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1 Introduction

In the recent years, the stability theory and asymptotic behavior of differential equations
and their applications have been and still are receiving intensive attention. The problem of
the boundednes and stability of solutions of vector differential equations has been studied by
many authors,who have providedmany techniques especially for delay differential equations.

In 1985, Abou El Ala [1] gave sufficient conditions that ensure that all solutions of real
vector differential equations of the form

X ′′′ + F(X, X ′)X ′′ + G(X ′) + H(X) = P(t, X, X ′, X ′′),

are ultimately bounded. Afterward, in 2006 Tunç [27] also proved some results on the asymp-
totic stability and the boundedness of solutions of vector differential equation

X ′′′ + F(X, X ′, X ′′)X ′′ + G(X ′) + H(X) = P(t, X, X ′, X ′′).
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Our aim in this paper, by using Lyapunov second method is to study the asymptotic stability
and the uniform ultimate boundedness of third-order nonlinear vector differential equation
with bounded delay

(�(X ′)X ′′)′ + F(X, X ′, X ′′)X ′′ + G(X (t − r(t)), X ′(t − r(t)))

+ H(X (t − r(t))) = P(t, X, X ′, X ′′), (1.1)

when P ≡ 0 and P �= 0 respectively, in which X ∈ Rn , � : Rn → Rn×n, F : Rn × Rn ×
Rn → Rn×n , G : Rn × Rn → Rn , H : Rn → Rn and P : R+ × Rn × Rn × Rn →
Rn are continuous differentiable functions with (H(0) = G(X, 0) = 0) and � is twice
differentiable, where r(t) is differentiable and 0 ≤ r(t) ≤ γ , r ′(t) ≤ β0 , 0 < β0 < 1, γ will
be determined later, and the primes in (1.1) denote differentiation with respect to t , t ∈ R+.

Finally, the continuity of the functions �, F,G, H and P guarantee the existence of the
solution of (1.1). In addition, we assume that the functions �, F,G, H and P satisfy a
Lipschitz condition with respect to their respective arguments, like X, X ′ and X ′′. In this
case, the uniqueness of solutions of the equation (1.1) is guaranteed.

This work extends further a result given by Graef [10,11], Remili [15–24] and Tunç
[28–32].

2 Preliminaries

The symbol 〈X, Y 〉 corresponding to any pair X and Y in Rn stands for the usual scalar
product

∑n
i=1 xi yi , that is, 〈X, Y 〉 = ∑n

i=1 xi yi , Thus 〈X, X〉 = ‖X‖2 .

The following results will be basic to the proofs of Theorems.

Lemma 2.1 [3,4,7–9,25] Let D be a real symmetric positive definite n × n matrix, then for
any X in Rn, we have

δd ‖ X ‖2≤ 〈DX, X〉 ≤ �d ‖ X ‖2,

where δd , �d are the least and the greatest eigenvalues of D, respectively.

Lemma 2.2 [3,4,7–9,25] Let Q, D be any two real n × n commuting matrices, then

(i) The eigenvalues λi (QD) (i = 1, 2 . . . , n) of the product matrix QD are all real and
satisfy

min
1≤ j,k≤n

λ j (Q) λk (D) ≤ λi (QD) ≤ max
1≤ j,k≤n

λ j (Q) λk (D) .

(ii) The eigenvalues λi (Q + D) (i = 1, 2 . . . , n) of the sum of matrices Q and D are all
real and satisfy.

{

min
1≤ j≤n

λ j (Q) + min
1≤k≤n

λk (D)

}

≤ λi (Q + D) ≤
{

max
1≤ j≤n

λ j (Q) + max
1≤k≤n

λk (D)

}

.
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Lemma 2.3 [2,26] Let H(X) be a continuous vector function with H(0) = 0.

(1)
d

dt

(∫ 1

0
〈H (σ X) , X〉 dσ

)

= 〈
H (X) , X ′〉 .

(2)
d

dt

(∫ 1

0
〈σH (σY ) Y, Y 〉 dσ

)

= 〈
H (Y ) Y, Y ′〉 .

(3)
d

dt

(∫ 1

0
〈H(X, σY )Y, Y 〉dσ

)

= 〈H(X, Y )Y, Z〉 +
∫ 1

0
〈J (H(X, σY )Y |X)Y, Y 〉dσ.

Lemma 2.4 [7–9,13,25] Let H(X) be a continuous vector function with H(0) = 0.

(1) 〈H(X), H(X)〉 = 2
∫ 1

0

∫ 1

0
σ 〈JH (σ X)JH (στ X)X, X〉dσdτ.

(2) 〈C(t)H(X), X〉 =
∫ 1

0
〈C(t)JH (σ X)X, X〉dσ.

(3)
∫ 1

0
〈C(t)H(σ X), X〉dσ =

∫ 1

0

∫ 1

0
σ [〈C(t)JH (στ X)X, X〉]dσdτ.

Lemma 2.5 Let H(X) be a continuous vector function and that H(0) = 0 then,

δh ‖ X ‖2≤
∫ 1

0
〈H (σ X) , X〉 dσ ≤ �h ‖ X ‖2 .

where δh, �h are the least and the greatest eigenvalues of Jh(X) (Jacobian matrix of H),
respectively.

Definition 2.6 We definite the spectral radius ρ (A) of a matrix A by

ρ (A) = max {λ/ λ is eigenvalue of A} .

Lemma 2.7 For any A ∈ Rn×n, we have the norm ‖A‖ =
√

ρ
(
AT A

)
if A is symmetric

then

‖A‖ = ρ (A) .

We shall note all the equivalents norms by the same notation ‖X‖ for X ∈ Rn and ‖A‖
for a matrix A ∈ Rn×n .

3 Stability

The following notations (see [14]) will be useful in subsequent sections. For x ∈ Rn , |x | is
the norm of x . For a given r > 0, t1 ∈ R,

C(t1) = {φ : [t1 − r, t1] → Rn/φ is continuous}.
In particular, C = C(0) denotes the space of continuous functions mapping the interval
[−r, 0] into Rn and for φ ∈ C, φ = sup−r≤θ≤0 |φ (0)| . CH will denote the set of φ such
that φ ≤ H . For any continuous function x(u) defined on −h ≤ u < A, where A > 0, and
0 ≤ t < A, the symbol xt will denote the restriction of x(u) to the interval [t − r, t], that is,
xt is an element of C defined by

xt (θ) = x(t + θ), −r ≤ θ ≤ 0.
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902 L. D. Oudjedi, M. Remili

Consider the functional differential equation

x ′ = f (t, xt ), xt (θ) = x(t + θ) , −r ≤ θ ≤ 0, t ≥ 0, (3.1)

where f : I × CH → Rn is a continuous mapping, f (t, 0) = 0, CH := {φ ∈
(C[−r, 0], Rn) : ‖φ‖ ≤ H}, and for H1 < H , there exists L(H1) > 0, with | f (t, φ)|
< L(H1) when ‖φ‖ < H1.

Definition 3.1 [6] An element ψ ∈ C is in the ω − limit set of φ, say �(φ), if x(t, 0, φ) is
defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as n → ∞, with ‖xtn (φ)−ψ‖ → 0
as n → ∞ where xtn (φ) = x(tn + θ, 0, φ) f or −r ≤ θ ≤ 0.

Definition 3.2 [6] A set Q ⊂ CH is an invariant set if for any φ ∈ Q , the solution of (3.1),
x(t, 0, φ), is defined on [0,∞) and xt (φ) ∈ Q for t ∈ [0,∞).

Lemma 3.3 [5] If φ ∈ CH is such that the solution xt (φ) of (3.1) with x0(φ) = φ is defined
on [0,∞) and ‖xt (φ)‖ ≤ H1 < H for t ∈ [0,∞), then �(φ) is a non-empty, compact,
invariant set and

dist (xt (φ),�(φ)) → 0 as t → ∞.

Lemma 3.4 [5] Let V (t, φ) : I × CH → R be a continuous functional satisfying a local
Lipschitz condition. V (t, 0) = 0, such that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + W3(‖φ‖2) where ‖φ‖2 = (
∫ t
t−r ‖φ(s)‖2ds) 1

2 .

(ii) V̇(3.1)(t, φ) ≤ −W4(|φ(0)|),
where, Wi (i = 1, 2, 3, 4) are wedges. Then the zero solution of (3.1) is uniformly asymptot-
ically stable.

Notation and definitions

The Jacobian matrices JGX (X, Y ) , JGY (X, Y ) , JH (X) , J
(
F(X, Y, 0)Y |X)

and
J
(
F(X, Y, Z)Y |Z)

are given by

JGX (X, Y ) =
(

∂gi
∂x j

)

, JGY (X, Y ) =
(

∂gi
∂y j

)

, JH (X) =
(

∂hi
∂x j

)

,

J
(
F(X, Y, 0)Y |X) =

(
∂

∂x j

n∑

k=1

fik yk

)

=
( n∑

k=1

∂ fik
∂x j

yk

)

,

J
(
F(X, Y, Z)Y |Z) =

(
∂

∂z j

n∑

k=1

fik yk

)

=
( n∑

k=1

∂ fik
∂z j

yk

)

,

4 Assumptions and main results

The following assumptions will be needed throughout the paper. Let a, b, c, k, K , L , M, β,
and δ be an arbitrary but fixed positive numbers, such that the following assumptions are
satisfied:

(H1) k ≤ λ j (�(Y )) ≤ K .
(H2) G(X, 0) = 0, b ≤ λ j

(
JGY (X, Y )

) ≤ M .
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Boundedness and stability in third order… 903

(H3) −L ≤ λ j
(
JGX (X, Y )

) ≤ 0 .
(H4) H(0) = 0, δ ≤ λ j (JH (X)) ≤ c.
(H5) aK ≤ λ j (F(X, Y, Z)), λ j

(
J
(
F(X, Y, 0)Y |X)) ≤ 0, λ j

(
J
(
F(X, Y, Z)Y |Z)) ≥

0.

For ease of exposition throughout this paper we will adopt the following notation

η(t) =
∫ t

0
‖�(s)‖ ds,

�(t) = d

dt
�−1(Y (t)) = −�−1(Y (t)

)[ d

dt
�

(
Y (t)

)]
�−1(Y (t)

)
,

�(t) =
∫ t

t−r(t)

{
JH (X (s)) Y (s) + JGX Y (s) + JGY �−1(Y (s))Z(s)

}
ds,

A1 = 1

2

(

1 + 1

k

)

+ aK + δ−1‖G(X, Y )Y−1 − b‖2,

A2 = 1

2

(

1 + 1

k

)

+ δ−1‖F(X, Y, �−1(Y )Z) − aI‖2.

The main problem of this section is the following theorem for P(.) = 0.

Theorem 4.1 In addition to conditions (H1)–(H5) being satisfied, suppose that the following
is also satisfied

(i)
∫ ∞

0

∥
∥
∥
∥
d

ds
�

(
Y (s)

)
∥
∥
∥
∥ ds < ∞.

(ii)
c

b
< α < a.

(iii) β < min{(ab − c)(aK )−1, (ab − c)A−1
1 ,

1

2K
(a − α)A−1

2 }.
Then every solution of (1.1) is uniformly asymptotically stable, provided that

γ < min
{
δA−1

3 , 2(1 − β0)(αb − c)A−1
4 , k2(1 − β0)(a − α)A−1

5

}
,

where

A3 = L + M + c,

A4 = (1 − β0)(a + α)A3 + (L + c)(2 + α + a + β),

and

A5 = 2K (1 − β0)A3 + MK (2 + α + a + β).

Proof We write the Eq. (1.1) as the following equivalent system

X ′ = Y

Y ′ = �−1(Y )Z

Z ′ = −F
(
X, Y, �−1(Y )Z

)
�−1(Y )Z − G(X, Y ) − H(X) + �(t). (4.1)

We shall use as a tool to prove our main results a Lyapunov function W = W (t, Xt , Yt , Zt )

defined by

W (Xt , Yt , Zt ) = exp

(

−η(t)

μ

)

V (Xt , Yt , Zt ) = exp

(

−η(t)

μ

)

V, (4.2)
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904 L. D. Oudjedi, M. Remili

where

V = (α + a)

∫ 1

0
〈H(σ X), X〉dσ + 2

∫ 1

0
〈G(X, σY ), Y 〉dσ

+ (α + a)

∫ 1

0
σ 〈F(X, σY, 0)Y, Y 〉dσ

+ 2〈H(X), Y 〉 + 〈�−1(Y )Z , Z〉 + aβ〈�(Y )X, Y 〉
+β〈X, Z〉 + (α + a)〈Y, Z〉
+ 1

2
bβ〈X, X〉 + 1

2
β〈Y, Y 〉 +

∫ 0

−r(t)

∫ t

t+s

{
λ1‖Y (θ)‖2 + λ2‖Z(θ)‖2} dθds, (4.3)

such that μ is positive constant which will be specified later in the proof. From the definition
of V in (4.3), we observe that the above Lyapunov functional can be rewritten as follows

V = 1

b

∫ 1

0

∫ 1

0
σ 〈[(α + a)b − 2JH (τσ X)] JH (σ X)X, X〉 dτdσ

+ 2
∫ 1

0

∫ 1

0
σ

〈[
JGY (X, τσY ) − bI

]
Y, Y

〉
dτdσ

+ 1

b
‖H(X) + bY‖2 +

∫ 1

0

〈[

(α + a)σ F(X, σY, 0) − 1

2
(α2 + a2)�(Y )

]

Y, Y

〉

dσ

+ 1

2
‖α�

1
2 (Y )Y + �

−1
2 (Y )Z‖2

+ 1

2
‖β�

1
2 (Y )X + a�

1
2 (Y )Y

+�
−1
2 (Y )Z‖2 + 1

2
β‖Y‖2 + 1

2
β〈(bI − β�(Y ))X, X〉

+
∫ 0

−r(t)

∫ t

t+s

{
λ1‖Y (θ)‖2 + λ2‖Z(θ)‖2} dθds.

Since
∫ 0

−r(t)

∫ t

t+s

{
λ1‖Y (θ)‖2 + λ2‖Z(θ)‖2} dθds

is positive and using the conditions (i)–(iv) and (vi) of the theorem, we find

V ≥ δ

2b

[

(α + a)b − 2c + bβ

δ
(b − βK )

]

‖X‖2 + 1

2
[β + αK (a − α)]‖Y‖2

+ 1

2
‖α�

1
2 (Y )Y + �

−1
2 (Y )Z‖2 + 1

2
‖β�

1
2 (Y )X + a�

1
2 (Y )Y + �

−1
2 (Y )Z‖2.

From (ii) and (iii) we obtain that for sufficiently small positive constant δ1

V ≥ δ1
(‖X‖2 + ‖Y‖2 + ‖Z‖2) . (4.4)

Assumptions (iii) and (vii) imply the following:

η(t) =
∫ t

0
‖�(s)‖ds ≤ K−2

∫ t

0

∥
∥
∥
∥
d

ds
�

(
Y (s)

)
∥
∥
∥
∥ ds ≤ N < ∞,

this may be combined with (4.4) to obtain

W ≥ δ1e
− N

μ
(‖X‖2 + ‖Y‖2 + ‖Z‖2) . (4.5)
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Boundedness and stability in third order… 905

Now, we can deduce that there exists a continuous function W1 with

W1(|φ(0)|) ≥ 0 and W1(|φ(0)|) ≤ W (t, φ).

The existence of a continuous functionW2(|φ(0)|)+W3(‖φ‖2)which satisfies the inequality
W (t, φ) ≤ W2(|φ(0)|) + W3(‖φ‖2), is easily verified.

Now, let (X, Y, Z) = (X (t), Y (t), Z(t)) be any solution of differential system (4.1).
Differentiating the function V , defined in (4.3), along system (4.1 ) with respect to the

independent variable t , we have

V ′ = (α + a)

∫ 1

0
〈J (F(X, σY, 0)Y |X)Y, Y 〉dσ + aβ〈�(Y )Y, Y 〉

+ 〈(βX + (α + a)Y + 2�−1(Y )Z),�(t)〉
+ r(t)(λ1‖Y‖2 + λ2‖Z‖2) + β〈Y, (I + �−1(Y ))Z〉
+ 2

∫ 1

0
JGX (X, σY )Y, Y > dσ − β〈X,G(X, Y ) − bY 〉

−β
〈
X,

[
F(X, Y, �−1(Y )Z) − aI

]
Z
〉

−β〈X, H(X)〉 − 〈[(α + a)G(X, Y ) − 2JH (X)Y ] , Y 〉
− 〈[

2F
(
X, Y, �−1(Y )Z

)
�−1(Y ) − (α + a)I

]
Z , �−1(Y )Z

〉

+ 〈�(t)Z , Z〉 − aβ〈�(Y )�(t)�(Y )X, Y 〉
− (α + a)

〈[

F

(

X, Y, �−1(Y )Z

)

− F(X, Y, 0)

]

Y, �−1(Y )Z

〉

− (1 − r ′(t))
∫ t

t−r(t)

{
λ1‖Y (s)‖2 + λ2‖Z(s)‖2} ds.

Using the Schwartz inequality 2 |〈U, V 〉| ≤ ‖U‖2 + ‖V ‖2, we obtain the following

〈(βX + (α + a)Y + 2�−1(Y )Z),�(t)〉
≤ A3

2
r(t)(β‖X‖2 + (α + a)‖Y‖2 + 2

k2
‖Z‖2)

+ M

2k2
(2 + α + a + β)

∫ t

t−r(t)
‖Z(s)‖2ds

+ 1

2
(2 + α + a + β)(L + c)

∫ t

t−r(t)
‖Y (s)‖2ds.

Since

F(X, Y, Z) − F(X, Y, 0) = J (F(X, Y, θ Z)|Z)Z with 0 ≤ θ ≤ 1,

then by (H5) we get

� = − (α + a)

〈[

F

(

X, Y, �−1(Y )Z

)

− F(X, Y, 0)

]

Y, �−1(Y )Z

〉

= − (α + a)J

(

F(X, Y, θ�−1(Y )Z)Y |Z
)

‖�−1(Y )Z‖2 ≤ 0,
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906 L. D. Oudjedi, M. Remili

Consequently by the hypothesis (H1)–(H5) we get

V ′ ≤ A3

2
r(t)

(

β‖X‖2 + (α + a)‖Y‖2 + 2

k2
‖Z‖2

)

+ r(t)
(
λ1‖Y‖2 + λ2‖Z‖2) − 1

2
βδ‖X‖2

− (αb − c)‖Y‖2 − 1

2K
(a − α)‖Z‖2 + ‖�(t)‖

(

‖Z‖2 + aβK 2

2
(‖X‖2 + ‖Y‖2)

)

−
{

ab − c − β

[
1

2

(

1 + 1

k

)

+ aK + δ−1‖G(X, Y )Y−1 − b‖2
]}

‖Y‖2

−
{

1

2K
(a − α) − β

[
1

2

(

1 + 1

k

)

+ δ−1‖F(X, Y, �−1(Y )Z) − aI‖2
]}

‖Z‖2

− β

4δ
‖δX + 2(G(X, Y ) − bY )‖2 − β

4δ
‖δX + 2(F(X, Y, �−1(Y )Z) − aI )Z‖2

−
[

λ1(1 − r ′(t)) − 1

2
(2 + α + a + β)(L + c)

] ∫ t

t−r(t)
‖Y (s)‖2ds

−
[

λ2(1 − r ′(t)) − M

2k2
(2 + α + a + β)

] ∫ t

t−r(t)
‖Z(s)‖2ds.

Now, in view of estimates (ii), (iii), the fact that 0 ≤ r(t) ≤ γ and r ′(t) ≤ β0 0 < β0 < 1,
we have

V ′ ≤ −β

2

[
δ − A3γ

] ‖X‖2 + ‖�(t)‖
(

‖Z‖2 + aβK 2

2
(‖X‖2 + ‖Y‖2)

)

−
{

αb − c −
[
1

2
(α + a)A3 + λ1

]

γ

}

‖Y‖2 −
{

1

2K
(a − α) −

(
A3

k2
+ λ2

)

γ

}

‖Z‖2

−
[

λ1(1 − β0) − 1

2
(2 + α + a + β)(L + c)

] ∫ t

t−r(t)
‖Y (s)‖2ds

−
[

λ2(1 − β0) − M

2k2
(2 + α + a + β)

] ∫ t

t−r(t)
‖Z(s)‖2ds.

Let

λ1 = (2 + α + a + β)(L + c)

2(1 − β0)
and λ2 = M(2 + α + a + β)

2k2(1 − β0)
.

Hence,

V ′ ≤ −β

2

[
δ − A3γ

] ‖X‖2 + N1‖�(t)‖(‖X‖2 + ‖Y‖2 + ‖Z‖2)

−
{

αb − c −
[
1

2
(α + a)A3 + (2 + α + a + β)(L + c)

2(1 − β0)

]

γ

}

‖Y‖2

−
{

1

2K
(a − α) −

(
A3

k2
+ M(2 + α + a + β)

2k2(1 − β0)

)

γ

}

‖Z‖2,

where N1 = max

{

1,
aβK 2

2

}

.
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Boundedness and stability in third order… 907

Using (4.2), (4.4) and taking μ = δ1

N1
we obtain:

d

dt
W = exp

(

−N1η(t)

δ1

) (
d

dt
V − N1|�(t)|

δ1
V

)

≤ exp

(

−N1η(t)

δ1

) [

−β

2

[
δ − A3γ

] ‖X‖2

−
{

αb − c −
[
1

2
(α + a)A3 + (2 + α + a + β)(L + c)

2(1 − β0)

]

γ

}

‖Y‖2

−
{

1

2K
(a − α) −

(
A3

k2
+ M(2 + α + a + β)

2k2(1 − β0)

)

γ

}

‖Z‖2
]

. (4.6)

Provided that

γ < min
{
δA−1

3 , 2(1 − β0)(αb − c)A−1
4 , k2(1 − β0)(a − α)A−1

5

}
,

the inequality (4.6) becomes

d

dt
W (Xt , Yt , Zt ) ≤ −δ2

(‖X‖2 + ‖Y‖2 + ‖Z‖2), for some δ2 > 0. (4.7)

Thus, all the conditions of Lemma 3.4 are satisfied. This shows that every solution of (1.1)
is uniformly asymptotically stable. ��

5 Boundedness of solutions

First, consider a system of delay differential equations

x ′ = F(t, xt ), xt (θ) = x(t + θ),−r ≤ θ ≤ 0, t ≥ 0, (5.1)

where F : R × CH −→ Rn is a continuous mapping and takes bounded set into bounded
sets.

The following lemma is a well-known result obtained by Burton [5].

Lemma 5.1 [5] Let V (t, φ) : R × CH −→ R be a continuous and local Lipschitz in φ. If

(i) W (|x (t)|) ≤ V (t, xt ) ≤ W1 (|x (t)|) + W2

(∫ t
t−r(t) W3 (|x (s)|) ds

)
,

(ii) V ′
(5.1)

≤ W3 (|x (s)|)+M for some M > 0, whereW (r) ,Wi (i = 1, 2, 3) are wedges,

then the solutions of (5.1) are uniformly bounded and uniformly ultimately bounded for
bound B.

To study the ultimate boundedness of solutions of (1.1), we would need to write (1.1) in
the form

X ′ = Y

Y ′ = �−1(Y )Z

Z ′ = −F
(
X, Y, �−1(Y )Z

)
�−1(Y )Z − G(X, Y ) − H(X) + �(t)

+ P(t, X, Y, �−1(Y )Z). (5.2)

Thus our main theorem in this section is stated with respect to (5.2) as follows:
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Theorem 5.2 One assumes that all the assumptions of Theorem 4.1 and the assumption

‖P(t, X, Y, Z)‖ ≤ p1(t) + p2(t)(‖X‖ + ‖Y‖ + ‖Z‖) (5.3)

hold, where p1(t) and p2(t) are continuous functions such that

p1(t) ≤ p0 p2(t) ≤ ε,

where ε and p0 are positive constants. Then all solutions of system (5.2) are uniformly
bounded and uniformly ultimately bounded.

Proof Along any solution (X (t), Y (t), Z(t)) of (5.2), we have

d

dt
W(5.2) = d

dt
W(4.1) + 〈

βX + (α + a)Y + 2�−1(Y )Z , P(t, X, Y, �−1(Y )Z)
〉
.

From (4.7), we obtain

d

dt
W(5.2) ≤ −δ2(‖X‖2 + ‖Y‖2 + ‖Z‖2) + κ1(‖X‖ + ‖Y‖ + ‖Z‖)‖P(t, X, Y, �−1(Y )Z)‖,

where κ1 = max

{

β, α + a,
2

k

}

.

Choosing ε < 3−1κ−1
1 δ2, then κ2 = δ2 − 3κ1ε > 0.

In view of (5.3) we have

d

dt
W(5.2) ≤ −κ2

2
(‖X‖2 + ‖Y‖2 + ‖Z‖2) + 3

2
κ2
1 p

2
0κ

−1
2 , (5.4)

since

κ2

2

{(

‖X‖ − κ1 p0κ
−1
2

)2

+
(

‖Y‖ − κ1 p0κ
−1
2

)2

+
(

‖Z‖ − κ1 p0κ
−1
2

)2
}

≥ 0,

for all X, Y and Z . From estimate (5.4), the hypothesis (ii) of Lemma 5.1 is satisfied. Also
from estimates (4.5) and by the fact that W (t, φ) ≤ W2(‖φ‖) + W3(

∫ t
t−r(t) W4(φ(s))ds),

then condition (i) of Lemma 5.1 follows. This completes the proof of the theorem. ��
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