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Abstract In this article, our main motivation is to present two-step with memory iterative
methods for solving nonlinear equations. We attempted to convert the existing fourth-order
without memory method into a with memory method. Further acceleration of convergence
order is attained by means of different approximations of self-accelerating parameters. The
parameters are calculated by Hermite interpolating polynomial and applied to accelerate
the order of convergence of the without memory methods. In particular, the R-order of
the proposed two-step with memory iterative method is increased without any additional
calculations and it possesses high computational efficiency. At the end, the theoretical results
are confirmed by considering different numerical examples. Numerical comparisons specify
that the new family is efficient and give tough competition to some existing with memory
iterative methods.
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1 Introduction

Solving nonlinear equation f (x) = 0, is a very significant problem in the real world. To
determine the solution of nonlinear equations, many iterative methods have been projected
(see[1–5]); these iterative methods have a vital area of research in numerical analysis as they
have applications in numerous branches of pure and applied sciences. Beyond them the most
famous one-point iterative without memory method is the Newton–Raphson method, given
by

xn+1 = xn − f (xn)

f ′(xn)
, (1)

where x0 is the initial guess for the exact solution of f (x) = 0, and n = 0, 1, 2, . . . This
converges quadratically. One drawback of this method is the condition f ′(xn) �= 0, which
confines its applications in practice. To resolve this difficulty, Kumar et al. [6] developed a
new one-point iterative method, specified by

xn+1 = xn − f (xn)

f ′(xn) − λ1 f (xn)
. (2)

Setting λ1 = 0 in (2), we obtain Newton’s method. The error expression for the abovemethod
is:

en+1 = (λ1 − c2)e
2
n + O(e3n), (3)

where en = xn − α, ck = 1
k!

f (k)(α)
f ′(α)

, k = 2, 3, . . . and α is a root of f (x) = 0.
Subsequently, we talk about the one-point iterative method with memory. In the map-

ping xn+1 = φ(xn; xn−1, . . . , xn−k), the iteration function φ is called the one-point iteration
function with memory, since xn is novel information, while xk−1, . . . , xn−k are reused infor-
mation. The best known model one-point with memory method is the secant method, given
by

xn+1 = xn − xn − xn−1

f (xn) − f (xn−1)
f (xn), n = 1, 2, 3 . . . (4)

Now, the next iteration function φ, defined through the mapping xn+1

= φ(xn, w1(xn), . . . , wn(xn)), is termed the multipoint iteration function without mem-
ory [7], where the terms w1(xn), . . . , wn(xn), have common argument xn . Let us classify
one more iteration function φ which has arguments z j , where every argument charac-
terizes n + 1 quantities x j , w1(x j ), . . . , wn(x j )(n ≥ 1). The iteration mapping xn+1 =
φ(zn, zn−1, . . . , zn−k) is called a multipoint iteration function with memory, where in each
iterative step we must preserve information of the last n approximations x j and for each
approximation we are required to calculate n expressions w1(x j ), . . . , wn(x j ). Now a days
lots of researchers are paying their attention on developing with memory iterative methods
using one or more self accelerating parameters. There are nice contributions are available
devoted to derivative free with memory iterative methods such as [8–11]. But very few with
memory with derivative iterative methods are available in literature for solving nonlinear
equations. The main objective of this paper is to work on multipoint iteration function with
memory, which can improve the order of convergence of the without memory with deriva-
tive methods, without using any additional calculations and it has very high computational
efficiency. In this paper, we present a new multipoint iterative method with memory, to solve
nonlinear equations. Their convergence analysis is also discussed. In Sect. 2, we discuss
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two-point iterative method with memory. This method is acquired by employing a self-
accelerating parameter. This parameter is designed by the Hermite interpolating polynomial,
where the R-order convergence of two-point method is increased from 4 to 4.5616, 4.7913
and 5, respectively. Section 3, corroborates theoretical results bymeans of different numerical
examples.

2 Development and convergence analysis of with memory method

In the ensuing section, wewill improve the convergence rate of themethod given byHafiz and
Bahgat [12]. First, we consider the optimal fourth-order without memory scheme presented
in [12],

yn = xn − f (xn)

f ′(xn)
,

xn+1 = yn − f (yn)P1(xn, yn)

2P2
1 (xn, yn) − f (yn)P2(xn, yn)

, (5)

where P1(xn, yn) = 2
(

f (yn)− f (xn)
yn−xn

)
− f ′(xn) and P2(xn, yn) = 2

yn−xn

(
f (yn)− f (xn)

yn−xn
− f ′(xn)

)
.

The error expression for iterative scheme (5) is

en+1 = −c2c3e
4
n + O(e5n). (6)

Now, we use the idea considered in Kumar et al. [6] to change the first step of the above
method and consider

yn = xn − f (xn)

f ′(xn) − T f (xn)
,

xn+1 = yn − f (yn)P1(xn, yn)

2P2
1 (xn, yn) − f (yn)P2(xn, yn)

. (7)

If we set T = 0, then we obtain the first step of the method (5). The error expressions for
each sub-step of scheme (7),

en,y = yn − α = (c2 − T )e2n + (2(T − c2)c2 − T 2 − 2c2T + 2c3)e
3
n

+ (−T 3 − 5T c22 + 4c32 + 4T c3 − c2(7c3 − 3T 2) + 3c4)e
4
n

+ O(e5n) (8)

and

en+1 = (T − c2)c3e
4
n + O(e5n), (9)

where c j = f ( j)(α)
j ! f ′(α)

, for j = 2, 3, . . . and T, γ ∈ R. Replacing T by Tn in the scheme (7),
we obtain the following with memory method

yn = xn − f (xn)

f ′(xn) − Tn f (xn)
,

xn+1 = yn − f (yn)P1(xn, yn)

2P2
1 (xn, yn) − f (yn)P2(xn, yn)

, (10)

which is denoted by OM4(2.6). It is easy to recognize from Eq. (6) that the order of con-
vergence of scheme (5) is four and after changing the first step of method (5) to that of the
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first step of the scheme (7), we see that the order of scheme (7) is also four when T �= c2.
Now, by taking T = c2 = f ′′(α)/(2 f ′(α)), it can be established that the order of the method
(7) would be 5. For this type of acceleration of convergence the exact values of f ′(α) and
f ′′(α) are not obtainable. Other than this we could replace the parameter T by Tn . To locate
the values of the parameter, we can utilize the information accessible from the current and
previous iteration and it satisfies limn→∞ Tn = c2 = f ′′(α)/(2 f ′(α)), such that the fourth-
order asymptotic convergence constant to be zero in the error expression (9). We consider
the following formula for Tn :
Method 1:

Tn = H ′′
2 (xn)

2 f ′(xn)
, (11)

where H2(x) = f (xn) + f [xn, xn](x − xn) + f [xn, xn, yn−1](x − xn)2 and H ′′
2 (x) =

2 f [xn, xn, yn−1].
Method 2:

Tn = H ′′
3 (xn)

2 f ′(xn)
, (12)

where H3(x) = H2(x) + f [xn, xn, yn−1, xn−1](x − xn)2(x − yn−1) and H ′′
3 (x) =

2 f [xn, xn, yn−1] + 2 f [xn, xn, yn−1, xn−1](xn − yn−1).
Method 3:

Tn = H ′′
4 (xn)

2 f ′(xn)
, (13)

where H4(x) = H3(x) + f [xn, xn, yn−1, xn−1, xn−1](x − xn)2(x − yn−1)(x − xn−1) and
H ′′
4 (x) = 4 f [xn, xn, yn−1] + (2 f [xn, xn, yn−1, xn−1] − 2 f [xn, yn−1xn−1, xn−1])(xn −

yn−1).
Note: The Hermite interpolation polynomial Hm(x)(m = 2, 3, 4) satisfied the condition

H ′
m(xn) = f ′(xn) (m = 2, 3, 4). So, Tn = H ′′

m (xn)
2 f ′(xn) can be expressed as Tn = H ′′

m (xn)
2H ′(xn)

(m = 2, 3, 4).

Theorem 1 Let Hm be the Hermite interpolating polynomial of degree m that interpolates
a function f at interpolation nodes xn, xn, t0 . . . tm−2 contained in an interval I and the
derivative f (m+1) is continuous in I and the Hermite interpolating polynomial Hm(xn) =
f (xn), H ′

m(xn) = f ′(xn), Hm(t j ) = f (t j ) ( j = 0, 1, . . . ,m − 2). Define the errors et, j =
t j − α( j = 0, 1, . . . ,m − 2) and assume that

(1) all nodes xn, t0, . . . , tm−2 are sufficiently close to the zero α,
(2) the condition en = O(et,0 . . . et,m−2) holds. Then

H ′′
m(xn) = 2 f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + 3c3en

)
, (14)

Tn = H ′′(xn)
2 f ′(xn)

∼
(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
(15)

and

Tn − c2 ∼
(

− (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (16)
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Proof The error expression of the Hermite interpolation can be expressed like this

f (x) − Hm(xn) = f (m+1)(ξ)

(m + 1)! (x − xn)
2
m−2∏
j=0

(xn − t j ), (ξ ∈ I ). (17)

After differentiating (17) twice at the point x = xn , we obtain

H ′′
m(xn) = f ′′(x) − 2

f (m+1)(ξ)

(m + 1)!
m−2∏
j=0

(xn − t j ), (ξ ∈ I ). (18)

Taylor’s series expansion of derivative of f at the point xn ∈ I and ξ ∈ I about the zero α

of f give

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + O(e3n)

)
, (19)

f ′′(xn) = f ′(α)
(
2c2 + 6c3en + O(e2n)

)
, (20)

and

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2ξ )

)
, (21)

where eξ = ξ − α. Placing (20), (21) in (18), we find

H ′′
m(xn) = 2 f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + 3c3en

)
, (22)

This implies

H ′′
m(xn)

2 f ′(xn)
∼

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (23)

Thus

Tn ∼
(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
, (24)

or

Tn − c2 ∼
(

− (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (25)

The concept of R-order of convergence [13] and the subsequent declaration (see [14], p.287)
will be applied to approximate the convergence order of the iterative method (10).

Theorem 2 If the errors of approximations e j = x j −α obtained in an iterative root finding
method IM satisfy

ek+1 ∼
m−2∏
j=0

(ek−i )
mi , k ≥ k({ek}),

then the R-order of convergence of IM, denoted with OR(I M, α), satisfies the inequal-
ity OR(I M, α) ≥ s∗, where s∗ is the unique positive solution of the equation sn+1 −∑n

i=0 misn−i = 0.
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We state the following convergence theorem designed for iterative method with memory
(10).

Theorem 3 Let the varying parameter Tn in the iterative method (10) be calculated by (11)–
(13). If an initial approximation x0 is sufficiently close to a simple root α of f (x), then the
R-order of convergence of iterative methods (11)–(10), (12)–(10) and (13)–(10)with memory
is at least (5 + √

17)/2 ≈ 4.5616, (5 + √
21)/2 ≈ 4.7913 and 5, respectively.

Proof Let the sequence {xn} be generated by an iterative method (IM) converges to the root
α of f (x), with R-order OR(I M, α) ≥ r , we write down

en+1 ∼ Dn,r e
r
n, en = xn − α. (26)

If we take n → ∞, then Dn,r tends to the asymptotic error constant Dr of IM. Consequently

en+1 ∼ Dn,r (Dn−1,r e
r
n−1)

r = Dn,r Dn−1,r e
r2
n−1. (27)

The subsequent error expression of the with memory method (10), can be attained through
(8), (9) and the varying parameter Tn

en,y = yn − α ∼ (Tn − c2)e
2
n, (28)

and

en+1 = xn+1 − α ∼ Bn,4(Tn − c2)e
4
n, (29)

where Bn,4 is a varying quantity because of the self accelerating parameter Tn and it comes
from (9). Here, we excluded higher order terms in (28) and (29).
Method 1. Tn is calculated by (11): It is similar to the derivation of (26). We suppose that
the iterative sequence {yn} has the R-order p,

en,y ∼ Dn,pe
p
n ∼ Dn,p(Dn−1,r e

r
n−1)

p = Dn,pD
p
n−1,r e

rp
n−1. (30)

Using Theorem 1 for m = 2 and t0 = yn−1, we obtain

Tn − c2 ∼ c3et,0 = c3en−1,y . (31)

Now from (28), (29) and (31), we obtain

en,y ∼ c3en−1,y(Dn−1,r e
r
n−1)

2 ∼ c3Dn−1,pD
2
n−1,r e

2r+p
n−1 , (32)

and

en+1 ∼ Bn,4c3en−1,ye
4
n ∼ Bn,4c3Dn−1,pe

p
n−1(Dn−1,r e

r
n−1)

4,

∼ Bn,4c3Dn−1,pD
4
n−1,r e

4r+p
n−1 . (33)

The following system of equations, are obtained by comparing the components of en−1

featuring in two pairs of relation (30)–(32) and (27)–(33),

2r + p = rp,

4r + p = r2. (34)

Positive solution of system (34) is specified through r = (5+√
17)/2 and p = (1+√

17)/2.
As a result, we obtain at least (5+√

17)/2 ≈ 4.5616 is the R-order of with memory method
(10)–(11).
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Method 2. Tn is calculated by (12): Using Theorem 1 for m = 3, t0 = yn−1 and t1 = xn−1,
we obtain

Tn − c2 ∼ −c4et,0et,1 = −c4en−1,yen−1. (35)

Now using (28), (29) and (34), we obtain

en,y ∼ (Tn − c2)e
2
n ∼ −c4en−1en−1,y(Dn−1,r e

r
n−1)

2

∼ −c4Dn−1,pD
2
n−1,r e

2r+p+1
n−1 , (36)

and

en+1 ∼ −Bn,4c4en−1en−1,ye
4
n ∼ −Bn,4c4en−1Dn−1,pe

p
n−1(Dn−1,r e

r
n−1)

4

∼ −Bn,4c4Dn−1,pD
4
n−1,r e

4r+p+1
n−1 . (37)

We obtain the following system of equations, by comparing the components of en−1 featuring
in two pairs of relation (30)–(36) and (27)–(37)

2r + p + 1 = rp,

4r + p + 1 = r2. (38)

Positive solution of system (38) is specified through r = (5+√
21)/2 and p = (1+√

21)/2.
As a result, we obtain at least (5 + √

21)/2 ≈ 4.7913 is the R-order of the methods with
memory (10)–(12).
Method 3. Tn is calculated by (13):Hermite interpolating polynomial H4(x) satisfies the con-
dition H4(xn) = f (xn), H ′

4(xn) = f ′(xn), H4(yn−1) = f (yn−1), H4(xn−1) = f (xn−1) and
H ′
4(xn−1) = f ′(xn−1). The error expression of the Hermite interpolation can be expressed

as follows:

f (x) − H4(x) = f (5)(ξ)

5! (x − xn)
2(x − xn−1)

2(x − yn−1), (ξ ∈ I ). (39)

After differentiating (39) twice at the point x = xn , we obtain

H ′′
4 (xn) = f ′′(xn) − 2

f (5)(ξ)

5! (xn − xn−1)
2(xn − yn−1), (ξ ∈ I ). (40)

Taylor’s series expansion of derivatives of f at the point xn ∈ I and ξ ∈ I about the zero α

of f give

f ′(xn) = f ′(α)(1 + 2c2en + 3c3e
2
n + O(e3n)), (41)

f ′′(xn) = f ′(α)(2c2 + 6c3en + O(e2n)), (42)

and

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2ξ )

)
, (43)

where eξ = ξ − α.
Substituting (43) and (42) into (40), we obtain

H ′′
4 (xn) = 2 f ′(α)(c2 − c5en−1,ye

2
n−1 + 3c3en). (44)

By means of (28) and (29), we have

en−1,y = yn−1 − α ∼ (Tn−1 − c2)e
2
n−1 (45)
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and

en = xn − α ∼ Bn−1,4(Tn−1 − c2)e
4
n−1. (46)

Then

en−1,ye
2
n−1 ∼ (Tn−1 − c2)e

4
n−1 ∼ 1

Bn−1,4
en, (47)

after substituting (47) into (44), we obtain

H ′′
4 (xn) = 2 f ′(a)

(
c2 +

(
3c3 − c5

Bn−1,4

)
en

)
, (48)

which implies

H ′′
4 (xn)

2 f ′(xn)
∼ c2 +

(
3c3 − 2c22 − c5

Bn−1,4

)
en . (49)

And hence

Tn = H ′′
4 (xn)

2 f ′(xn)
∼ c2 +

(
3c3 − 2c22 − c5

Bn−1,4

)
en, (50)

or

Tn − c2 ∼
(
3c3 − 2c22 − c5

Bn−1,4

)
en . (51)

Substituting (51) into (29), we obtain

en+1 ∼ Bn,4

(
3c3 − 2c22 − c5

Bn−1,4

)
e5n, (52)

As a result, the R-order of the methods with memory (10)–(13) is at least 5. Thus the proof
is over.

3 Results and discussion

Now we attempt to compare the two-step with memory method with our two-step method
OM4(2.6). Wang and Zang [15] proposed two with memory methods. Both are two-step
methods in the subsequent form:

yn = xn − f (xn)

Tn f (xn) + f ′(xn)
,

xn+1 = yn −
(
1 − f (yn)

2Tn f (xn) + f ′(xn)

)

×
(
1 + 2 f (yn)

f (xn)
+ a

(
2 f (yn)

f (xn)

)2
)

, (53)

where a ∈ R, which is denoted by XW41(16), and

yn = xn − f (xn)

Tn f (xn) + f ′(xn)
,

xn+1 = yn −
(
1 − f (yn)

2Tn f (xn) + f ′(xn)

) (
f (xn) + (2 + b) f (yn)

f (xn) + b f (yn)

)
, (54)
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Table 1 Test functions and their
roots

Non-linear function Root

f1 = x5 + x4 + 4x2 − 15 1.3474…

f2 = x3 − x2 − 1 1.4655…

f3 = x2 − ex − 3x + 2 0.2575…

f4 = sin2(x) − x2 + 1 −1.4044…

where b ∈ R, which is denoted by XW42(17). We are captivating the values of the self-
accelerating parameter Tn for both methods in the following form
Method 4:

Tn = − H ′′
2 (xn)

2 f ′(xn)
, (55)

where H2(x) = f (xn) + f [xn, xn](x − xn) + f [xn, xn, yn−1](x − xn)2 and H ′′
2 (x) =

2 f [xn, xn, yn−1].
Method 5:

Tn = − H ′′
3 (xn)

2 f ′(xn)
, (56)

where H3(x) = H2(x) + f [xn, xn, yn−1, xn−1](x − xn)2(x − yn−1) and H ′′
3 (x) =

2 f [xn, xn, yn−1] + 2 f [xn, xn, yn−1, xn−1](xn − yn−1).
Method 6:

Tn = − H ′′
4 (xn)

2 f ′(xn)
, (57)

where H4(x) = H3(x) + f [xn, xn, yn−1, xn−1, xn−1](x − xn)2(x − yn−1)(x − xn−1))

and H ′′
4 (x) = 4 f [xn, xn, yn−1] + (2 f [xn, xn, yn−1, xn−1] − 2 f [xn, yn−1xn−1, xn−1])(xn −

yn−1).
Table 1 has four nonlinear test functions with their roots; two functions are considered

from [16] and the other two are taken from [17]. The numerical results illustrated in Table 2
are in accordance with the theory developed in the paper. The absolute errors |xn − α| are
given for our proposedmethodOM4(2.6), whereα is an exact root. All the computations have
been performed using the programming package MAT HEMAT IC A 8. The computational
order of convergence in [18] is approximated by means of

COC ≈ ln| f (xn+1)/ f (xn)|
ln| f (xn)/ f (xn−1)| ,

to confirm the computational efficiency, which established all the theoretical rate of conver-
gence. Our proposed method OM4(2.6) have been used to solve the nonlinear functions and
the calculated results are comparedwith other existingmethods of the same natureXW41(16)
and XW42(17). Another effective approach to compare the efficiency of methods is CPU
time used in the execution of program. At this moment, the CPU time has been calculated by
means of the command “T imeUsed[]′′ in MAT HEMAT IC A 8. The CPU time depends
on the specification of computer. The computer characteristics areMicrosoftWindows 7 Intel
Core i3-2330M CPU@ 2.20 GHz with 2 GB of RAM, 64-bit operating system throughout
the paper. The mean CPU time is calculated by considering the mean of 30 performance
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of the program. It can be observed from Table 2, that the results obtained by our proposed
method are efficient and show better performance than other existing methods.

4 Conclusion

We have presented a multipoint with memory iterative method for finding simple roots of
nonlinear equations with minimum computational effort, of improved convergence order by
modifying the existing without memory method. Since our aim is to construct the method of
higher order convergence without any additional calculation, so we have used three different
approximations of self-correctingparameters, designedbyHermite interpolatingpolynomials
in the fourth-order method to achieve higher order convergence. The R-order of convergence
of new with memory iterative methods is increased from 4 to 4.5616, 4.7913 and 5 respec-
tively, without any additional calculation. Our measure for the proposed method is also based
on the efficiency index, computational order of convergence (COC) and CPU time. At the
end the numerical results confirm validity of theoretical results.
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