�v j ∈ W 1,r (� j ),∀ j = 1, · · · , J .

Therefore Green’s formula on each � j yields

∫
�

a(2)
k,�(x) ∂�v ∂kw dx = −

J∑
j=1

∫
�

∂k(a
(2)
k,�(x) ∂�)v w dx

+
L∑

�=1

∫
e�

[[
M2∇v · n

]]
�
γw(x) dσ(x), ∀w ∈ D(�).

As ∂k(a
(2)
k,� ∂�)v (resp.

[[
M2∇u · n

]]
�
) belongs to L2

γ (�) (resp. V
1
2

γ (e�)) and since H1
0 (�)

(resp. H
1
2 (e�)) is embedded into Ls(�) (resp. Ls(e�)) for all s > 1 and recalling (4.10),
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(4.12), the previous identity remains valid for all w ∈ H1
0 (�), owing to Hölder’s inequality.

We then deduce that

〈A2v,w〉 =
J∑

j=1

∫
�

L2v j w j dx

+
L∑

�=1

∫
e�

[[
M2∇v · n

]]
�
γw(x) dσ(x), ∀w ∈ H1

0 (�).

This ends the proof in view of the regularity of L2v j and of
[[

M2∇v · n
]]

�
. �

In conclusion problem (4.2) is well-posed if we take an initial datum u0 in D1 and if
f (t, u) is continuous with value in D̃0. Nevertheless it is well known that the reduction of
regularity diminishes the rate of convergence for a standard FEM based on quasi-uniform
meshes, but the use of refined meshes near the singular points allows to restore the optimal
order of convergence, namely the estimate (3.19) is valid with q(1) = 1 (using [36] or [18,
Thm 8.4.1.6] on each subdomain � j ), Vh being defined by (4.6) with a triangulation that is
conform with the partition of � (i.e., each triangle T of Th has to be included into one � j ).

Remark 4.7 Near an exterior vertex, where � is convex or if the coefficients a(1)
k,� are con-

tinuous at an interior vertex, then the shift Theorem is valid in standard Sobolev spaces and
therefore it is not necessary to take initial data in weighted Sobolev spaces near such vertices
but it suffices to take them in H2. Consequently near such vertices, quasi-uniform meshes
can be used.

Remark 4.8 If L2 is strongly elliptic, then this operator may have one singularity Sμ near a
vertex, with 0 < μ < 1, in other words, Sμ ∈ H1

0 (�) behaves like rμ near this vertex, is
piecewise regular elsewhere and satisfies

L2Sμ = g ∈ L2(�).

Then the function u(x, t) = Sμ(x) is clearly a solution of (4.2) with f = g and initial datum
Sμ: ⎧⎨

⎩
L1ut + L2u = g, in � × (0, T ),

u = 0, on ∂� × (0, T ),

u(0) = Sμ, in H1
0 (�).

This solution is indeed furnished by our abstract framework if we fix the parameter γ appro-
priately, namely if γ > max{1 − μ, 1 − λa}.

To avoid to take initial data in weighted Sobolev spaces, we will extend our previous
framework in the following way. For each interior vertex s ∈ Sint, we fix a smooth cut-off
function ηs equal to 1 near s and equal to zero near the other vertices. We then introduce

D̂1 = D1 ⊕ Span {ηs : s ∈ Sint},
in other words v ∈ D̂1 if and only if there exists vw ∈ D1 and coefficients cs ∈ R, s ∈ Sint
such that

v = vw +
∑

s∈Sint

csηs . (4.13)
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This is a Hilbert space with the inner product

(v, v′) = (vw, v′
w)D1 +

∑
s,s′∈Sint

csc′
s,

when v = vw +∑
s∈Sint

csηs and v′ = v′
w +∑

s∈Sint
c′

sηs .

The key point is the next result.

Lemma 4.9 The operator A−1
1 A2 is bounded from D̂1 into itself.

Proof Take an arbitrary element v ∈ D̂1, then it admits the splitting (4.13) and hence

A2v = A2vw +
∑

s∈Sint

cs A2ηs .

As we have seen in Lemma 4.6 that A2vw is in D̃0, it remains to show that A2ηs is in D̃0 as
well. If this is the case, then A2v belongs to D̃0 and we conclude owing to Theorem 4.5.

For s ∈ Sint , let us characterize A2ηs . By definition we have

〈A2ηs, w〉 = a2(ηs, w)

=
∫

�

⎛
⎝ 2∑

k,�=1

a(2)
k,�(x) ∂�ηs ∂kw +

2∑
k=1

b(2)
k (x)∂kηs w + c(2)(x)ηs w

⎞
⎠ dx,

for all w ∈ H1
0 (�). As ηs is regular, we can apply Green’s formula on each � j to find

〈A2ηs, w〉 =
J∑

j=1

∫
�

L2ηs, j w j dx +
L∑

�=1

∫
e�

[[
M2∇ηs · n

]]
�
γw(x) dσ(x).

Since ηs is constant near the vertices of �, we deduce that L2ηs, j ∈ L2
γ (� j ) and that[[

M2∇ηs · n
]]

�
∈ V

1
2

γ (e�), which shows that A2ηs ∈ D̃0. �

Corollary 4.10 If f ∈ C([0, T ]; L2(�)) and u0 ∈ {v ∈ H1
0 (�) : v j ∈ H2(� j ),∀ j =

1, · · · , J }, then problem ⎧⎨
⎩

L1ut + L2u = f , in � × (0, T ),

u = 0, on ∂� × (0, T ),

u(0) = u0, in H1
0 (�),

has a unique solution u ∈ C1([0, T ]; D̂1).

Proof Owing to Hardy’s inequality [18, p. 28], any function u0 ∈ {v ∈ H1
0 (�) : v j ∈

H2(� j ),∀ j = 1, · · · , J } admits the splitting

u0 = uw +
∑

s∈Sint

u0(s)ηs,

with uw ∈ V2
ε (�) for all ε > 0. This implies that u0 ∈ D̂1. Since L2(�) ↪→ L2

γ (�), we will

have A−1
1 f ∈ C([0, T ], D1) and we conclude owing to the continuity of A−1

1 A2 from D̂1

into itself. �
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In the framework of this corollary, a solution u ∈ C1([0, T ]; D̂1) is found. Therefore our
convergence results will be guaranteed if we show (3.19) with q(1) = 1 and refined meshes
but for any ϕ ∈ D̂1. For that purpose, write ϕ ∈ D̂1 into

ϕ = ϕw +
∑

s∈Sint

csηs,

with ϕw ∈ D1 and real coefficients cs ∈ R. For the first term, by [36] or [18, Thm 8.4.1.6]
we have

‖ϕw − Ihϕw‖1,� � h‖ϕw‖D1 ,

where Ih is the Lagrange interpolation operator. For the second term, as ηs belongs to H2(�),
a standard interpolation estimate yields

‖ηs − Ihηs‖1,� � h‖ηs‖H2(�) � h.

In conclusion the function Ihϕ satisfies

‖ϕ − Ihϕ‖1,� � h‖ϕ‖D̂1
,

which proves (3.19) with q(1) = 1.

4.3 Numerical results

To validate our theoretical results, we propose different test examples. First in (4.2) we take
L1 = I − � and L2 = −� (� being the Laplace operator) in convex and non-convex
polygons with an explicit solution and compute the different rates of convergence. Then
we will consider a semi-linear equation for which the exact solution is unknown, hence we
compute experimental convergence rates. In all cases, we compute two rates of convergence
of the error (in the H1

0 (�) norm): one in space and another one in time. Namely, for the
first (resp. second) one, we chose �t (resp. h) small enough with respect to h (resp. �t ) so
that the error due to the time (resp. space) discretization is neglectible; and then let vary the
parameter h (resp. �t) from a rough value to finer ones.

In the whole subsection, for a sequence of functions Un ∈ H1(�), 0 ≤ n ≤ N , we set

‖Un‖∞ = max
0≤n≤N

‖Un‖H1(�).

4.3.1 The smooth case

On the unit square (0, 1)2 ⊂ R
2, we take the exact solution

u(t, x, y) = x(1 − x)y(1 − y) sin t, ∀t ∈ [0, T ], x, y ∈ (0, 1),

the right-hand side f being computed accordingly. In such a case, we present the numerical
tests for the Euler scheme (4.7), where Vh is based on P1 elements. The approximated
solution obtained by this scheme is illustrated in Fig. 1 for different values of t with the
choice �t = h = 0.1.

The rate of converge of the error in space (resp. time) is presented in Table 1 (resp. 2)
with �t = 0.001 (resp. h = 1/160). There we can see a rate of convergence of 1, that is in
accordance with (3.33).
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Fig. 1 Approximated solution by Euler’s scheme (4.7) of problem (4.2) for t = 0, t = 0.5, t = 0.7 and t = T
with �t = 0.1 and h = 0.1

Table 1 Evolution of the error by
Euler’s scheme at final time
T = 0.1 for different h

N h ‖u(tn , ·) − Un,h‖∞

10 0.1 1.92e−04

20 0.05 9.72e−05

40 0.025 4.95e−05

80 0.0125 2.65e−05

160 0.00625 1.63e−05

Table 2 Evolution of the error by
Euler’s scheme at final time
T = 1 for different �t

N �t ‖u(tn , ·) − Un,h‖∞

10 0.1 3.98e−02

20 0.05 1.96e−02

40 0.025 9.83e−03

80 0.0125 5.06e−03

160 0.00625 2.85e−03
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Table 3 Evolution of the error at
final time T = 1 for different h
for the Runge–Kutta scheme and
P2 el

N h ‖u(tn , x, y) − Un,h‖∞

10 0.1 4.981e−06

20 0.05 1.44e−06

40 0.025 3.78e−07

80 0.0125 9.58e−08

160 0.00625 2.40e−08

Table 4 Evolution of the error at
final time T = 20 for different
�t for the Runge–Kutta scheme
and P2 el

N �t ‖u(tn , ·) − Un,h‖∞

20 1 0.000145

40 0.5 2.9261e−05

80 0.25 6.4912e−06

160 0.125 1.5455e−06

320 0.0625 4.36447e−07

We now present the numerical results relative to the Runge–Kutta scheme (4.8), where
Vh is based on P2 elements. In this case, as exact solution, we take

u(t, x, y) = [
x(1 − x)y(1 − y)

]3 sin t,

that then belongs to C([0, T ]; D(A
3
2
1 ).

From Tables 3 and 4, we see that the convergence rate is 2 in space and 2 in time, as
expected from (3.33).

4.3.2 The nonsmooth case

In order to illustrate the results from Sect. 4.2, we have decided to take the domain � =
(−1, 1) × (0, 1) ⊂ R

2, the operator L2 = −�, while the operator L1 = − div a∇, with a
piecewise constant, namely

a =
{

ε in �2,

1 in �1 ∪ �3,

where ε is a positive parameter, we have set

�1 = � ∩ {(r cos θ, r sin θ) : r > 0 and 0 < θ <
π

4
},

�2 = � ∩ {(r cos θ, r sin θ) : r > 0 and
π

4
< θ <

3π

4
},

�3 = � ∩ {(r cos θ, r sin θ) : r > 0 and
3π

4
< θ < π},

and, as usual, (r , θ) are the polar coordinates of (x, y) centred at the origin.
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Table 5 Evolution of the error by
Euler’s scheme at final time
T = 0.1 for different h with
uniform/refined meshes for
�t = 0.0001 and ε = 3

N h ‖u(tn , ·) − Un,h‖∞
Uniform meshes Refined meshes

5 0.2 0.0244 0.018

10 0.1 0.0164 0.0087

20 0.05 0.0105 0.0045

40 0.025 0.0064 0.0024

80 0.0125 0.0041 0.0013

In that case if ε �= 1, the operator L1 with Dirichlet boundary conditions has a singularity
at (0, 0) given by (see [30])

Sλ =

⎧⎪⎨
⎪⎩

rλ sin(λθ) in �1,

rλ
(

2
ε+1 sin(λθ) + ε−1√

ε(ε+1)
cos(λθ)

)
in �2,

rλ sin(λ(π − θ)) in �3,

with λ = 4
π
arcsin

(√
1

ε+1

)
.

Consequently we take

u(t, x, y) = sin t Sλ(x, y),∀t ≥ 0, x, y ∈ �,

that is seen as the exact solution of

A1ut + A2u = (sin t)h,

where h ∈ D̃0 is the jump of ∂u
∂n along the edge e1 = �̄1 ∩ �̄2 and the edge e2 = �̄2 ∩ �̄3.

This means that u is solution of∫
�

(a∇ut · ∇v + ∇u · ∇v) dxdy =
∑
j=1,2

∫
e j

[[
∂u
∂n

]]
�
γ vdσ,∀v ∈ H1

0 (�).

We then have approximated this problem by the Euler scheme (4.7), where Vh is based
on P1 elements on either uniform meshes or refined (near 0) ones with the choice ε = 3 that
yields λ = 2/3. The rate of converge of the error in space is presented in Table 5 for uniform
and refined meshes (see Fig. 2 for h = 0.2) with �t = 0.0001 and a final time T = 0.1.
There we can see a rate of convergence of 2/3 (resp. 1) for uniform (refined) meshes, as
expected. Here for shortness, we do not present the rate of converge of the error in time since
we are interested in the influence of the space singularities.

4.3.3 A semi-linear equation

Here we consider problem (4.2) on the unit square � = (0, 1)2 and zero initial datum with

f (t, u) =
√
1 + t + u2, (4.14)

that is clearly continously differentiable from [0, T ] × H1
0 (�) into R. In such a case, the

exact solution is unknown, hence we shall compute the experimental rates of convergence
using succesive solutions: the experimental space convergence rate is computed by

log2

( ‖Un,h − Un,2h‖∞
‖Un,h/2 − Un,h‖∞

)
,
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Fig. 2 Uniform (left) and refined (right) meshes

Fig. 3 The fully discrete solution Un,h obtained by Euler’s scheme with �t = 0.1 and h = 0.1 and P1 el

whereUn,2h andUn,h/2 are the fully discrete solutions for themeshes 2h and h/2 respectively
and �t small enough. Similarly, the experimental time convergence rate is computed by

log2

( ‖U�t
n,h − U 2�t

n,h ‖∞
‖U�t/2

n,h − U�t
n,h‖∞

)
, (4.15)

where U 2�t
n,h and U�t/2

n,h are the fully discrete solutions for the time steps 2�t and �t/2,
respectively and h small enough.

Figure 3 shows the fully discrete solutionUn,h obtained byEuler’s scheme andP1 elements
at final time T = 1 with �t = 0.1 and h = 0.1. In that case, the experimental time (resp.
space) convergence rate is presented in Table 6 (resp. 7), where an order one is detected, as
theoretically expected. Additionnally, the experimental time (resp. space) convergence rate
is presented in Table 8 (resp. 9) using P2 elements, where, as theoretically expected, an order
one in time and two in space are observed.
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Table 6 Experimental time
convergence rate for different �t
with h = 1

160 and P1 el

Time steps ‖U�t
n,h − U2�t

n,h ‖∞ Exp. rate of convergence

1
10 0.0348315 1.01
1
20 0.0172607 1.007
1
40 0.00858329 1.004
1
80 0.0042788 1.002
1

160 0.00213605 1.001
1

320 0.00106717

Table 7 Experimental space
convergence rate for different h
with �t = 1

4000 and P1 el

Mesh sizes ‖Un,h − Un,2h‖∞ Exp. rate of convergence

1
10 0.00582633 0.94
1
20 0.00302302 0.978
1
40 0.00152823 0.99
1
80 0.00076712 0.997
1

160 0.000383953 0.999
1

320 0.000192033

Table 8 Experimental time
convergence rate for different �t
with h = 1

320 and P2 el

Time steps ‖U�t
n,h − U2�t

n,h ‖∞ Exp. rate of convergence

1
10 0.0324174 0.962
1
20 0.0166353 0.9816
1
40 0.00842427 0.9908
1
80 0.00423879 0.99547
1

160 0.00212606 0.997
1

320 0.00106468

Table 9 Experimental space
convergence rate for different h
with �t = 1

4000 and P2 el

Mesh sizes ‖Un,h − Un,2h‖∞ Exp. rate of convergence

1
10 0.000782864 1.81
1
20 0.000223207 1.85
1
40 6.18843E−05 1.87
1
80 1.68535E−05 1.89
1

160 4.53264E−06

5 Applications to quasi-linear equations

5.1 Non autonomous equations

Here we concentrate on the non autonomous case, namely we suppose that the operators
A1(t, u) and A2(t, u) depend only on the time variable t, but still corresponds to second
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order differential operators. More precisely, in a bounded domain � of Rd , d ≥ 1 with a
Lipschitz boundary, for i = 1, 2, Li is a differential operator of order two of the form

Li (x, Dx , t)u = −
d∑

k,�=1

∂k(a
(i)
k,�(x, t)∂�u) +

d∑
k=1

b(i)
k (x, t)∂ku + c(i)(x, t)u,

where a(i)
k,� = a(i)

�,k ∈ C([0, T ]; C0,1(�̄)) ∩ C0,γ ([0, T ]; L∞(�)), b(i)
k , c(i) ∈ C0,γ ([0, T ];

L∞(�)), for some γ ∈ (0, 1]. Furthermore, L1 is supposed to be uniformly elliptic, namely
there exists α∗ > 0 such that

d∑
k,�=1

a(1)
k,�(x, t)ξ�ξk ≥ α∗|ξ |2, ∀ξ ∈ R

d , t ∈ [0, T ].

In this case, the bilinear form ai (t; ·, ·), i = 1, 2, is independent of u and is defined by

ai (t; v,w) =
∫

�

⎛
⎝ d∑

k,�=1

a(i)
k,�(x, t)∂�v∂kw

+
d∑

k=1

b(i)
k (x, t)∂kvw + c(i)(x, t)vw

)
dx, ∀v,w ∈ H1

0 (�),

and for all t ∈ [0, T ], the operator Ai (t) defined by

〈Ai (t)u, v〉V ′,V = ai (t, u, v), ∀u, v ∈ H1
0 (�),

is continous from H1
0 (�) into H−1(�). Finally if we suppose that a1 is uniformly coercive

in H1
0 (�), then the assumptions H1–H3 will be satisfied. As in Sect. 4.1, one can show

that D(A1(t)) = H2(�) ∩ H1
0 (�), for all t ∈ [0, T ] if the boundary of � is C1,1 or if

� is convex. Therefore, under this additional hypothesis, the assumptions H7 and H8 with
D1 = H2(�) ∩ H1

0 (�) and D̃0 = L2(�) will be satisfied if Vh is defined by (4.6) with
p = 1.

Finally, under the assumptions H4 to H6 on f , the next problem⎧⎨
⎩

L1(t)ut + L2(t)u = f (t, u), in � × (0, T ),

u = 0, on ∂� × (0, T ),

u(0) = u0, in H1
0 (�),

(5.1)

is well-posed and can be approxiamted by the fully Euler discrete scheme (see (3.16))

a1(tn; Un+1,h, χh)=a1(tn; Un,h, χh)−�ta2(tn; Un,h, χh)+�t( f (tn, Un,h), χh), ∀χh ∈ Vh .

We now illustrate this theory by chosing in (5.1), � = (0, 1)2, L1(t) = I − (1 + t)�
and L2(t) = −(1 + t)�. Clearly the bilinear forms (ai (t; ·, ·))t∈[0,T ] satisfy the previous
assumptions, in particular we directly see that

|ai (t; u, v) − ai (s; u, v)| � |t − s|‖u‖‖v‖, ∀u, v ∈ H1
0 (�),∀ t, s ∈ [0, T ].

We start with a linear problem by taking the exact solution

u(t, x, y) = sin t sin(πx) sin(π y), ∀(x, y) ∈ �, t > 0.

As before, we present the time (resp. space) convergence rate in Table 10 with h = 0.003125
(resp. Table 11 with �t = 0.001), where again order one is obtained.
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Table 10 Evolution of the error
at final time T = 0.1 for different
�t

N �t ‖u(tn , ·) − Un,h‖∞

5 0.2 0.168

10 0.1 0.0823

20 0.05 0.040

40 0.025 0.0214

80 0.0125 0.0130

Table 11 Evolution of the error at
final time T = 0.1 for different h

N h ‖u(tn , ·) − Un,h‖∞

5 0.2 0.06387

10 0.1 0.032499

20 0.05 0.0163

40 0.025 0.00824

80 0.0125 0.00425201

160 0.00625 0.00236201

Fig. 4 The fully discrete solution Un,h at final time T = 1 obtained by Euler’s scheme with �t = h = 0.1

We go on with a semi-linear equation by taking the source term f (t, u) defined by (4.14)
and a zero initial datum u(0) = 0. In Fig. 4, we can see the fully discrete solution (by Euler’s
scheme) Un,h at final time T = 1 with �t = h = 0.1. The experimental time (resp. space)
convergence rate is presented in Table 12 with h = 1

160 (resp. 13 with �t = 1
4000 ), where

again an order one is detected.

5.2 Quasi-linear cases

5.2.1 An example in dimension 1

Here we consider a quasilinear problem
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Table 12 Experimental time
convergence rate for different �t
with h = 1

160 and P1 el

Time steps ‖U�t
n,h − U2�t

n,h ‖∞ Exp. rate of convergence

1
10 0.01632 0.94
1
20 0.00853 0.96
1
40 0.00437 0.98
1
80 0.00221 0.99
1

160 0.00111 1
1

320 0.00055

Table 13 Experimental space
convergence rate for different h
with �t = 1

4000 and P1 el

Mesh sizes ‖Un,h − Un,2h‖∞ Exp. rate of convergence

1
10 0.00559 0.95
1
20 0.00290 0.98
1
40 0.00147 0.90
1
80 0.00074 0.99
1

160 0.000337 1
1

320 0.00018

⎧⎨
⎩

∂u
∂t − ∂

∂x

(
ρ1(x, u) ∂2u

∂x∂t + ρ2(x, u) ∂u
∂x

) = f (t, u), in (0, 1) × (0, T ),

u = 0, on ∂(0, 1) × (0, T ),

u(0) = u0, (0, 1),
(5.2)

where ρ1, ρ2 : (0, 1) × R �−→ R are two continuous functions satisfying

• there exist two positive constants β, M such that

β ≤ ρ1(x, u) ≤ M, and |ρ2(x, u)| ≤ M,∀(x, u) ∈ �̄ × R, (5.3)

• the function ρi , i = 1, 2, is globaly Lipschitz, i. e., there exists a constant L > 0 such
that

|ρi (x, u) − ρi (x, ũ)| ≤ L|u − ũ|, ∀(x, u, ũ) ∈ �̄ × R
2. (5.4)

With these assumptions, the bilinear forms ai (u; ·, ·), i = 1, 2, defined on H1
0 (�) × H1

0 (�)

as

ai (u; v,w) =
∫ 1

0
ρi (x, u(x))

∂v

∂x

∂w

∂x
dx,

satisfy the assumptions H1–H3, this last property following from the Sobolev embedding
theorem yielding H1(0, 1) ↪→ C([0, 1]).

Here we discretize problem (5.2) by explicit Euler’s scheme using the finite element space

Vh = {vh ∈ H1
0 (�); vh |[xi ,xi+1]∈ P1, 0 ≤ i ≤ N , vh(0) = vh(1) = 0},

based on a uniform subdivision xi = ih, 0 ≤ i ≤ N , with h = 1
N and N ∈ N

∗. For the
numerical illustrations, we take the source term f (t, u) defined by (4.14), a zero initial datum
u(0) = 0 and

ρ1(x, u) = 1

2
+ u2

1 + u2 , ρ2(x, u) = u2

1 + u2 .
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Table 14 Experimental time
convergence rate for different �t
with h = 0.00625

Time steps ‖U�t
n,h − U2�t

n,h ‖∞ Exp. rate of convergence

1
10 0.00481 0.998
1
20 0.002407 1.00
1
40 0.001203 1.00
1
80 0.000601 0.99
1

160 0.0003010 1.00
1

320 0.00015

Table 15 Experimental space
convergence rate for different h
with �t = 0.001

Mesh sizes ‖Un,h − Un,2h‖∞ Exp. rate of convergence

1
10 0.00596 1.00
1
20 0.00296 1.01
1
40 0.00146 0.9964
1
80 0.0007318 1.00
1

160 0.0003654 1.001
1

320 0.0001825

As before the experimental time (resp. space) convergence rate is 1, as seen in Table 14 with
h = 1

320 (resp. 15 with �t = 1
1000 ).

5.2.2 An example in dimension 2

On the unit square � = (0, 1)2 of R2, we consider the problem⎧⎨
⎩

�
(
ρ1(x, u)�ut

)+ �
(
ρ2(x, u)�u

) = f (t, u), in � × (0, T ),

u = ∂u
∂n = 0, on ∂� × (0, T ),

u(0) = u0, in H2
0 (�),

(5.5)

where ∂u
∂n denote the outward normal derivative of u on ∂�, ρ1 and ρ2 are two functions in

C2(�̄ × R,R) that fulfil the assumptions (5.3)–(5.4) with second order partial derivatives
uniformly bounded in x and u.

For all u ∈ H2
0 (�), and i = 1 or 2, we define the bilinear form ai (u; ·, ·) by

ai (u; v,w) =
∫

�

(
ρi (x, u)�v�w

)
dx, ∀v,w ∈ H2

0 (�), (5.6)

that immediately satisfy the assumptionsH1 andH3, due to the embedding H2(�) ↪→ C(�̄)

(consequence of the Sobolev embedding theorem). To check that H2 holds, due to (5.3) we
first notice that

a1(u; v, v) ≥ β‖�v‖2L2(�)
, ∀v ∈ H2

0 (�).

Secondly as the Laplace operator is an isomorphism from H2(�) ∩ H1
0 (�) into L2(�), we

have

‖v‖H2(�) � ‖�v‖L2(�), ∀v ∈ H2(�) ∩ H1
0 (�).
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As H2
0 (�) is included into H2(�) ∩ H1

0 (�), these two estimates show that H2 holds.
In order to check H7 and H8, we use the next result.

Lemma 5.1 For all u ∈ H2
0 (�), we have

D(A1(u)) = H4(�) ∩ H2
0 (�) ↪→ D(A2(u)). (5.7)

Proof For a fixed u ∈ H2
0 (�), we recall that

D(A1(u)) = {v ∈ H2
0 (�) : A1(u)v ∈ L2(�)}.

Hence we see that v ∈ H2
0 (�) belongs to D(A1(u)) if and only if there exists f ∈ L2(�)

such that

�(ρ(x, u)�v) = f ,

in the distributional sense (here and below, for shortness we write ρ(x, u) for ρ1(x, u)). By
Leibniz’s product rule, we get equivalently

ρ(x, u)�2v = f̃ := f − �[ρ(x, u(x))]�v − 2∇[ρ(x, u(x))] · ∇�v. (5.8)

The difficulty is that this right-hand side is not automatically in L2(�), hence we will use a
bootstrap argument. First by the chain rule, we notice that

∂i [ρ(x, u(x))] = ∂iρ(x, u(x)) + ∂uρ(x, u(x))∂i u(x), (5.9)

∂2i j [ρ(x, u(x))] = ∂2i jρ(x, u(x)) + ∂2u ρ(x, u(x))∂i u(x)∂ j u(x)

+∂uρ(x, u(x))∂2i j u(x), (5.10)

for any i, j ∈ {1, 2}. Note that these identities directly imply that

ρ(·, u(·)), 1

ρ(·, u(·)) ∈ H2(�). (5.11)

With such identities, for i = 1 or 2, we also see that

∂i [ρ(x, u(x))]∂i�v = ∂iρ(x, u)∂i�v + ∂uρ(x, u)∂i u∂i�v, (5.12)

and that

�[ρ(x, u(x))]�v =
3∑

j=1

Tj (x, u)�v, (5.13)

where we have set

T1(x, u) = (�ρ)(x, u),

T2(x, u) = ∂2u ρ(x, u){(∂1u)2 + (∂2u)2},
T3(x, u) = ∂uρ(x, u)�u.

In a first step, for i = 1 or 2, we show that

∂i [ρ(x, u(x))]∂i�v ∈ H−s(�), ∀s ∈ (1, 2). (5.14)

According to the identity (5.12), it suffices to show that each term of its right-hand side
belongs to H−s(�), for all s ∈ (1, 2). For that purpose, we notice that ∂i�v ∈ H−1(�), and
∂i u ∈ H1(�). By the regularity assumptions on ρ, we see that

∂iρ(x, u), ∂uρ(x, u)∂i u ∈ H1(�). (5.15)
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As Theorem 1.4.4.2 of [18] implies that the product

uv ∈ H−s(�), ∀s ∈ (1, 2), (5.16)

If u ∈ H1(�) and v ∈ H−1(�), we conclude that (5.14) holds. Similarly for j = 1, 2 or 3,
we show that

Tj (x, u)�v ∈ H−s(�), ∀s ∈ (1, 2). (5.17)

By the boundedness of �ρ and the regularity v ∈ H2(�), we directly get T1(x, u)�v ∈
L2(�), hence (5.17) for j = 1.Nowby the Sobolev embeddingTheorem, H1(�) ↪→ L p(�),
for all p ≥ 1, hence by Hölder’s inequality, we get

(∂i u)2�v ∈ L1(�), ∀i = 1, 2,

since the condition 1 = 2
p + 1

2 holds if p = 4. As ∂2u ρ(x, u) is bounded, we deduce that

T2(x, u)�v ∈ L1(�), which implies (5.17) for j = 2, because Hs
0 (�) ↪→ C(�̄), owing to

the Sobolev embedding theorem. Finally, the regularities u, v ∈ H2(�) simply guarantee
that �u�v ∈ L1(�) and hence T3(x, u)�v ∈ L1(�), and we conclude as for j = 2.

At this stage, by (5.14) and (5.17), we deduce that f̃ (defined in (5.8)) belongs to H−s(�),

for all s ∈ (1, 2).With the regularity property (5.11) andTheorem1.4.4.2 of [18],we conclude
that

�2v = f̃

ρ(·, u)
∈ H−s(�), ∀s ∈ (1, 2).

Owing to Theorem 2 of [6] and Corollary 5.12 of [13], we deduce that

v ∈ H4−s(�), ∀s ∈ (1, 2),

or equivalently

v ∈ H3−ε(�), ∀ε ∈ (0, 1).

This extra regularity allows to show that

∂i [ρ(x, u(x))]∂i�v ∈ H−ε′
(�), ∀ε′ ∈ (0, 1), (5.18)

for i = 1 or 2 and
Tj (x, u)�v ∈ H−ε′

(�), ∀ε′ ∈ (0, 1), (5.19)

for j = 1, 2 or 3. For the first assertion, by the regularity ∂i�v ∈ H−ε(�), the properties
(5.15) and Theorem 1.4.4.2 of [18], we conclude that (5.18) holds for ε′ > ε. For the second
assertion, by the boundedness of second derivatives of ρ1, we first notice that

T1(x, u)�v ∈ L2(�),

hence (5.19) for j = 1. For j = 2 we remark that (∂1u)2 + (∂2u)2 belongs to L2(�) due to
the embedding H1(�) ↪→ L p(�), for all p ≥ 1, and Hölder’s inequality. Since we directly
get that �u ∈ L2(�), we conclude that

Tj (x, u) ∈ L2(�), for j = 2, 3.

Again Theorem 1.4.4.2 of [18] leads to (5.19) for ε′ > ε, and j = 2, 3.
By its definition, we deduce that f̃ belongs to H−ε′

(�), for all ε′ ∈ (0, 1), and by (5.11)
and Theorem 1.4.4.2 of [18] we get

�2v ∈ H−ε(�), ∀ε ∈ (0, 1).
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By Theorem 2 of [6] and Corollary 5.12 of [13], we deduce that

v ∈ H4−ε(�), ∀ε ∈ (0, 1).

This regularity implies that ∂i�v ∈ H1−ε(�), for all ε ∈ (0, 1) hence ∂i�v ∈ L p(�), for
all p > 1, which allows to show that

∂i [ρ(x, u(x))]∂i�v ∈ L2(�).

More simply as �v belongs to H2−ε(�), for all ε ∈ (0, 1), it is bounded in � and conse-
quently

Tj (x, u)�v ∈ L2(�).

This leads to the final property

�2v ∈ L2(�),

and by Theorem 2 of [6], we conclude that

v ∈ H4(�).

We have thus shown that D(A1(u)) ↪→ H4(�) ∩ H2
0 (�). As the converse embedding is

direct the proof is complete. �

With the help of this Lemma, the assumption H7 holds with the choice D1 = H4(�) ∩
H2
0 (�) and D̃0 = L2(�).

Since the variational space is included into H2(�), the use of continuous FEM is not
appropriate, hence we shall use HCT elements (Hsieh-Cough-Tocher) described in [10] for
instance. Such elements are macro-elements (see Fig. 5) since each triangle K is subdivided
into three sub-triangles Ki , i = 1, 2, 3, namely we define

PK = {v ∈ C1(K ) : v |Ki ∈ P3(Ki ), 1 ≤ i ≤ 3},

and then

Vh =
{
v ∈ C1(�̄) : v |K ∈ PK ,∀K ∈ Th, v = ∂v

∂n
= 0 on ∂�

}
⊂ H2

0 (�).

For more details, we refer to [10, p. 341].
As Theorem 6.1.6 of [10] implies that

‖ϕ − Phϕ‖H2(�) � h2‖ϕ‖H4(�), ∀ϕ ∈ H4(�) ∩ H2
0 (�),

the assumption H8 holds with q(1) = 2.
The fully discrete explicit Euler’s scheme of problem (5.5) is therefore given by: find

Un+1,h ∈ Vh solution of
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Fig. 5 The HCT element

Fig. 6 The fully discrete solution: Left u, middle ∂1u, right ∂2u, with �t = h = 0.1 at final time T = 1

Table 16 Experimental time
convergence rate for different �t
with h = 0.00625

Time steps ‖u�t
n,h − u2�t

n,h ‖∞ Exp. rate of convergence

1
10 0.00375 1.027
1
20 0.00184 1.015
1
40 0.00091 1.04
1
80 0.00044 0.97
1

160 0.000224 1.01
1

320 0.000111

∫
�

{ρ1(x, Un,h)�
(Un+1,h − Un,h

�t

)
�vh + ρ2(x, Un,h)�Un,h�vh}dx

=
∫

�

f (tn, Un,h)vh dx,∀vh ∈ Vh .

We finally illustrate this case by chosing ρ1(x, u) = 1
2 + u2

1+u2
, ρ2(x, u) = u2

1+u2
, the

source term f (t, u) defined by (4.14) and a zero initial datum u(0) = 0. In Fig. 6, we can see
the fully discrete solution Un,h and its gradient at final time T = 1 with �t = h = 0.1. The
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Table 17 Experimental space
convergence rate for different h
with �t = 0.001

Mesh sizes ‖un,h − un,2h‖∞ Exp. rate of convergence

1
10 0.00106 1.82
1
20 0.0003 1.72
1
40 9.07 × 10−5 1.94
1
80 2.36 × 10−5 1.97
1

160 5.99 × 10−6

experimental time (resp. space) convergence rate is presented in Table 16 with h = 0.00625
(resp. 17 with �t = 1

1000 ), where an order one in time and two in space is obtained, as
expected from (3.33).

Note that all our numerical tests are performed with the help of the software freefem++
[1].
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