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Abstract We classify three-dimensional paracontact metric manifold whose Ricci operator
Q is invariant along Reeb vector field, that is, Lξ Q = 0.
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1 Introduction

A symmetry in general relativity is a smooth vector field whose local flow diffeomorphisms
preserve certain mathematical or physical quantities [8,9]. So, one can regard it as vector
fields preserving certain geometric quantities like themetric tensor, the curvature tensor or the
Ricci tensor in general relativity. Symmetries of the geometrical or physical relevant quantities
of the general relativity theory are known as collineations. The geometrical symmetries of
the spacetime are expressible through the vanishing of the Lie derivative of certain tensors
with respect to a vector. In literature, these can be represented as LX A = 0, where A is the
geometric or physical object, X is the vector field generating the symmetry and LX denotes
Lie differentiation with respect to the vector X . The collineations of the Ricci tensor are
called the Ricci collineations.
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Aparacontactmetricmanifoldwhose characteristic vector field ξ is a harmonic vector field
is called an H-paracontactmanifold. In [2], Calvaruso and Perrone proved that ξ is harmonic
if and only if ξ is an eigenvector of the Ricci operator for contact semi-Riemannianmanifolds.
Calvaruso and Perrone [3] proved that all three-dimensional homogeneous paracontactmetric
manifolds are H -paracontact.

Recently, Küpeli Erken and Murathan [10] have studied the harmonicity of the charac-
teristic vector field of three-dimensional paracontact metric manifolds and proved that ξ is
a harmonic vector field if and only if ξ is an eigenvector of the Ricci operator. In the same
study, the authors characterized the 3-dimensional H -paracontact metric manifolds in terms
of (κ, μ, ν)-paracontact metric manifolds.

In [6,7], Cho study contact three manifolds with Ricci collineation respect to Reeb vec-
tor field ξ . But no effort has been made to investigate the paracontact counterpart. In [4],
Calvino-Louzao et.al. determined all left-invariant Ricci collineations on three-dimensional
Lie groups. In the present work, we concentrate on three-dimensional paracontact metric
manifold whose Ricci operator Q is invariant along the Reeb flow, that is, Lξ Q = 0.

Overview Here is the plan of the paper: Sect. 2 is focused on basic facts for paracontact
metric manifolds and harmonicity of the characteristic vector field of three-dimensional
paracontact metricmanifolds. In Sect. 3, we proved that the Ricci operator Q on a paracontact
metric manifold is invariant along the Reeb vector field if and only if the manifold is κ �=
−1-nullity paracontact manifold and η-Einstein. Especially we showed that if M is a 3-
dimensional (−1, μ = const.) paracontact metric manifold with h2 type then Lξ Q = 0.

2 Preliminaries

An (2n+1)-dimensional smooth manifold M is said to have an almost paracontact structure
if it admits a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying the following
conditions:

(i) η(ξ) = 1, ϕ2 = I − η ⊗ ξ ,
(ii) the tensor field ϕ induces an almost paracomplex structure on each fibre ofD = ker(η),

i.e. the ±1-eigendistributions, D± := Dϕ(±1) of ϕ have equal dimension n.

From the definition it follows that ϕξ = 0, η ◦ ϕ = 0 and the endomorphism ϕ has rank
2n. On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N (1)(X, Y ) = [φ, φ] (X, Y ) − 2dη(X, Y )ξ,

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X, Y ) = φ2 [X, Y ] + [φX, φY ] − φ [φX, Y ] − φ [X, φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is said to be
normal [14]. If an almost paracontact manifold admits a pseudo-Riemannian metric g such
that

g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ), (2.1)

for all X, Y ∈ �(T M), then we say that (M, ϕ, ξ, η, g) is an almost paracontact metric
manifold. Notice that any such a pseudo-Riemannian metric is necessarily of signature (n +
1, n). For an almost paracontact metric manifold, there always exists an orthogonal basis
{X1, . . . , Xn, Y1, . . . , Yn, ξ} such that g(Xi , X j ) = δi j , g(Yi , Y j ) = −δi j and Yi = ϕXi ,
for any i, j ∈ {1, . . . , n}. Such basis is called a ϕ-basis.
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In addition, if dη(X, Y ) = g(X, ϕY ) for all vector fields X, Y on M then (M, ϕ, ξ, η, g)
is said to be a paracontact metric manifold. In a paracontact metric manifold one defines a
symmetric, trace-free operator h = 1

2Lξ ϕ. It is known [14] that h anti-commutes with ϕ and
satisfies trh = 0 = hξ and

∇ξ = −ϕ + ϕh, (2.2)

where ∇ is the Levi–Civita connection of the pseudo-Riemannian manifold (M, g). More-
over, h ≡ 0 if and only if ξ is a Killing vector field and in this case (M, ϕ, ξ, η, g) is said to be
a K-paracontact manifold. A normal paracontact metric manifold is called a para-Sasakian
manifold. Also, in this context, the para-Sasakian condition implies the K -paracontact con-
dition and the converse holds only in dimension 3 (see [1]). Moreover, in any para-Sasakian
manifold

R(X, Y )ξ = −(η(Y )X − η(X)Y ) (2.3)

holds, but unlike contact metric geometry the condition (2.3) not necessarily implies that the
manifold is para-Sasakian. Using (2.2 ), one can get

R(X, Y )ξ = −(∇Xϕ)Y + (∇Yϕ)X + (∇Xϕh)Y − (∇Yϕh)X. (2.4)

In [14], Zamkovoy proved that

(∇ξh)X = −ϕX + h2ϕX + ϕR(ξ, X)ξ. (2.5)

Moreover, he showed that Ricci curvature S in the direction of ξ is given by

S(ξ, ξ) = −2n + trh2 (2.6)

where S(X, Y ) = g(QX, Y ). Henceforward, we denote Si j = S(ei , e j ) for i, j = 1, 2.
An almost paracontact structure (ϕ, ξ, η) is said to be integrable if Nϕ(X, Y ) ∈ �(Rξ)

whenever X, Y ∈ �(D).
In [13], Welyczko proved that any 3-dimensional paracontact metric manifold is always

integrable. So for 3-dimensional paracontact metric manifold, we have

(∇Xϕ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX). (2.7)

Definition 2.1 [10] A 2n + 1-dimensional paracontact metric (κ, μ, ν)-manifold is a para-
contact metric manifold for which the curvature tensor field satisfies

R(X, Y )ξ = κ (η(Y )X − η(X)Y ) + μ (η(Y )hX

− η(X)hY ) + ν (η(Y )ϕhX − η(X)ϕhY ) , (2.8)

for all X, Y ∈ �(T M), where κ, μ, ν are smooth functions on M .

The authors proved following theorems

Theorem 2.2 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold. ξ is
a harmonic vector field if and only if the characteristic vector field ξ is an eigenvector of the
Ricci operator.

Theorem 2.3 [10] Let (M, ϕ, ξ, η, g)bea3-dimensional paracontactmetricmanifold. If the
characteristic vector field ξ is harmonic map then the paracontact metric (κ, μ, ν)-manifold
always exists on every open and dense subset of M. Conversely, if M is a paracontact metric
(κ, μ, ν)-manifold then the characteristic vector field ξ is harmonic map.
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Beside the other results, the different possibilities for the tensor field h are analyzed in
[10].

The tensor h has the canonical form (I)Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact
metric manifold.

U1 = {p ∈ M | h(p) �= 0} ⊂ M,

U2 = {p ∈ M | h(p) = 0, in a neighborhood of p} ⊂ M.

Here, h is a smooth function on M . Therefore, U1 ∪ U2 is an open and dense subset of M .
Thus any property satisfied inU1∪U2 is also satisfied in M. For any point p ∈ U1∪U2, there
exists a local orthonormal ϕ-basis {e, ϕe, ξ} of smooth eigenvectors of h in a neighborhood
of p, where −g(e, e) = g(ϕe, ϕe) = g(ξ, ξ) = 1. On U1, we put he = λe, where λ is
a non-vanishing smooth function. Since trh = 0, we have hϕe = −λϕe. The eigenvalue
function λ is continuous on M and smooth on U1 ∪U2. So, h has following form

⎛
⎝

λ 0 0
0 −λ 0
0 0 0

⎞
⎠ (2.9)

with respect to local orthonormal ϕ-basis {e, ϕe, ξ}. In this case, we will say the operator h
is of h1 type. Using same method with [11,12], we have

Lemma 2.4 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold with h
of h1 type. Then, the following equations are valid for the covariant derivative on the subset
U1.

(i) ∇ee = 1

2λ
[σ(e) − (ϕe)(λ)]ϕe, (ii) ∇eϕe = 1

2λ
[σ(e) − (ϕe)(λ)] e + (1 − λ)ξ,

(iii) ∇eξ = (λ − 1)ϕe,

(iv) ∇ϕee = − 1

2λ
[σ(ϕe) + e(λ)]ϕe − (λ + 1)ξ, (v) ∇ϕeϕe = − 1

2λ
[σ(ϕe) + e(λ)] e,

(vi) ∇ϕeξ = −(λ + 1)e,

(vii)∇ξ e = bϕe, (viii) ∇ξ ϕe = be,

(ix) [e, ξ ] = (λ − 1 − b)ϕe, (x) [ϕe, ξ ] = (−λ − 1 − b)e,

(xi) [e, ϕe] = 1

2λ
[σ(e) − (ϕe)(λ)] e + 1

2λ
[σ(ϕe) + e(λ)]ϕe + 2ξ, (2.10)

where
b = g(∇ξ e, ϕe), σ = S(ξ, .)ker η.

Proposition 2.5 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold.
If h is h1 type then on the subset U1 we have

∇ξh = −2bhϕ + ξ(λ)s, (2.11)

where s is the (1, 1)-type tensor defined by sξ = 0, se = e, sϕe = −ϕe.

Lemma 2.6 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold. If h
is h1 type then the Ricci operator Q is given by

Q = a1 I + b1η ⊗ ξ − ϕ(∇ξh) + σ(ϕ2) ⊗ ξ − σ(e)η ⊗ e + σ(ϕe)η ⊗ ϕe, (2.12)
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where a1 and b1 are smooth functions defined by a1 = 1− λ2 + r
2 and b1 = 3(λ2 − 1) − r

2 ,

and r denotes scalar curvature. Moreover the components of the Ricci operator Q are given
by

Qξ = (a1 + b1)ξ − σ(e)e + σ(ϕe)ϕe,

Qe = σ(e)ξ + (a1 − 2bλ)e − ξ(λ)ϕe,

Qϕe = σ(ϕe)ξ + ξ(λ)e + (a1 + 2bλ)ϕe. (2.13)

From (2.13), we get

S11 = −(a1 − 2bλ), S12 = −ξ(λ), S22 = a1 + 2bλ, S11 + S22 = 4bλ. (2.14)

The tensor h̃ has the canonical form (II)Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact
metric manifold and p is a point of M . Then there exists a local pseudo-orthonormal basis
{e1, e2, ξ} in a neighborhood of p where g(e1, e1) = g(e2, e2) = g(e1, ξ) = g(e2, ξ) = 0
and g(e1, e2) = 1.

Lemma 2.7 [10] LetU be the open subset of M where h �= 0. For every p ∈ U there exists an
open neighborhood of p such that he1 = e2, he2 = 0, hξ = 0 and ϕe1 = ±e1, ϕe2 = ∓e2.

Hence the tensor h has the form

⎛
⎝
0 0 0
1 0 0
0 0 0

⎞
⎠ relative a pseudo-orthonormal basis {e1, e2, ξ}.

In this case, we call h is of h2 type.

Remark 2.8 [10] Without loss of generality, we can assume that ϕe1 = e1 ϕe2 = −e2.
Moreover one can easily get h2 = 0 but h �= 0.

Lemma 2.9 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold with h
of h2 type. Then, the following equations are valid for the covariant derivative on the subset
U

(i) ∇e1e1 = −b2e1 + ξ, (ii) ∇e1e2 = b2e2 + ξ, (iii) ∇e1ξ = −e1 − e2,

(iv)∇e2e1 = −c2e1 − ξ, (v) ∇e2e2 = c2e2, (vi) ∇e2ξ = e2,

(vii) ∇ξ e1 = a2e1, (viii) ∇ξ e2 = −a2e2,

(ix) [e1, ξ ] = −(1 + a2)e1 − e2, (x) [e2, ξ ] = (1 + a2)e2,

(xi) [e1, e2] = c2e1 + b2e2 + 2ξ. (2.15)

where a2 = g(∇ξ e1, e2), b2 = g(∇e1e2, e1) and c2 = − 1
2 σ(e1) = − 1

2 S(ξ, e1).

Proposition 2.10 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold
with h of h2 type. Then, we have

∇ξh = 2a2ϕh, (2.16)

on U .

Lemma 2.11 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold with
h of h2 type. Then, the Ricci operator Q is given by

Q =
(
1 + r

2

)
I −

(
3 + r

2

)
η ⊗ ξ − ϕ(∇ξh) + σ(ϕ2) ⊗ ξ + σ(e1)η ⊗ e2. (2.17)
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A consequence of Lemma 2.11, we can give the components of the Ricci operator Q by
following,

Qξ = −2ξ + σ(e1)e2,

Qe1 = σ(e1)ξ +
(
1 + r

2

)
e1 − 2a2e2,

Qe2 =
(
1 + r

2

)
e2. (2.18)

The tensor h̃ has the canonical form (III) Let (M, ϕ, ξ, η, g) be a 3-dimensional paracon-
tact metric manifold and p is a point of M . Then, there exists a local orthonormal ϕ-basis
{e, ϕe, ξ} in a neighborhood of p where −g(e, e) = g(ϕe, ϕe) = g(ξ, ξ) = 1. Now, let U1

be the open subset of M where h �= 0 and let U2 be the open subset of points p ∈ M such
that h = 0 in a neighborhood of p.U1 ∪U2 is an open subset of M . For every p ∈ U1, there
exists an open neighborhood of p such that he = λϕe, hϕe = −λe and hξ = 0 where λ is a
non-vanishing smooth function. Since trh = 0, the matrix form of h is given by

h =
⎛
⎝
0 −λ 0
λ 0 0
0 0 0

⎞
⎠ (2.19)

with respect to local orthonormal basis {e, ϕe, ξ}. In this case, we say that h is of h3 type.

Lemma 2.12 [10] Let (M, ϕ, ξ, η, g̃) be a 3 -dimensional paracontact metric manifold with
h of h3 type. Then, the following equations are valid for the covariant derivative on the subset
U1

(i) ∇ee = a3ϕe + λξ, (ii) ∇eϕe = a3e + ξ, (iii) ∇eξ = −ϕe + λe,

(iv)∇ϕee = b3ϕe − ξ, (v) ∇ϕeϕe = b3e + λξ, (vi) ∇ϕeξ = −e − λϕe,

(vii) ∇ξ e = d3ϕe, (viii)∇ξ ϕe = d3e,

(ix) [e, ξ ] = λe − (1 + d3)ϕe, (x) [ϕe, ξ ] = −(1 + d3)e − λϕe,

(xi) [e, ϕe] = a3e − b3ϕe + 2ξ. (2.20)

where a3, b3 and d3 are defined by

a3 = − 1

2λ
[σ(ϕe) + (ϕe)(λ)] , σ (e) = S(ξ, e),

b3 = 1

2λ
[σ(e) − e(λ)] , σ (ϕe) = S(ξ, ϕe),

d3 = g(∇ξ e, ϕe)

respectively.

Proposition 2.13 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold
with h of h3 type. So, on the subset U1 we have

∇ξh = −2d3hϕ + ξ(λ)s, (2.21)

where s is the (1, 1)-type tensor defined by sξ = 0, se = ϕe, sϕe = −e.

Lemma 2.14 [10] Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold with
h of h3 type. Then the Ricci operator Q is given by

Q = g3 I + f3η ⊗ ξ − ϕ(∇ξh) + σ(ϕ̃2) ⊗ ξ − σ(e)η ⊗ e + σ(ϕe)η ⊗ ϕe, (2.22)
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where g3 and f3 are smooth functions defined by g3 = 1+λ2 + r
2 and f3 = −3(λ2 +1)− r

2 ,

respectively. Moreover the components of the Ricci operator Q are given by

Qξ = (g3 + f3)ξ − σ(e)e + σ(ϕe)ϕe,

Qe = σ(e)ξ + (g3 + ξ(λ))e − 2d3λϕe,

Qϕe = σ(ϕe)ξ + 2d3λe + (g3 + ξ(λ))ϕe. (2.23)

From (2.23), we get

S11 = −(g3+ξ(λ)), S12 = −2d3λ, S22 = (g3+ξ(λ)), S11−S22 = −2(g3+ξ(λ)). (2.24)

3 Ricci collineations on 3-dimensional paracontact metric manifolds

Lemma 3.1 [13] If M is a 3-dimensional para-Sasakian manifold, then h = 0.

Lemma 3.2 [14] The Ricci curvature S of a (2n + 1)-dimensional para-Sasakian manifold
M satisfies the relation

S(ϕX, ϕY ) = −S(X, Y ) − 2nη(X)η(Y ),

S(X, ξ) = −2nη(X). (3.1)

We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold sat-
isfies

R(X, Y )Z = g(Y, Z)QX − g(X, Z)QY + g(QY, Z)X − g(QX, Z)Y

− r

2
(g(Y, Z)X − g(X, Z)Y ) (3.2)

for all vector fields X, Y, Z , where r denotes the scalar curvature.

Proposition 3.3 A 3-dimensional para-Sasakian manifold satisfies

S(X, Y ) =
(
1 + r

2

)
g(X, Y ) −

(
3 + r

2

)
η(X)η(Y ),

which means that it is η-Einstein.

Corollary 3.4 Fora3-dimensional para-Sasakianmanifold ξ(r) = 0 if andonly ifLξ Q = 0.

First of all, we will investigate three possibilities according to canonical form h.
Case 1:We suppose that h is h3 type.

Lemma 3.5 Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold. If h is h3
type then on the subset U1 we have,

If Lξ Q = 0, then ∇ξ Q = 0 and Qξ = ρξ , where ρ is a function.

Proof Assume that M satisfies Lξ Q = 0. In this case, we have

Lξ (QX) − Q(Lξ X) = 0

[ξ, QX ] − Q[ξ, X ] = 0.

By (2.2), we obtain an equivalent equation to Lξ Q = 0 as follows

(∇ξ Q)X = (Qϕ − ϕQ)X + (ϕhQ − Qϕh)X. (3.3)
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We first note that, since ∇ξ Q and Qϕ − ϕQ are self-adjoint operators, it easily follows that

Qϕh − ϕhQ = Qhϕ − hϕQ.

Using the anti-commutative property h with ϕ in the last equation, we get

Qϕh = ϕhQ. (3.4)

Applying ξ to both sides of (3.4), we then get hQξ = 0. Using this in the first equation of
(2.23), we have Qξ = ρξ , ρ = −2(λ2 + 1) on the subsetU1. Clearly, using relation (3.4) in
(3.3), we get

∇ξ Q = Qϕ − ϕQ. (3.5)

In view of the last equation, one can easily calculate (∇ξ S)(ξ, ξ) = 0. So, by ∇ξ ξ = 0, one
can get ξ(λ) = 0. Moreover, from (2.23), we have

S12 = S21, S11 = −S22. (3.6)

Applying e to (3.4) and taking inner product with ϕewith respect to g, the last relation returns
to

S12 = S21 = 0, S11 = −S22. (3.7)

on U1. So, using last equation in (2.24), it follows that d3 = 0 and (2.23) can be given by

Qξ = ρξ,

Qe = g3e,

Qϕe = g3ϕe. (3.8)

Obviously, from the last equation, we have Qϕ = ϕQ on U1. Hence, from (3.5), we get
∇ξ Q = 0 on U1. ��

We now check whether λ is constant or not.
In view of (3.2) and Lemma 3.5, the following formulas hold in U1

R(e, ϕe)ϕe = Qe + (1 + λ2)e,

R(e, ϕe)e = Qϕe + (1 + λ2)ϕe,

R(ϕe, ξ)ϕe = (1 + λ2)ξ,

R(e, ξ)e = −(1 + λ2)ξ,

R(e, ξ)ξ = −(1 + λ2)e,

R(ϕe, ξ)ξ = −(1 + λ2)ϕe, (3.9)

where R(ei , e j )ek = 0, for i �= j �= k.
On the other hand, taking into account, (2.20) and (3.9), direct calculations give

(∇e R)(ϕe, ξ)ϕe = e(1 + λ2)ξ + λ(g3 + 2(1 + λ2))e,

(∇ϕe R)(ξ, e)ϕe = −λ(g3 + 2(1 + λ2))e,

(∇ξ R)(e, ϕe)ϕe = ξ(g3)e,

(∇ϕe R)(e, ξ)e = −ϕ̃e(1 + λ2)ξ + λ(g3 + 2(1 + λ2))ϕe,

(∇e R)(ξ, ϕe)e = −λ(g3 + 2(1 + λ2))ϕe,

(∇ξ R)(ϕe, e)e = −ξ(g3)ϕe. (3.10)

With the help of second bianchi identity and (3.10), we find e(λ) = 0 and ϕe(λ) = 0.
Regarding ξ(λ) = 0, we can conclude that λ is constant on M .
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So we can state following

Lemma 3.6 λ is constant.

Using Lemma 3.6, (2.20) returns to

(i) ∇ee = λξ, (ii) ∇eϕe = ξ,

(iii) ∇eξ = −ϕe + λe,

(iv) ∇ϕee = −ξ, (v) ∇ϕeϕe = λξ,

(vi) ∇ϕeξ = −e − λϕe,

(vii) ∇ξ e = 0, (viii) ∇ξ ϕe = 0,

(ix) [e, ξ ] = −ϕe + λe, (x) [ϕe, ξ ] = −e − λϕe,

(xi) [e, ϕe] = 2ξ. (3.11)

In view of (3.9) and (3.11), we have

Qe = 0, Qϕe = 0, Qξ = −2(λ2 + 1)ξ. (3.12)

From (3.12) we can easily see that (Lξ Q)e = (Lξ Q)ϕe = 0.
Case 2:We suppose that h is h1 type.
As the proof of the following lemma is similar to Riemannian case [6], it is not stated

here.

Lemma 3.7 Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold. If h is h1
type then on U1 we have,

Lξ Q = 0 if and only if ∇ξ Q = 0 and Qξ = ρξ, where ρ is a function.

We now check whether λ is constant or not.
In view of (3.2) and Lemma 3.7, the following formulas hold in U1

R(e, ϕe)ϕe = Qe + (1 − λ2)e,

R(e, ϕe)e = Qϕe + (1 − λ2)ϕe,

R(ϕe, ξ)ϕe = (1 − λ2)ξ,

R(e, ξ)e = (λ2 − 1)ξ,

R(e, ξ)ξ = (λ2 − 1)e,

R(ϕe, ξ)ξ = (λ2 − 1)ϕe, (3.13)

where R(ei , e j )ek = 0, for i �= j �= k.
On the other hand, taking into account, (2.10) and (3.13), direct calculations give

(∇e R)(ϕe, ξ)ϕe = e(1 − λ2)ξ,

(∇ϕe R)(ξ, e)ϕe = 0,

(∇ξ R)(e, ϕe)ϕ̃e = ξ(a1)e,

(∇ϕe R)(e, ξ)e = ϕe(λ2 − 1)ξ,

(∇e R)(ξ, ϕe)e = 0,

(∇ξ R)(ϕe, e)e = −ξ(a1)ϕe. (3.14)

With the help of second bianchi identity and (3.14), we find e(λ) = 0 and ϕe(λ) = 0.
Regarding ξ(λ) = 0, we can conclude that λ is constant on M .

So we can state following

123



674 I. Küpeli Erken, C. Murathan

Lemma 3.8 λ is constant.

Using Lemma 3.8, (2.10) returns to

(i) ∇ee = 0, (ii) ∇eϕe = (1 − λ)ξ,

(iii) ∇eξ = (λ − 1)ϕe,

(iv) ∇ϕee = −(λ + 1)ξ, (v) ∇ϕeϕe = 0,

(vi) ∇ϕeξ = −(λ + 1)e,

(vii) ∇ξ e = 0, (viii) ∇ξ ϕe = 0,

(ix) [e, ξ ] = (λ̃ − 1)ϕ̃e, (x) [ϕe, ξ ] = −(λ + 1)e,

(xi) [e, ϕe] = 2ξ. (3.15)

In view of (3.13) and (3.15), we have

Qe = 0, Qϕe = 0, Qξ = 2(λ2 − 1)ξ. (3.16)

From (3.16) we can easily see that (Lξ Q)e = (Lξ Q)ϕe = 0.

Theorem 3.9 Let M be a 3-dimensional paracontact metric manifold. ThenLξ Q = 0 if and
only if M is a κ-nullity paracontact manifold with κ �= −1 and η-Einstein.

Proof Case 1: Assume that M is a 3-dimensional paracontact metric manifold with h of h3
type whose Ricci operator Q satisfies Lξ Q = 0. Taking into account Theorem 2.2, Theorem
2.3 and Lemma 3.5, together we obtain that M is a κ -nullity paracontact manifold with
κ = −1 − λ2. Moreover using [5, Corollary 5.12], we have M is η-Einstein. Conversely,
let M is η-Einstein. So we have Q = AI + Bη ⊗ ξ where A and B are smooth functions
on M . If we take the covariant derivative according to ξ , we get ∇ξ Q = 0. We proved that
Qϕ = ϕQ in the proof of Theorem 2.3. So if we use this we get Lξ Q = 0. The proof of
Case 2 is similar to Case 1. This completes the proof of the theorem. ��

Case 3:We suppose that h is h2 type.

Theorem 3.10 Let (M, ϕ, ξ, η, g) be a 3-dimensional paracontact metric manifold. If h is
h2 type then on U1 we have,

Lξ Q = 0 if and only if ξ(σ (e1))−(1+a2)σ (e1) = 0, ξ(r) = 0 and ξ(a2)−2a2(1+a2) = 0.

Proof We suppose Lξ Q = 0. Using (2.15) and (2.18 ), we have

(Lξ Q)e1 = 0 ⇒ [ξ, Qe1] − Q[ξ, e1] = 0

⇒ ξ(σ (e1)) − (1 + a2)σ (e1) = 0, ξ(r) = 0, ξ(a2) − 2a2(1 + a2) = 0

(Lξ Q)e2 = 0 ⇒ [ξ, Qe2] − Q[ξ, e2] = 0

⇒ ξ(r) = 0

(Lξ Q)ξ = 0 ⇒ [ξ, Qξ ] − Q[ξ, ξ ] = 0

⇒ ξ(σ (e1)) − (1 + a2)σ (e1) = 0.

The proof of the converse side is clear. ��
Corollary 3.11 If M is a 3-dimensional (−1, μ = const.) paracontact metric manifold with
h2 type then Lξ Q = 0.
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Proof Since M is a 3-dimensional (−1, μ = −2a2 = const.) paracontact metric manifold

R(X, Y )ξ = −(η(Y )X − η(X)Y ) − 2a2(η(Y )hX − η(X)hY )

(see [10]). One can easily get Qξ = −2ξ. By (2.18) we obtain σ(e1) = 0. Using Theorem
3.10, we get Lξ Q = 0. This completes proof. ��
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