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Abstract

In this paper, some iterative methods with third order convergence for solving the nonlinear
equation were reviewed and analyzed. The purpose is to find the best iteration schemes that
have been formulated thus far. Hence, some numerical experiments and basin of attractions
were performed and presented graphically. Based on the five test functions it was found that
the best method is D87a due Dong’s Family method (Int J Comput Math 21:363-367, 1987).
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1 Introduction

Iterative methods are widely used for finding roots of a nonlinear equation of the following
form

fx) =0,
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where f : D C C — C, whichis defined on an open interval D. Moreover, solving nonlinear
equations using the iterative methods is a basic and extremely valuable tool in all fields of
science as well as in economics and engineering. Analytical procedures for solving such
problems are hardly available. It is indispensable to calculate approximate solutions based
on numerical methods. The general procedure is to start with one initial approximation to
the root and attain a sequence of iterates, which in the limit converge to the actual solution.
The Newton—Raphson iteration

J (k)

f1ow)’

is probably the most widely used algorithm for finding roots. The Newton method converges
quadratically and requires two evaluations for each iteration step, one evaluation of f and
one of f’ [16]. The Newton—Raphson iteration is an example of a one-point iteration, i.e.,
in each iteration step the evaluations are taken at a single point. Let « be multi roots of
f(xp) = 0 with multiplicity m i.e., fP(@) = 0,i =0,1,...,m — 1 and f™ () # 0.
If functions £~ and f!/™ have only a simple zero at «, any of the iterative methods
for a simple zero may be used [25]. The Newton method for finding a simple zero « has
been modified by Scheroder to find multiple zeros of a nonlinear equation which is of the

form
S ()
o)’

Yk = Xk —

Yk = Xk —m

with convergence of two [19].

The important aspect that related to these method are order of convergence and number of
iteration evaluation. In recent years, a large number of multi-point methods for finding simple
and multiple roots of nonlinear equations have been developed and analyzed to improve the
order of convergence of classical methods see [6,9,12-14,17,18,21,22,24,29]. The objective
of this paper is to find the best methods from the literature by comparing the numerical
performance and the dynamical behavior of basin attraction. We focus on the methods with
known multiplicity m. We compare the methods with the third order convergence, and the
same efficiency index. The iterative method of order p requiring n function evaluations
per iteration is defined by E(n, p) = {/p, see [16]. These methods are non-optimal due
to Traub [11] conjecture that multipoint iteration based on n evaluation has optimal order
21,

Some of the existing methods of third order convergence are listed as bellow:

Dong’s method (a) (1982) [4]
Dong’s method (b) (1982) [4]
Victory and Neta’s method [27]
Dong’s method (1987) [5]
Osada’s method [15]

Chun et al.’s method [3]
Homeier’s method [10]
Heydari et al.’s method [9]
Zhou et al.’s method [29]
Sharifi et al.’s method [21]
Ferrara et al.’s method [6]
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This paper is organized as follow: Sect. 2 lists all the reviewed methods and the test
functions used and the numerical comparisons. The dynamical behavior of the methods are
illustrated in Sect. 3. Finally, a conclusion is provided in Sect. 4.

2 Numerical examples

2.1 Numerical methods

In following, details of the reviewed method are listed below .

1. Dong’s method (a) (1982) (D82a) [4]. The iteration is given by

(Xk)
W= xi — L
S (xr) o
Xk lzyk_m<1_l>l_m S ) .
N m J)’
2. Dong’s method (b) (1982) (D82b) [4]. The iteration is given by
e =y — J ()
o)’
e Fbro0 &
Xi+1 = Yk + Tl .
FOo—(1=5)"  f%)
3. Victory and Neta’s method (VN) [27]. The iteration is given by
= — S (xx)
)’ 2.3)
fOr) fla)+ Af ) '
X+l = Yk — : )
SO fGa) + Bf (i)
where A = p2m — "+l B = —W and = 5.
4. Dong’s method (1987) (D87) [5]. The iteration is given by
= x — S (k)
o)’
f (xx) 24)
Xk+1 = Yk — powy o .
()" om0 + 2225t )
5. Osada’s method (OS) [15]. The iteration is given by
1 fox) 1 2 f (k)
Xkl = X — —m(m + 1) + —(m—1) . 2.5)
i 2 flow) 2 £
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6. Chun and Neta’s method (CN) [3]. The iteration is given by
m[(20 — D)m + 3 —20] f(x,)
X =X, —
n+1 n B f/(xn) (2 6)
L0 =1 f0) (L= 0)m? f @) () '
2 S (xn) 2 fren)’d
where 6 = 2, —1, in computation we used 8 = —1.
7. Homeier’s method (HM) [10]. The iteration is given by
I J ()
m41 f'(x)’ @7
o lzxk_m2< m )’” : FOO 1y L0 '
i m+1)  f'n) [
8. Heydari et al.’s method (HY) [9]. The iteration is given by
= — gL %)
f ()’ 08
Xkl = Xk — %f(xk) 'G(u ;)f(yk) -
- S ()
where u = m+2
9. Zhou et al.’s method (ZH) [29]. The iteration is given by
o= — J (xx)
[’ 2.9)
S () m \" f(w) '
Xg+1 = Xk +m(m —2)— m(@m — 1) .
) m—1)  f(x)
10. Sharifi et al.’s method (SH) [21]. The iteration is given by
V= — J ()
)’ 2.10)
U o f () + f )
fl = — TS
B (xk)
where o = (u — l)mm,ﬂ = ,,,+1 and u =m — 1.
11. Ferrara et al.’s method (FR) [6]. The iteration is given by
= x — J (xx)
frxa)’ @.11)
0 f (xx) S ()
Xk+1 = Xk —

0f(xx) — fOr) f1xn)”

where 8 = (ﬂ:’”)qﬁ_m .
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2.2 Numerical test functions

We have analyzed all eleven nonlinear third order convergence multiple root methods with
the test functions listed in Table 1. To obtain high possible accuracy and avoid the loss of
significant digits, we have utilized the multi-precision arithmetic with 200 significant decimal
places in the programming package of Mathematica 10.3 [8].

The computational order of convergence (COC) is approximated as [28]

I (g — @)/ (x, — )]

COC ~ .
In |Cep — &) /(xp—1 — @)

2.12)

The approximated computational order of convergence, (ACOC) is calculated by [7]

In | (xn41 — Xn)/(Xn — Xp—1)]

ACOC ~ .
In [(xn — Xp—1)/(Xp—1 — Xn-2)|

(2.13)

Table 2 exhibits that the method D87a [5] performs better in term of error for each iteration
as compared to others.

Table 1 List of test functions

Test function Root Multiplicity
fn o m

filx) = (sin2 x +x)° 0 5

o) = @ T30 6 36

00 =3 +In(1+x)7 0 7

f2x) = (x® = 8)2In (x6 = 7) V2 3

fs(x) = (n(x3 —x +1) +4sinx — D10 1 10
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3 Basin of attraction

In this section we observe the performance of all methods by using basin of attraction. Basin
of attraction suggests that the methods converge if the initial guess are chosen correctly. We
now investigate the stability region from basin of attraction. For more information, see [1,20]
and [26].

Let G : C — C be a rational map on the complex plane. For z € C, we specify its
orbit as the set orb(z) = {z, G(2), G2(2), ... }. A point zg € C is called periodic point
with minimal period m if G (z9) = zo, where m is the smallest integer with this property.
A periodic point with minimal period 1 is called fixed point. Moreover, a point zg is called
attracting if |G'(zo)| < 1, repelling if |G’(z0)| > 1, and neutral otherwise. The Julia set of
a nonlinear map G(z), denoted by J(G), is the closure of the set of its repelling periodic
points. The complement of J(G) is the Fatou set F(G), where the basin of attraction of the
different roots lies [2].

We use a 512 x 512 grid of square [— 3, 3] x [— 3, 3] € C for basin of attraction figures.
Next, we setup a color to each point zg € D according to the root to which the corresponding
orbit of the method starting from zg converges. Point with black color is marked if the orbit
does not converge to the root, apparently after at most 100 iterations it has distance to any of
the roots, which larger than 10~3. Hence, we analyzed the basin of attraction by their colors
for different methods.

We have tested the listed methods in for their basin of attraction by the test functions
tabular in Table 3.

Table 3 List of test functions and their roots for basin of attraction

Test problem Root

Pn(2) o

PR =G+1)° +i

p@ =@ - I, —0.5+0.866025i

3@ =G+ D3 —1, 0.5+0.866025i

pa@) = (224 — )8 0, —0.39685 % 0.687365i, 0.793701

ps(2) =@ -2+ Db —0.808731, —0.464912 + 1.07147i, 0.869278 + 0.388269i
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InFigs. 1,2, 3,4 and 5, different colors are used for distinct roots. The brighter the color the
less the iteration used in computation. When it less of iteration step the colors became more
brighter compare than other. Note that, the black color stands for the lack of convergence to

'In.\" e ‘u\‘

Fig. 1 Comparison of basin of attraction of method D82a, D82b, VN (top row, from left to right), D87, OS,
CN (2nd row, from left to right), HM, HY, ZH (3rd row, from left to right) and SH, FR (bottom row, from left
to right) for test function p1(z) = (z + %)5 respectively
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364 N. A. A. Jamaludin et al.

Fig. 2 Comparison of basin of attraction of method D82a, D82b, VN (top row, from left to right), D87, OS,
CN (2nd row, from left to right), HM, HY, ZH (3rd row, from left to right) and SH, FR (bottom row, from left
to right) for test function ps(z) = (- 1nlo respectively

any of the roots. Figures 1, 2, 3, 4 and 5 show that for all test function considered in Table 3,
method D87 [5] presents less black point and also has larger brighter region in comparison
with other method with the same order of convergence which means that D87 provides faster
convergences.
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Fig. 3 Comparison of basin of attraction of method D82a, D82b, VN (top row, from left to right), D87, OS,
CN (2nd row, from left to right), HM, HY, ZH (3rd row, from left to right) and SH, FR (bottom row, from left
to right) for test function p3(z) = @-13 respectively
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l‘ -' I . ' ' . '
-
i i 1

Fig. 4 Comparison of basin of attraction of method D82a, D82b, VN (top row from left to right), D87, OS,
CN (2nd row, from left to right), HM, HY, ZH (3rd row, from left to right) and SH, FR (bottom row, from left
to right) for test function p4(z) = 4 — 28 respectively
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Fig. 5 Comparison of basin of attraction of method D82a, D82b, VN (top row, from left to right), D87, OS,
CN (2nd row, from left to right), HM, HY, ZH (3rd row, from left to right) and SH, FR (bottom row, from left

to right) for test function p5(z) = (ZS -2+ 1)15 respectively

4 Conclusion

In conclusion, from the numerical experiments and basin of attraction, D87 gives better
performance compare to others with the same order of convergences.
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