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Abstract In this paper, we introduce (weak) Stampacchia and Minty arcwise connected
vector variational-like inequalities in the term of right upper-Dini-derivative and establish
not only the relations of introduced inequalitieswith vector optimization problems but also the
existence results, by using KKM-Fan theorem and Brouwer fixed point theorem. Examples
are provided to illustrate the derived results.
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1 Introduction

Nonsmooth analysis has arisen to deal with the problems of minimization or maximiza-
tion of nondifferentiable functions. These types of problems, called nonsmooth optimization
problems are most common in engineering. Here the study of differential properties of non-
differentiable functions is stressed however directional derivative does not exist always. Thus,
it is necessary to generalize the derivatives into Dini derivatives, Clarke derivatives, Fréchet
derivatives, etc. These kinds of generalized derivatives are helpful and practical, when dealing
with nonsmooth continuous and discontinuous functions. Also generalized derivatives have
been successfully applied in control theory, mechanics, economic, differential equations. For
various approaches, we refer to [11,14,20,22].
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Convexity is an inevitable hypothesis, which serves as an efficient concept to investigate
optimization problems. The notion of convexity is based upon the possibility of connecting
two points of the space by means of line segment. It is used to obtain sufficient conditions for
that conditions, which are only necessary, for example Kuhn–Tucker conditions in nonlin-
ear programming. Due to these extensive attentions, generalization of convexity has grown
very rapidly. There has been several extensions and generalizations for classical convexity.
Hanson [16] generalized the convex functions to introduce the notion of invexity. Since, Dini
derivatives of these type of functions play a significant role, hence recently Yuan and Liu
[22] gave some new generalized convexities, using right upper-Dini-derivatives. For more
contributions, see [3,4,8,12,15].

Vector variational inequalities and their generalizations have sought more attentions in
various real world problems related to physics, mechanics and fluid dynamics because these
problems can be transformed into variational inequalities. Initially, the formulation of vec-
tor variational inequality was introduced by Giannessi [13]. There are several interesting
and important topics, for instance, existence results of vector variational inequalities, which
ensure the existence of efficient solutions of vector optimization problems and relationships
between both problems. In order to do so, a sizable number of researchers have been attracted
towards this directions, see [1,2,6,7,9,10,13,17–19,21].

Motivated by above research works, we present our paper, in which we introduce Stam-
pacchia and Minty arcwise connected vector variational-like inequality with also its weak
formulations. We deduce the relations between the solutions of introduced inequalities and
vector optimization problems, using (α, ρ)-right upper-Dini derivative locally arcwise con-
nected functions. Further, we also establish the existence results of introduced inequalities,
by using KKM-Fan theorem and Brouwer fixed point theorem. The structure of this paper is
as follows: Sect. 2 is concerned with some preliminaries, definitions and lemmas, which are
applicable in proving our results. Some relationships of arcwise connected vector variational-
like inequalitieswith vector optimization problems are derived in Sect. 3. Furthermore, results
for existence of solutions of introduced inequalities, involving monotonicity and without
monotonicity are established in Sects. 4 and 5, respectively. Eventually, Sect. 6 concludes
our paper.

2 Notations and preliminaries

Let R
n be n-dimensional Euclidean space, X ⊂ R

n and the continuous function
Hu,x : [0, 1] �→ X be an arc joining the points u, x ∈ X . For x, y ∈ X , we use the fol-
lowing convention for equalities and inequalities, throughout this paper.

(a) x ≤ y ⇔ xi ≤ yi , i = 1, . . . , n, with strict inequality holding for at least one i ;
(b) x � y ⇔ xi ≤ yi , i = 1, . . . , n;
(c) x = y ⇔ xi = yi , i = 1, . . . , n;
(d) x < y ⇔ xi < yi , i = 1, . . . , n.

First of all, we recall some known definitions, which will be applicable in sequel of the paper.

Definition 2.1 [12] A set X is said to be arcwise connected, if for any x, u ∈ X , there exists
a continuous function Hu,x (t) ∈ X for t ∈ (0, 1) such that

Hu,x (0) = u and Hu,x (1) = x .
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Definition 2.2 [22] A set X is said to be locally arcwise connected at u if for any x ∈ X
and u �= x there exists a positive number a(x, u), with 0 < a(x, u) ≤ 1 and a continuous
function Hu,x such that Hu,x (t) ∈ X for any t ∈ (0, a(x, u)) and Hu,x (0) = u. The set X is
locally arcwise connected, if X is locally arcwise connected at any u ∈ X .

Definition 2.3 [22] Let X be arc wise connected set. The right upper-Dini-derivative of the
function h : X �→ R with respect to Hu,x (t) at t = 0 is defined as follows:

(dh)+(Hu,x (0+)) = lim sup
t→0+

(
h(Hu,x (t)) − h(u)

t

)
.

Similarly, right lower-Dini-derivative of the function h : X �→ R with respect to Hu,x (t) at
t = 0 is defined as follows:

(dh)+(Hu,x (0+)) = lim inf
t→0+

(
h(Hu,x (t)) − h(u)

t

)
.

Remark 2.1 It is easy to see that (dh)+(Hu,x (0+)) ≤ (dh)+(Hu,x (0+)).

From now onwards, we assume that X is nonempty locally arcwise connected set, h : X �→ R

and α, ρ : X × X �→ R are real valued functions unless otherwise specified.

Definition 2.4 [22] A function h is said to be (strictly) (α, ρ)-right upper-Dini-derivative
locally arcwise connected with respect to Hu,x at u ∈ X , if there exist real valued functions
α and ρ such that

h(x) − h(u)(>) ≥ (dh)+(Hu,x (0+))α(x, u) + ρ(x, u), ∀ x ∈ X, (x �= u).

If h is (strictly) (α, ρ)-right upper-Dini-derivative locally arcwise connected with respect to
Hu,x at for all u ∈ X , then h is called (strictly) (α, ρ)-right upper-Dini-derivative locally
arcwise connected with respect to Hu,x on X .

Special cases. For spacial cases, see Remark 2.4 in [22].

Definition 2.5 A function h is said to be pseudo (α, ρ)-right upper-Dini-derivative locally
arcwise connected with respect to Hu,x at u ∈ X , if there exist real valued functions α and
ρ such that

(dh)+(Hu,x (0+))α(x, u) + ρ(x, u) ≥ 0 ⇒ h(x) − h(u) ≥ 0, ∀ x ∈ X.

Equivalently,

h(x) − h(u) < 0 ⇒ (dh)+(Hu,x (0+))α(x, u) + ρ(x, u) < 0, ∀ x ∈ X.

If h is pseudo (α, ρ)-right upper-Dini-derivative locally arcwise connected with respect to
Hu,x at for all u ∈ X , then h is called pseudo (α, ρ)-right upper-Dini-derivative locally
arcwise connected with respect to Hu,x on X .

By keeping the view of definitions of monotonicites given by Al-Homidan et al. [3], we
introduce the monotonicity of right upper-Dini-derivative of a real valued function, which
will be helpful in proving results.

Definition 2.6 The right upper-Dini-derivative of function h is called monotone on X , if
there exist real valued functions α and ρ such that
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(dh)+(Hu,x (0+))α(x, u) + ρ(x, u)

+(dh)+(Hx,u(0+))α(u, x) + ρ(u, x) ≤ 0, ∀ x, u ∈ X.

Consider the following vector optimization problem:

(VOP) Minimize f (x) = (
f1(x), f2(x), . . . , f p(x)

)
subject to x ∈ X,

where fi : X �→ R, i ∈ P = {1, 2, . . . , p}.
Definition 2.7 A point u ∈ X is said to be an efficient solution of (VOP), if there exists no
x ∈ X such that

fi (x) − fi (u) ≤ 0, ∀ i ∈ P,

with strict inequality for at least one i.

Definition 2.8 A point u ∈ X is said to be a weak efficient solution of (VOP), if there exists
no x ∈ X such that

fi (x) − fi (u) < 0, ∀ i ∈ P.

Definition 2.9 [9] Let E be a nonempty subset of a topological vector space Y . A multi-
function ψ : E �→ 2Y is a KKM mapping, if for any finite subset {x1, x2 . . . , xn} of E ,

co{x1, x2, . . . , xn} ⊂
n⋃
j=1

ψ(x j ),

where co{x1, x2, . . . , xn} denotes the convex hull of {x1, x2, . . . , xn}.
From the topological vector space, we recollect the following renowned concept of parti-

tion of unity subordinate to an open cover.

Definition 2.10 Let K ⊂ X be a topological vector space and N = {Ny1 , Ny2 , . . . , Nyn } be
a finite open cover of K . A partition of unity subordinate to N is a family of smooth functions
β j : K �→ [0, 1], ∀ j ∈ {1, 2, . . . , n}, satisfying

n∑
j=1

β j (x) = 1 and supp(β j ) ⊂ Nyj ,

where supp(β j ) stands for support of function β j and defined as supp(β j ) = {x ∈ K :
β j (x) �= 0}.
Remark 2.2 It is well known that there exists a partition of unity subordinate to any open
cover.

Lemma 2.1 (KKM-Fan theorem) [9] Let E be a nonempty convex subset of a Hausdorff
topological vector space Y and let ψ : E �→ 2Y be a KKM mapping with closed values. If
there is a point x0 ∈ E such that ψ(x0) is compact, then

⋂
x∈Eψ(x) �= φ.

Lemma 2.2 (Brouwer fixed point theorem) [9] Let K be a nonempty compact convex subset
of Rn and let φ : K �→ K be a continuous function. Then φ has a fixed point, i.e., there exists
x ∈ K such that φ(x) = x .
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Now, we are in the position to introduce the following Stampacchia and Minty arcwise
connected vector variational-like inequalities, respectively, with also their weak formula-
tions, which will be used to ensure the existence of efficient solutions of considered vector
optimization problem (VOP) with nondifferentiable objective function in sequel of the paper.
Let ρi : X × X �→ R, i ∈ P = {1, 2, . . . , p}.
(SAVVLI) For given functions α and ρi , i ∈ P , find u ∈ X such that there exists no x ∈ X ,
satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) ≤ 0.

(MAVVLI) For given functions α and ρi , i ∈ P , find u ∈ X such that there exists no x ∈ X ,
satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)

+(Hx,u(0+))α(u, x) + ρp(u, x)) ≥ 0.

(WSAVVLI) For given functions α and ρi , i ∈ P , find u ∈ X such that there exists no
x ∈ X , satisfying(
(d f1)

+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)
+(Hu,x (0+))α(x, u) + ρp(x, u)

)
< 0.

(WMAVVLI) For given functions α and ρi , i ∈ P , find u ∈ X such that there exists no
x ∈ X , satisfying(
(d f1)

+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)
+(Hx,u(0+))α(u, x) + ρp(u, x)

)
> 0.

Special cases:

(i) If α = 1, ρi = 0, for all i ∈ P and Hu,x (t) = u + t (x − u) in (SAVVLI) and
(MAVVLI) (respectively (WSAVVLI) and (WMAVVLI) ), then these problems reduce
to Stampacchia and Minty (respectively weak) vector variational inequality, treated by
Ansari andLee [5] and if, right upper-Dini-derivative is replaced by right upper derivative
of f in (WSAVVLI), then this problem reduces to vector variational-like inequality,
defined by Fu and Wang [12].

(ii) If α ∈ R+\{0}, ρi = 0, for all i ∈ P , Hu,x (t) = u + tη(x, u), where η : X × X �→ R
n

and right upper-Dini-derivative is replaced by directional derivative of f in (SAVVLI)
(respectively (WSAVVLI)), then this problem reduces to vector variational inequality
(respectively weak), introduced by Farajzadeh and Lee [10].

Following example shows that, there exists a solution of (SAVVLI) but Stampacchia vector
variational inequality (SVVI), introduced by Ansari and Lee [5] is not solvable at that point.

Example 2.1 Consider the functions f : R �→ R
2, α : R×R �→ R and ρi : R×R �→ R, i =

{1, 2} defined by
f (x) = ( f1(x), f2(x)), α(x, u) = (x − u) sin2(x − u)

and

(ρ1(x, u), ρ2(x, u)) = (
(x − u)2 cos2(x − u), 20(x − u)2 sin2(x − u)

)
,

respectively, where

f1(x) =
{
2 − ex , x ≥ 0

1 + x2, x < 0
, f2(x) = −10x .
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Further, define Hu,x (t) = t x + (1 − t)u, ∀ t ∈ [0, 1]. Then, by definition of right upper-
Dini-derivative of f at u = 0, we obtain

(d f1)
+(Hu,x (0+)) = max{−x, 0} and (d f2)

+(Hu,x (0+)) = −10x .

Now, for u = 0, we have

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), (d f2)

+(Hu,x (0+))α(x, u) + ρ2(x, u))

= (max{−x, 0}x sin2 x + x2 cos2 x, 10x2 sin2 x).

From above, it is clear that for u = 0, there exists no x ∈ R, satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), (d f2)

+(Hu,x (0+))α(x, u) + ρ2(x, u)) ≤ 0.

Therefore, u = 0 is a solution of (SAVVLI). Further, for u = 0 we attain

((d f1)
+(Hu,x (0+)), (d f2)

+(Hu,x (0+))) = (max{−x, 0},−10x) ≤ 0, ∀ x ∈ R+\{0},
i.e., for u = 0 there exists x ∈ R+\{0} such that the following implication holds(

(d f1)
+(Hu,x (0+)), (d f2)

+(Hu,x (0+))
) ≤ 0.

Hence, (SVVI) is not solvable at u = 0.
Following example enables us to give a solution of (MAVVLI) but does not give the solution
of Minty vector variational inequality (MVVI) at the same point, introduced by Ansari and
Lee [5].

Example 2.2 Consider the functions f : R �→ R
2, α : R×R �→ R and ρi : R×R �→ R, i =

{1, 2} defined by
f (x) = ( f1(x), f2(x)), α(u, x) = (x − u)

and

(ρ1(u, x), ρ2(u, x)) = ((x − u)2ex ,−10(x − u)2),

respectively, where

f1(x) =
{
ex − 2, x > 0

x − ex , x ≤ 0
, f2(x) = 10x .

Further, define Hx,u(t) = tu + (1 − t)x, ∀ t ∈ [0, 1]. Then, by definition of right upper-
Dini-derivative of f at u = 0, we obtain

(d f1)
+(Hx,u(0+)) = max{−xex , x(ex − 1)} and (d f2)

+(Hx,u(0+)) = −10x .

Now, for u = 0, we have

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), (d f2)

+(Hx,u(0+))α(u, x) + ρ2(u, x))

= (max{−xex , x(ex − 1)}x + x2ex ,−20x2).

From above, it is clear that for u = 0, there exists no x ∈ R, satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), (d f2)

+(Hx,u(0+))α(u, x) + ρ2(u, x)) ≥ 0.

Therefore, u = 0 is a solution of (MAVVLI). Further, for u = 0 there exists x ∈ R−\{0}
such that following implication holds

((d f1)
+(Hx,u(0+)), (d f2)

+(Hx,u(0+))) ≥ 0.

Hence, (MVVI) is not solvable at u = 0.
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3 Relationships between arcwise connected vector variational-like
inequalities and vector optimization problems

Al-Homidan and Ansari [1,2] derived relationships among Stampacchia, Minty vector
variational-like inequalities andvector optimization problems for nondifferentiable functions,
involving Dini upper subdifferential and Clarke’s generalized subdifferential, respectively.
In continuation of these, we shall study the relationships between Stampacchia and Minty
arcwise connected vector variational-like inequalities and considered vector optimization
problems, in the setting of (α, ρ)-right upper-Dini-derivative locally arcwise connected func-
tions.

Theorem 3.1 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that,
for each i, function fi is (α, ρi )-right upper-Dini-derivative locally arcwise connected with
respect to Hu,x at u ∈ X. If u solves (SAVVLI), then u is an efficient solution of (VOP).

Proof Suppose contrary to the hypothesis that u is not an efficient solution of (VOP), then
there exists x ∈ X such that

fi (x) − fi (u) ≤ 0, ∀ i ∈ P, (1)

with strict inequality for at least one i . Since, each fi is (α, ρi )-right upper-Dini-derivative
locally arcwise connected function with respect to Hu,x at u ∈ X , it ensures that

fi (x) − fi (u) ≥ (d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u), ∀ x ∈ X and i ∈ P. (2)

On combining inequalities (1) and (2), it follows that, there exists x ∈ X such that

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) ≤ 0, ∀ i ∈ P,

with strict inequality for at least one i , i.e., there exists x ∈ X , satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) ≤ 0,

which leads to a contradiction, that u solves (SAVVLI). Hence the theorem is complete. �

We present the following example to illustrate the result established in the above theorem.

Example 3.1 Consider the functions f : R �→ R
2, α : R×R �→ R and ρi : R×R �→ R, i =

{1, 2} defined by

f (x) = ( f1(x), f2(x)), α(x, u) = −1

2
(x − u) and

(ρ1(x, u), ρ2(x, u)) = ((x − u)2, 10(x − u)),

respectively, where

f1(x) =
{− 1

2 + ex , x ≥ 0
1
2 + x2, x < 0

, f2(x) = 10x .

Further, define Hu,x (t) = t x + (1 − t)u, ∀ t ∈ [0, 1]. Then, by definition of right
upper-Dini-derivative of f with respect to Hu,x at u = 0, we obtain

(d f1)
+(Hu,x (0+)) = max{x, 0} and (d f2)

+(Hu,x (0+)) = 10x .
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It can be easily verified that, for i = {1, 2}, each function fi is (α, ρi )-right upper-Dini-
derivative locally arcwise connected function with respect to Hu,x at u = 0. Further, for
u = 0, we have

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), (d f2)

+(Hu,x (0+))α(x, u) + ρ2(x, u))

=
(
− x

2
max{x, 0} + x2, 5x(2 − x)

)
.

From above, it is clear that for u = 0, there exists no x ∈ R, satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), (d f2)

+(Hu,x (0+))α(x, u) + ρ2(x, u)) ≤ 0.

Therefore, u = 0 is a solution of (SAVVLI). Moreover, for u = 0, there exists no x ∈ R

such that f (x) − f (u) ≤ 0. Hence, u = 0 is an efficient solution of (VOP).

Theorem 3.2 Letα, ρi : X×X �→ R, i ∈ P begiven real valued functionswithα ∈ R+\{0}
and ρi ∈ R+. If u ∈ X is a weak efficient solution of (VOP), then u solves (WSAVVLI).

Proof Suppose u is a weak efficient solution of (VOP), then it follows that for all x ∈ X

( f1(x) − f1(u), . . . , f p(x) − f p(u)) �< 0. (3)

Since X is a locally arcwise connected set, therefore there exists a positive number a(x, u)

with 0 < a(x, u) ≤ 1 and a continuous function Hu,x such that Hu,x (t) ∈ X for all
t ∈ (0, a(x, u)) and Hu,x (0) = u. Thus, inequality (3) can be rewritten as(

f1(Hu,x (t)) − f1(u), . . . , f p(Hu,x (t)) − f p(u)
) �< 0, ∀ x ∈ X. (4)

On dividing above inequality by t and taking limit superior as t → 0+, we attain(
(d f1)

+(Hu,x (0+)), . . . , (d f p)
+(Hu,x (0+))

) �< 0, ∀ x ∈ X,

and together with hypothesis, we can write

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) �< 0,

∀ x ∈ X.

Therefore, u is a solution of (WSAVVLI). Hence the theorem is complete. �

Theorem 3.3 Letα, ρi : X×X �→ R, i ∈ P be given real valued functions. Assume that, for
each i, function fi is pseudo (α, ρi )-right upper-Dini-derivative locally arcwise connected
with respect to Hu,x at u. If u solves (WSAVVLI), then u is a weak efficient solution of
(VOP).

Proof Suppose contrary to the hypothesis that u is not a weak efficient solution of (VOP),
then there exists x ∈ X such that

fi (x) − fi (u) < 0, ∀ i ∈ P.

Since, each fi is pseudo (α, ρi )-right upper-Dini-derivative locally arcwise connected func-
tion with respect to Hu,x at u, therefore, for x ∈ X the following implication holds

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) < 0, ∀ i ∈ P.

Above inequality can be rewritten as, there exists x ∈ X , satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) < 0,

which leads to a contradiction, that u solves (WSAVVLI). Hence the theorem is complete. �
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Following theorem enables us to give the condition, under which a weak efficient solution
will be an efficient solution of (VOP).

Theorem 3.4 Letα, ρi : X×X �→ R, i ∈ P be given real valued functions. Assume that, for
each i, function fi is strictly (α, ρi )-right upper-Dini-derivative locally arcwise connected
with respect to Hu,x at u ∈ X and α ∈ R+\{0}, ρi ∈ R+. If u is a weak efficient solution of
(VOP), then u is an efficient solution of (VOP).

Proof Suppose u is a weak efficient solution but not an efficient solution of (VOP), then
there exists x ∈ X such that

fi (x) − fi (u) ≤ 0, ∀ i ∈ P, (5)

with strict inequality for at least one i . Now, by using strict (α, ρi )-right upper-Dini-derivative
locally arcwise connectivity of each function fi with respect to Hu,x at u, we get

fi (x) − fi (u) > (d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u), x �= u, ∀ x ∈ X and i ∈ P. (6)

On combining inequalities (5) and (6), it follows that there exists x ∈ X such that

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) < 0, i ∈ P.

Therefore, u is not a solution of (WSAVVLI). By Theorem 3.2, it follows that u is not a weak
efficient solution of (VOP), which leads to a contradiction. Hence the theorem is complete.

�

Theorem 3.5 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that,
for each i, function fi is (α, ρi )-right upper-Dini-derivative locally arcwise connected with
respect to Hx,u on X. If u ∈ X is an efficient solution of (VOP), then u solves (MAVVLI).

Proof Suppose, contrary to the result, that u does not solve (MAVVLI), then there exists
x ∈ X , satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)

+(Hx,u(0+))α(u, x) + ρp(u, x)) ≥ 0.

Above inequality can be rewritten as, there exists x ∈ X such that

(d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x) ≥ 0, ∀ i ∈ P, (7)

with strict inequality for at least one i . Since, each fi is (α, ρi )-right upper-Dini-derivative
locally arcwise connected with respect to Hx,u on X , therefore we obtain

fi (u) − fi (x) ≥ (d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x), ∀ x, u ∈ X and i ∈ P. (8)

On combining inequalities (7) and (8), it follows that, there exists x ∈ X , satisfying

fi (u) − fi (x) ≥ 0, ∀ i ∈ P,

with strict inequality for at least one i , which leads to a contradiction, that u is an efficient
solution of (VOP). Hence the theorem is complete. �

Theorem 3.6 Let α, ρi : X×X �→ R, i ∈ P be real valued functions. Assume that, for each
i, function fi is (α, ρi )-right upper-Dini-derivative locally arcwise connected with respect
to Hx,u on X. If u ∈ X solves (WSAVVLI), then u solves (WMAVVLI).
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Proof Let u be a solution of (WSAVVLI), then there exists no x ∈ X , satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) < 0.

Above inequality can be rewritten as, there exists no x ∈ X , such that

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) < 0, ∀ i ∈ P. (9)

Since, each fi is (α, ρi )-right upper-Dini-derivative locally arcwise connected with respect
to Hx,u on X , therefore we get

fi (u) − fi (x) ≥ (d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x), ∀ x, u ∈ X and i ∈ P. (10)

On interchanging x and u in inequality (10), we have

fi (x) − fi (u) ≥ (d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u), ∀ x, u ∈ X and i ∈ P. (11)

Now, by adding inequalities (10) and (11), we ensure that, for all x, u ∈ X and i ∈ P , the
following implication holds

(d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x) ≤ − [

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u)

]
.

(12)

On combining inequalities (9) and (12), it follows that, there exists no x ∈ X , such that

(d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x) > 0, ∀ i ∈ P,

i.e., there exists no x ∈ X , satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)

+(Hx,u(0+))α(u, x) + ρp(u, x)) > 0,

which implies that, u solves (WMAVVLI). Hence the theorem is complete. �

Theorem 3.7 Let α, ρi : X × X �→ R, i ∈ P be real valued functions. Assume that, for
each i, function fi is strictly (α, ρi )-right upper-Dini-derivative locally arcwise connected
with respect to Hx,u on X. If u ∈ X is a weak efficient solution of (VOP), then u solves
(MAVVLI).

Proof Suppose u is a weak efficient solution of (VOP) but does not solve (MAVVLI), then
there exists x ∈ X , satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)

+(Hx,u(0+))α(u, x) + ρp(u, x)) ≥ 0,

i.e., there exists x ∈ X such that

(d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x) ≥ 0, ∀ i ∈ P, (13)

with strict inequality for at least one i . Since, each fi is strictly (α, ρi )-right upper-Dini-
derivative locally arcwise connected with respect to Hx,u on X , therefore, we get

fi (u)− fi (x) > (d fi )
+(Hx,u(0+))α(u, x)+ρi (u, x), x �= u, ∀ x, u ∈ X and i ∈ P. (14)

On combining inequalities (13) and (14), it follows that, there exists x ∈ X such that

fi (u) − fi (x) > 0, ∀ i ∈ P,

which leads to a contradiction, that u is a weak efficient solution of (VOP). Hence the theorem
is complete. �
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Theorem 3.8 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume
that, for each i, function fi is (α, ρi )-right upper-Dini-derivative locally arcwise connected
with respect to Hx,u on X. If u ∈ X is a weak efficient solution of (VOP), then u solves
(WMAVVLI).

Proof The proof follows in the similar lines of Theorem 3.5 and hence being omitted.

4 Existence of solutions of arcwise connected vector variational-like
inequalities with monotonicity

In this section, we turn our attention towards the existence of solutions of Stampacchia
and Minty arcwise connected vector variational-like inequalities, indulging the concept of
monotonicity and KKM-Fan theorem. Let K be a nonempty convex Hausdorff vector subset
of X and fi : K �→ R, i ∈ P .

Theorem 4.1 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that

(i) for each i ∈ P, (d(− fi ))+ is monotone on K ,

(ii) α ∈ R+\{0} and ρi ∈ R+,

(iii) α and ρi are affine functions with respect to its second argument such that α(x, x) = 0
and ρi (x, x) = 0, ∀ x ∈ K ,

(iv) for all x ∈ K the set-valued map � : K �→ 2K defined by

�(x) = {
u ∈ K : (

(d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . ,

(d f p)
+(Hu,x (0+))α(x, u) + ρp(x, u)

)
� 0

}
is closed valued,

(v) there exists a nonempty compact set M ⊂ K and a nonempty compact convex set
N ⊂ K such that for each y ∈ K\M, there exists x ∈ N such that y /∈ �(x).

Then (SAVVLI) has a solution in K .

Proof Define a set-valued map �̂(x) : K �→ 2K , for all x ∈ K as

�̂(x) = {u ∈ K : ((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . ,

(d f p)
+(Hx,u(0+))α(u, x) + ρp(u, x)) � 0}.

It is clear that x ∈ �(x)∩�̂(x), therefore�(x) and �̂(x) are nonempty. Firstly, we shall show
that �̂ is a KKMmap on K . For this suppose, contradiction that �̂ is not a KKMmap. Then, it
follows that, there exists {x1, x2 . . . , xn} ⊂ K , t j ≥ 0, j = {1, 2, . . . , n} with ∑n

j=1 t j = 1
such that

u =
n∑
j=1

t j x j /∈
n⋃
j=1

�̂(x j ).

Hence, for any j = {1, 2, . . . , n}(
(d f1)

+(Hx j ,u(0+))α(u, x j ) + ρ1(u, x j ), . . . ,

(d f p)
+(Hx j ,u(0+))α(u, x j ) + ρp(u, x j )

) ≥ 0.
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Above inequality can be rewritten as

(d fi )
+(Hx j ,u(0+))α(u, x j ) + ρi (u, x j ) ≥ 0, ∀ i ∈ P,

with strict inequality for at least one i .
For all i ∈ P , j = {1, 2, . . . , n}, we have

0 = (d fi )
+(Hx j ,u(0+))α(u, u) + ρi (u, u)

= (d fi )
+(Hx j ,u(0+))α

⎛
⎝u,

n∑
j=1

t j x j

⎞
⎠ + ρi

⎛
⎝u,

n∑
j=1

t j x j

⎞
⎠

=
n∑
j=1

t j [(d fi )+(Hx j ,u(0+))α(u, x j ) + ρi (u, x j )]

≥ 0, with strict inequality for at least one i,

which leads to a contradiction. Hence, �̂ is a KKM map. Further, we have to show that
�̂(x) ⊂ �(x), ∀ x ∈ K . We proceed by letting u /∈ �(x), then there exists x ∈ K such that

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) ≤ 0.

Above inequality can be rewritten as, there exists x ∈ K such that

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) ≤ 0, ∀ i ∈ P, (15)

with strict inequality for at least one i . Since, each (d(− fi ))+ is monotone on K , therefore
for all i ∈ P and x, u ∈ K , one has

(d fi )+(Hu,x (0+))α(x, u) + ρi (x, u)

≥ −(d fi )+(Hx,u(0+))α(u, x) + ρi (u, x) + 2ρi (x, u). (16)

By using Remark 2.1 and hypothesis (ii), we conclude that

(d fi )+(Hu,x (0+))α(x, u) + ρi (x, u)

≤ (d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u), ∀ x ∈ K and i ∈ P. (17)

On combining inequalities (15) and (17), it follows that there exists x ∈ K such that

(d fi )+(Hu,x (0+))α(x, u) + ρi (x, u) ≤ 0, ∀ i ∈ P, (18)

with strict inequality for at least one i . Now, inequalities (16) and (18) implies that there
exists x ∈ K such that

(d fi )+(Hx,u(0+))α(u, x) + ρi (u, x) ≥ 0, ∀ i ∈ P,

with strict inequality for at least one i . Together with Remark 2.1 and hypothesis (ii), we can
write

(d fi )
+(Hx,u(0+))α(u, x) + ρi (u, x) ≥ 0, ∀ i ∈ P,

with strict inequality for at least one i , i.e., there exists x ∈ X , satisfying

((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . , (d f p)

+(Hx,u(0+))α(u, x) + ρp(u, x)) ≥ 0.
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Therefore, u /∈ �̂(x), it follows that �̂(x) ⊂ �(x), ∀ x ∈ K . Hence, � is also a KKM map.
By hypothesis (iv) and (v), �(x) is closed subset of compact set. So �(x) is also compact.
Now, by using Lemma 2.1, we get

⋂
x∈K

�(x) �= φ,

which implies that there exists u ∈ K such that
(
(d f1)

+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . ,

(d f p)
+(Hu,x (0+))α(x, u) + ρp(x, u)

)
� 0, ∀ x ∈ K .

Therefore, u is a solution of (SAVVLI). Hence the theorem is complete. �


Theorem 4.2 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that

(i) for each i ∈ P, (d fi )+ be monotone on K ,

(ii) α and ρi are affine functions with respect to its first arguments such that α(x, x) = 0
and ρi (x, x) = 0, ∀ x ∈ K ,

(iii) for all x ∈ K define the set-valued map � : K �→ 2K as

�(x) = {u ∈ K : ((d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . ,

(d f p)
+(Hx,u(0+))α(u, x) + ρp(u, x)) � 0}

is closed valued,
(iv) there exists a nonempty compact set M ⊂ K and a nonempty compact convex set

N ⊂ K such that for each y ∈ K\M, there exists x ∈ N such that y /∈ �(x).

Then (MAVVLI) has a solution in K .

Proof The proof follows in the similar lines of Theorem 4.1 and hence being omitted.

5 Existence of solutions of arcwise connected vector variational-like
inequalities without monotonicity

In this section, we shall derive the existence results of Stampacchia and Minty arcwise
connected vector variational-like inequalities, using Brouwer fixed point Theorem. Let K be
a nonempty compact convex subset of X and fi : K �→ R, i ∈ P .

Theorem 5.1 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that

(i) α and ρi are affine functions with respect to its first arguments such that α(x, x) = 0
and ρi (x, x) = 0, ∀ x ∈ K ,

(ii) for all x ∈ K the set Nx defined by

Nx = {u ∈ K : ((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . ,

(d f p)
+(Hu,x (0+))α(x, u) + ρp(x, u)) ≤ 0}

is open in K .

Then (SAVVLI) has a solution in K .
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Proof Suppose contrary to the hypothesis that (SAVVLI) is not solvable, then there exists
x ∈ K , satisfying

((d f1)
+(Hu,x (0+))α(x, u) + ρ1(x, u), . . . , (d f p)

+(Hu,x (0+))α(x, u) + ρp(x, u)) ≤ 0.

Above inequality can be rewritten as, there exists x ∈ K such that

(d fi )
+(Hu,x (0+))α(x, u) + ρi (x, u) ≤ 0, ∀ i ∈ P, (19)

with strict inequality for at least one i . Now, we shall show that K = ⋃
x∈K Nx . By the

assumption (ii), it is obvious that ⋃
x∈K

Nx ⊂ K . (20)

Conversely, let u ∈ K , then by inequality (19), u ∈ Nx , for some x ∈ K . Therefore,
u ∈ ⋃

x∈K Nx , thus it follows that

K ⊂
⋃
x∈K

Nx . (21)

On combining (20) and (21), we have

K =
⋃
x∈K

Nx . (22)

By the hypothesis (ii), the set {Nx : x ∈ K } is open in K , therefore from (22), we can say
that the set {Nx : x ∈ K } is an open cover of K . Since, K is compact, it follows that there
exists a finite set {y1, y2, . . . , yn} ⊂ K such that

K =
n⋃
j=1

Nyj .

Obviously, {Ny1 , Ny2 , . . . , Nyn } is a finite open cover, Definition 2.10 and Remark 2.2 yields
that there exists a family of functions {β1, β2, . . . , βn} with the following properties:

(a) for each j, β j : K �→ [0, 1] is continuous with respect to the weak topology of X,

(b) β j (x) =
{
0, x /∈ Nyj

> 0, x ∈ Nyj

(c)
∑n

j=1 β j (x) = 1, ∀ x ∈ K .

Let φ◦ : K �→ X be defined as follows

φ◦(x) =
n∑
j=1

β j (x)y j , ∀ x ∈ K .

Since, β j is continuous with respect to the weak topology on X, then φ◦ is also continuous
with respect to the weak topology on X . Let S = conv{y1, y2, . . . , yn} ⊂ K . Then S is
compact convex subset of a finite dimensional space and φ◦ maps S into S. By using the
Brouwer fixed point theorem, there exists x0 ∈ S such that φ◦(x0) = x0,

i.e., x0 = φ◦(x0) =
n∑
j=1

β j (x0)y j .

Let x ∈ K . Consider the nonempty set of natural number K (x) = { j ∈ N : x ∈ Nyj }.
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Since, for j = 1, . . . , n, j ∈ K (x◦) and for all i ∈ P

0 = (d fi )
+(Hx◦,y j (0+))α(x◦, x◦) + ρi (x◦, x◦)

= (d fi )
+(Hx◦,y j (0+))α

⎛
⎝ n∑

j=1

β j (x0)y j , x◦

⎞
⎠ + ρi

⎛
⎝ n∑

j=1

β j (x0)y j , x◦

⎞
⎠

=
n∑
j=1

β j (x◦)
[
(d fi )

+(Hx◦,y j (0+))α(y j , x◦) + ρi (y j , x◦)
]

≤ 0, with strict inequality for at least one i,

which leads to a contradiction. Hence (SAVVLI) is solvable in K . �

Theorem 5.2 Let α, ρi : X × X �→ R, i ∈ P be given real valued functions. Assume that

(i) α and ρi are affine functions with respect to its second arguments such that α(x, x) = 0
and ρi (x, x) = 0, ∀ x ∈ K ,

(ii) for all x ∈ K , the set Nx defined by

Nx = {
u ∈ K : (

(d f1)
+(Hx,u(0+))α(u, x) + ρ1(u, x), . . . ,

(d f p)
+(Hx,u(0+))α(u, x) + ρp(u, x)

) ≥ 0
}

is open in K .

Then (MAVVLI) is solvable in K .

Proof The proof follows in the similar lines of Theorem 5.1 and hence being omitted.

6 Conclusion

In the present paper, we have introduced (weak) Stampacchia and Minty arcwise connected
vector variational-like inequalities. Moreover, by using the concepts of (α, ρ)-right upper-
Dini-derivative locally arcwise connected functions, we have demonstrated the relationships
between the solutions of introduced inequalities and vector optimization problems. Ulti-
mately, we have dealt with the existence results of introduced inequalities, under the condition
of monotonicity and also without monotonicity. Further, we can extend the results obtained
in this paper on reflexive Banach space.
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