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Abstract A new strong convergence theorem for approximation of common fixed points of
family of uniformly asymptotically regular asymptotically nonexpansive mappings, which is
also a unique solution of some variational inequality problem is proved in the framework of a
real Banach space. The Theorem presented here extend, generalize and unify many recently
announced results.
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1 Introduction

Let E be a real Banach space and E∗ be the dual space of E .Amapping ϕ : [0,∞) → [0,∞)

is called a guage function if it is strictly increasing, continuous and ϕ(0) = 0. Let ϕ be a
gauge function, a generalized duality mapping with respect to ϕ, Jϕ : E → 2E

∗
is defined

by, x ∈ E,

Jϕx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)},
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where 〈·, ·〉 denotes the duality pairing between element of E and that of E∗. If ϕ(t) = t,
then Jϕ is simply called the normalized duality mapping and is denoted by J. For any x ∈ E,

an element of Jϕx is denoted by jϕ(x).
Let S(E) := {x ∈ E : ‖x‖ = 1} be the unit sphere of E . The space E is said to haveGâteaux
differentiable norm if for any x ∈ S(E) the limit

lim
λ→0

‖x + λy‖ − ‖x‖
λ

(1.1)

exists ∀y ∈ S(E). The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ S(E), the limit (1.1) is attained uniformly for x ∈ S(E).

If E has a uniformly Gâteaux differentiable, then Jϕ : E → 2E
∗
is uniformly continuous

on bounded subsets of E from the strong topology of E to the weak∗ topology of E∗. All
L p, �p(1 < p < ∞) spaces has uniformly Gâteaux differentiable.

A mapping T : E → E is said to be L-Lipschitz if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖ forall x, y ∈ E . (1.2)

If in this case, (1.2) is satisfied with L ∈ [0, 1), respectively L = 1, then the mapping
T is called a contraction, respectively nonexpansive. A mapping T : E → E is called
asymptotically nonexpansive if there exists a sequence {ρn} ⊂ [1,∞), limn→∞ρn = 1 such
that for all x, y ∈ E

||T nx − T n y|| ≤ ρn ||x − y|| for all n ∈ N . (1.3)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[13] as an important generalization of the class of nonexpansive mappings. A point x ∈ E is
called a fixed point of T provided T x = x . We denote by F(T ) the set of all fixed point of
T (i.e., F(T ) = {x ∈ E : T x = x} ).
Goebel and Kirk [13] proved that if C is a nonempty, bounded, closed and convex subset of
a real uniformly convex Banach space and T is a self asymptotically nonexpansive mapping
of C , then T has a fixed point in C .
The mapping T is said to be asymptotically regular if

lim
n→∞‖T n+1x − T nx‖ = 0

for all x ∈ C. It is said to be uniformly asymptotically regular if for any bounded subset K
of C,

lim
n→∞sup

x∈K
‖T n+1x − T nx‖ = 0.

A mapping G : E → E is said to be accretive if for all x, y
∈ E, there exists j (x − y) ∈ J (x − y) such that

〈Gx − Gy, j (x − y)〉 ≥ 0.

For some positive real numbers η and μ the mapping G is called η-strongly accretive if

〈Gx − Gy, j (x − y)〉 ≥ η‖x − y‖2
holds ∀x, y ∈ E and μ-strictly pseudocontractive if

〈Gx − Gy, j (x − y)〉 ≤ ‖x − y‖2 − μ‖(I − G)x − (I − G)y‖2
holds ∀x, y ∈ E . It is known that if G is μ-strictly pseudocontractive then it is
(1 + 1

μ
)−Lipschitzian.
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LetC be a nonempty closed convex subset of E , a variational inequality problemwith respect
to C and G, is to find x̄ ∈ C such that

〈G(x̄), j (y − x̄)〉 ≥ 0 ∀y ∈ E . (1.4)

The problem of solving variational inequality of the form (1.4) has been intensively studied
by numerous authors due to its various applications in several physical problems, such as in
operational research, economics, engineering, e.t.c.
A typical problem is to minimize a quadratic function over the set of fixed points of some
nonexpansive mapping in a real Hilbert space H :

min
x∈F

1

2
〈Ax, x〉 − 〈x, b〉. (1.5)

Here F is a fixed point set of some nonexpansive mapping T of H, b is a point in H , and A
is some bounded, linear and strongly positive operator on H, where a map A : H → H is
said to be strongly positive if there exist a constant γ > 0 such that

〈Ax, x〉 ≥ γ ‖x‖2, ∀x ∈ H.

Iterative methods for approximating fixed points of nonexpansive mappings and their
generalizations which solves some variational inequalities problems have been studied by a
number of authors, see for examples [1–23,26,30,31] and the references contained in them.
In 2000, Moudafi [17] introduced viscosity approximation method for nonexpansive
mappings. He proved that if a sequence {xn} is defined by

xn+1 = (1 − αn)T xn + αn f (xn), n ≥ 0 (1.6)

then {xn} converges strongly to the unique solution x∗ ∈ F of the variational inequality

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ F (1.7)

where {αn} ⊆ (0, 1) is a real sequence satisfying some conditions and f : H → H is a
contraction map.
In 2003, Xu [29] proved that for a strongly positive linear bounded operator A on H a
sequence {xn} defined by x0 ∈ H

xn+1 = (I − αn A)T xn + αnb, n ≥ 0, (1.8)

converges strongly to the unique solution of the minimization problem (1.5) provided the
sequence {αn} satisfies some control conditions.
In 2006, Marino and Xu [16] combined the iterative methods of Xu [29] and that of Moudafi
[17] and studied the following general iterative method:

xn+1 = (I − αn A)T xn + αnγ f (xn), n ≥ 0. (1.9)

They proved that if the sequence {αn} satisfies appropriate conditions, then {xn} converges
strongly to the unique solution of the variational inequality

〈(A − γ f )x∗, x − x∗〉 ≥ 0, ∀x ∈ F. (1.10)
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Let Tk : E → E, k = 1, 2, 3, . . . N be a finite family of nonexpansive maps. For n ∈ N,

define a map Wn : E → E by

Un,1 = γn,1T1 + (1 − γn,1)I,

Un,2 = γn,2T2Un,1 + (1 − γn,2)I

...

Wn = Un,N = γn,N TNUn,N−1 + (1 − γn,N )I,

where I = Un,0 and {γn,k}Nk ⊆ [0, 1]. The mapping Wn here is called the W mapping
generated by T1, T2, . . . , TN and {γn,k}n≥1, k ∈ {1, 2, . . . , N }.
In 2007, Shang et al. [22] introduced a composite iterative scheme as follows: given
x0 = x ∈ C arbitrarily chosen,

yn = βnxn + (1 − βn)Wnxn,

xn+1 = αnγ f (xn) + (I − αn A)yn,

where f is a contraction, and A is a strongly positive bounded linear operator on H .
In 2009, Kangtunyakarn and Suantai [15] introduced and studied the following scheme for
approximation of common fixed point of a finite family of nonexpansive mappings {Tk}Nk=1,

for n ∈ N;
Un,1 = γn,1T1 + (1 − γn,1)I,

Un,2 = γn,2T2Un,1 + (1 − γn,2)Un,1,

...

Kn = Un,N = γn,N TNUn,N−1 + (1 − γn,N )Un,N−1. (1.11)

The mapping Kn here is called the K mapping generated by T1, T2, . . . , TN and {γn,k}n≥1,

k ∈ {1, 2, . . . , N }.
Recently, Singthong and Suantai [24] studied the convergence of the following composite
scheme x0 ∈ C,

yn = βnxn + (1 − βn)Knxn,

xn+1 = PC (αnγ f (xn) + (I − αn A)yn), (1.12)

whereC is a nonempty, closed convex subset of Hilbert space H, f : C → C is a contraction,
and A is a strongly positive bounded linear operator on H .
More recently, Ali et al. [2] introduce a modified iterative scheme for approximation of
common fixed point of a finite family of nonexpansive mappings {Tk}Nk=1, for n ∈ N and a
sequence {γn,k}, k ∈ {1, 2, . . . , N },

Un,1 = γn,1T1 + (1 − γn,1)I,

Un,2 = γn,2T2Un,1 + (1 − γn,2)Un,1,

...

Un,N−1 = γn,N−1TN−1Un,N−2 + (1 − γn,N−1)Un,N−2

Kn = Un,N = γn,N TNUn,N−1 + (1 − γn,N )I. (1.13)

They proved strong convergence of an iterative scheme to a common fixed point of a
finite family of nonexpansive mappings which is also a unique solution of some variational
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inequality problem in a framework of a Banach space much more general than Hilbert space.
They actually proved the following theorems:

Theorem 1.1 (Ali et al. [2]) Let E be a real reflexive and strictly convex Banach space
with a uniformly Gâteaux differentiable norm. Let {Ti }Ni=1 be a finite family of nonexpansive

mappings of E into itself and F = ⋂N
i=1 F(Ti ) �= ∅. Let f : E → E be a contraction

with constant α ∈ (0, 1). Let G : E → E be an η− strongly accretive and μ− strictly

pseudocontractive with η + μ > 1 and let τ = 1−
√

1−η
μ

. Let γ be a real number satisfying

0 < γ < τ
α
and let K : E → E be as in (1.13). Given β ∈ (0, 1), then for any t ∈ (0, 1).

Let {zt }t∈(0,1) be a path defined by

zt = tγ f (zt ) + (I − tG)[βzt + (1 − β)Kzt ]. (1.14)

Then {zt } converges strongly to a common fixed point of the family say p which is a unique
solution of the variational inequality

〈(G − γ f )p, j (q − p)〉 ≥ 0, ∀q ∈ F. (1.15)

Theorem 1.2 (Ali et al. [2]) Let E be a real, reflexive and strictly convex Banach space
with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E. Let
G : E → E be an η-strongly accretive and μ-strictly pseudocontractive with η+μ > 1 and
let f : E → E be a contraction with coefficient α ∈ (0, 1). Let {Tk}Nk=1 be a finite family of

nonexpansive mappings of E into itself and F = ⋂N
k=1 F(Tk) �= ∅. Let Kn be as in (1.13).

Assume that 0 < γ < τ
2α , where τ := (1−

√
1−η
μ

) and let x0 ∈ C. Let {αn}∞n=1 and {βn}∞n=1

be sequences in (0, 1), and suppose that the following conditions are satisfied:

(C1) αn → 0 as n → ∞;
(C2) �∞

n=0αn = ∞
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) �∞

n=1|γn,k − γn−1,k | < ∞, f or all k = 1, 2, 3, . . . , N and {γn,k}Nk=1 ⊂
[a, b], where 0 < a ≤ b < 1;

(C5) �∞
n=1|αn+1 − αn | < ∞;

(C6) �∞
n=1|βn+1 − βn | < ∞.

If {xn}∞n=1 is a sequence defined by,

yn = βnxn + (1 − βn)Knxn,

xn+1 = αnγ f (xn) + (I − αnG)yn, n ≥ 0, (1.16)

then {xn}∞n=1 converges strongly to p ∈ F, which also solves the following variational
inequality problem,

〈(G − γ f )x∗, x − x∗〉 ≥ 0, ∀x ∈ F. (1.17)

It is our purpose in this paper to continue the study of the above problem and prove a new
convergence theorems for approximation of common fixed point of finite family {Tk}Nk=1 of
asymptotically nonexpansive mappings which is also a unique solution of some variational
inequality problem. The result presented here generalize and improve those recent ones such
as in [2,24]. In particular our Theorem extend the result in [24] to more general Banach space
setting than Hilbert and generalizes it to family of asymptotically nonexpansive mappings.
On the other hand our result also not only generalizes Theorems 1.1 and 1.2 to the family
of asymptotically nonexpansive mappings but also conditions C5 and C6 imposed in both
Theorems 1.2 above and Theorem 2.1 of [24] are dispensed with.
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2 Preliminaries

The following lemmas will be use for the main result.

Lemma 2.1 Let E be a real normed linear space. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x + y)〉, ∀x, y ∈ E, j (x + y) ∈ J (x + y).

Lemma 2.2 (Suzuki [25]) Let {xn} and {yn} be bounded sequences in a Banach space E
and let {βn} be a sequence in [0, 1] with 0 < lim inf βn ≤ lim supβn < 1. Suppose that
xn+1 = βn yn + (1 − βn)xn for all integer n ≥ 1 and

lim sup
n→∞

(||yn+1 − yn || − ||xn+1 − xn ||) ≤ 0.

Then, limn→∞||yn − xn || = 0.

Lemma 2.3 (Xu [27]) Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let Br (0) := {x ∈ E : ||x || ≤ r} and λ ∈ [0, 1]. Then, there exists a continuous strictly
increasing convex function

g : [0, 2r ] → R, g(0) = 0

such that for every x, y ∈ Br (0), the following inequality holds:

||λx + (1 − λ)y||2 ≤ λ||x ||2 + (1 − λ)||y||2 − λ(1 − λ)g(||x − y||).
Lemma 2.4 (Xu [28]) Let {an} be a sequence of nonegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0

where, (i) {αn} ⊂ [0, 1], ∑
αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),∑

γn < ∞. Then, an → 0 as n → ∞.

Lemma 2.5 (Chang et al. [9]) Let E be a uniformily convex Banach space, K be a nonempty
closed convex subset of E and T : K → K be an asymptotically nonexpansive mapping,
then I − T is demiclosed at zero.

Lemma 2.6 (Piri and Vaezi [19] see also [1]) Let E be a real Banach space and G : E → E
be a mapping.

(i) If G is η-strongly accretive and μ-strictly pseudo-contractive with η + μ > 1, then

I − G is contractive with constant
√

1−η
μ

.

(ii) If G is η-strongly accretive and μ-strictly pseudo-contractive with η + μ > 1, then for

any fixed number κ ∈ (0, 1), I − κG is contractive with constant 1 − κ
(
1 −

√
1−η
μ

)
.

3 Main results

Lemma 3.1 Let C be a nonempty closed convex subset of a uniformly convex real Banach
space E. Let {Tk}Nk=1 be finite family of uniformly asymtotically regular asymptotically
nonexpansive mappings of C into itself with sequences {ρn,k} ⊂ [1,∞), let {γn,k}Nk=1
be a sequence in (0, 1) such that 0 < lim infn→∞ γn,k ≤ lim supn→∞ γn,k < 1 and
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limn→∞ |γn,k − γn−1,k | = 0 ∀k ∈ {1, 2, 3, . . . , N }. Let Kn be a mapping generated by
T1, T2, T3, . . . , TN and γn,1, γn,2, γn,3, . . . , γn,N as follows;

Un,1 = γn,1T
n
1 + (1 − γn,1)I,

Un,2 = γn,2T
n
2 Un,1 + (1 − γn,2)Un,1,

...

Un,N−1 = γn,N−1T
n
N−1Un,N−2 + (1 − γn,N−1)Un,N−2,

Kn = Un,N = γn,N T
n
NUn,N−1 + (1 − γn,N )I. (3.1)

Then, the following holds:

(i) ‖Knx − Kn y‖ ≤ (1 + vn)‖x − y‖, where vn = ρn,N (1 + λn,N−1) − 1, and {λn,N } is
some sequence in [0,∞), with λn,N → 0 as n → ∞.

(ii) If limn→∞‖T n+1
k Un,k−1zn − T n

k Un,k−1zn‖ = 0,
then lim

n→∞‖Kn+1zn − Knzn‖ = 0, for every bounded sequence {zn} in E, k

= 1, 2, . . . , N ;
(iii) For every bounded sequence {zn} in C such that limn→∞ ||Knzn − zn || = 0, we

have limn→∞ ||Tkzn − zn || = 0 for any k ∈ {1, 2, 3, . . . , N }. Furthermore , we have
ww(zn) ⊂ ∩N

k=1F(Tk) and F(Kn) =N⊂ ∩N
k=1F(Tk).

Proof (i) Let x, y ∈ C then from (3.1), if N = 1 the result follows. Assume N �= 1 and
Un,0 = I (identity map), then for k ∈ {1, 2, . . . , N − 1}, we have

‖Un,k x −Un,k y‖ ≤ γn,k‖T n
k Un,k−1x − T n

k Un,k−1y‖
+(1 − γn,k)‖Un,k−1x −Un,k−1y‖

≤ [γn,kρn,k + (1 − γn,k)]‖Un,k−1x −Un,k−1y‖
= [1 + γn,k(ρn,k − 1)]‖Un,k−1x −Un,k−1y‖
≤ [1 + γn,k(ρn,k − 1)][γn,k−1‖T n

k−1Un,k−2x − T n
k−1Un,k−2y‖

+(1 − γn,k−1)‖Un,k−2x −Un,k−2y‖]
≤ [1 + γn,k(ρn,k − 1)][1 + γn,k−1(ρn,k−1 − 1)]‖Un,k−2x −Un,k−2y‖
...

...

≤ [1 + γn,k(ρn,k − 1)][1 + γn,k−1(ρn,k−1 − 1)] . . . [1 + γn,2(ρn,2 − 1)]
‖Un,1x −Un,1y‖

≤ [1 + γn,k(ρn,k − 1)][1 + γn,k−1(ρn,k−1 − 1)] . . . [1 + γn,2(ρn,2 − 1)]
[1 + γn,1(ρn,1 − 1)]‖x − y‖

=
k∏

j=1

[1 + γn, j (ρn, j − 1)]‖x − y‖

= (1 + λn,k)‖x − y‖,
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where
∏k

j=1

(
1 + γn, j (ρn, j − 1)

)
= (1 + λn,k), observe that limn→∞ λn,k = 0. Then,

‖Knx − Kn y‖ = ‖Un,N x −Un,N y‖
≤ γn,N‖T n

NUn,N−1x − T n
NUn,N−1y‖ + (1 − γn,N )‖x − y‖

≤ γn,Nρn,N‖Un,N−1x −Un,N−1y‖ + (1 − γn,N )‖x − y‖
≤ γn,Nρn,N (1 + λn,N−1)‖x − y‖ + (1 − γn,N )‖x − y‖
= [1 + γn,N (ρn,N (1 + λn,N−1) − 1)]‖x − y‖
≤ [1 + (ρn,N (1 + λn,N−1) − 1)]‖x − y‖
= (1 + vn)‖x − y‖,

where vn = ρn,N (1 + λn,N−1) − 1, observe that limn→∞ vn = 0.
Next we show (ii). For k ∈ {2, 3, . . . , N − 1} and any bounded sequence {zn} ⊂ E ,
letting δn+1,k := [1 + γn+1,k(ρn+1,k − 1)], Mn,k := [‖T n+1

k Un,k zn‖ + ‖Un,k zn‖] and
Pn,k := ‖T n+1

k−1 Un,k zn − T n
k−1Un,k zn‖, we have

‖Un+1,k zn −Un,k zn‖ = ‖γn+1,kT
n+1
k Un+1,k−1zn

−γn+1,kT
n+1
k Un,k−1zn

+[γn+1,k − γn,k]T n+1
k Un,k−1zn

+γn,k[T n+1
k Un,k−1zn − T n

k Un,k−1zn]
+(1 − γn+1,k)(Un+1,k−1zn −Un,k−1zn)

+[(1 − γn+1,k) − (1 − γn,k)]Un,k−1zn‖
≤ [1 + γn+1,k(ρn+1,k − 1)]‖Un+1,k−1zn −Un,k−1zn‖

+|γn+1,k − γn,k |
[
‖T n+1

k Un,k−1zn‖ + ‖Un,k−1zn‖
]

+γn,k‖T n+1
k Un,k−1zn − T n

k Un,k−1zn‖
≤ [

1 + γn+1,k(ρn+1,k − 1)
][[

1 + γn+1,k−1(ρn+1,k−1 − 1)
]‖Un+1,k−2zn −Un,k−2zn‖

+|γn+1,k−1 − γn,k−1|
[‖T n+1

k−1 Un,k−2zn‖ + ‖Un,k−2zn‖
]

+γn,k−1‖T n+1
k−1 Un,k−2zn − T n

k−1Un,k−2zn‖
]

+|γn+1,k − γn,k |
[‖T n+1

k Un,k−1zn‖ + ‖Un,k−1zn‖
]

+γn,k‖T n+1
k Un,k−1zn − T n

k Un,k−1zn‖
= δn+1,kδn+1,k−1‖Un+1,k−2zn −Un,k−2zn‖

+δn+1,k |γn+1,k−1 − γn,k−1|Mn,k−2

+δn+1,kγn,k−1Pn,k−2

+|γn+1,k − γn,k |Mn,k−1

+γn,k Pn,k−1

≤ δn+1,kδn+1,k−1

[
δn+1,k−2‖Un+1,k−3zn −Un,k−3zn‖

+|γn+1,k−2 − γn,k−2|[‖T n+1
k−2 Un,k−3zn‖ + ‖Un,k−3zn‖]

+γn,k−1‖T n+1
k−2 Un,k−3zn − T n

k−2Un,k−2zn‖
]

+δn+1,k |γn+1,k−1 − γn,k−1|Mn,k−2
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+δn+1,kγn,k−1Pn,k−2

+|γn+1,k − γn,k |Mn,k−1

+γn,k Pn,k−1

= δn+1,kδn+1,k−1δn+1,k−2‖Un+1,k−3zn −Un,k−3zn‖
+δn+1,kδn+1,k−1|γn+1,k−2 − γn,k−2|Mn,k−3

+δn+1,kδn+1,k−1γn,k−1Pn,k−3

+δn+1,k |γn+1,k−1 − γn,k−1|Mn,k−2

+δn+1,kγn,k−1Pn,k−2

+|γn+1,k − γn,k |Mn,k−1

+γn,k Pn,k−1

≤
...
... (3.2)

≤ δn+1,kδn+1,k−1δn+1,k−2 . . . δn+1,3δn+1,2‖Un+1,1zn −Un,1zn‖
+

(
δn+1,kδn+1,k−1δn+1,k−2 . . . δn+1,3γn+1,2Pn,1

+ · · · + δn+1,kδn+1,k−1γn+1,k−2Pn,k−3

+δn+1,kγn+1,k−1Pn,k−2 + γn+1,k Pn,k−1

)

+
(
δn+1,kδn+1,k−1δn+1,k−2 . . . δn+1,3|γn+1,2 − γn,2|Mn,1

+ · · · + δn+1,kδn+1,k−1|γn+1,k−2 − γn,k−2|Mn,k−3

+δn+1,k |γn+1,k−1 − γn,k−1|Mn,k−2

+|γn+1,k − γn,k |Mn,k−1

)

= ‖Un+1,1zn −Un,1zn‖
k∏

j=2

δn+1, j

+
k∑

i=2

γn+1,i Pn,i−1

k∏

j=i+1

δn+1, j +
k∑

i=2

|γn+1,i − γn,i |Mn,i−1

k∏

j=i+1

δn+1, j

≤
[
γn+1,1||T n+1

1 zn − T n
1 zn || + |γn+1,1 − γn,1|(||zn || + ||T n

1 zn ||)
] k∏

j=2

δn+1, j

+
k−1∑

i=2

γn+1,i Pn,i−1

k∏

j=i+1

δn+1, j +
k∑

i=2

|γn+1,i − γn,i |Mn,i−1

k∏

j=i+1

δn+1, j

=
k∑

i=1

γn+1,i Pn,i

k∏

j=i+1

δn+1, j +
k∑

i=1

|γn+1,i − γn,i |Mn,i

k∏

j=i+1

δn+1, j (3.3)

Hence, we have

‖Kn+1zn − Knzn‖ = ‖Un+1,N zn −Un,N zn‖
≤ γn+1,N ||T n+1

N Un+1,N−1zn − T n+1
N Un,N−1zn ||

+γn+1,N ||T n+1
N Un+1,N−1zn − T n

NUn,N−1zn ||
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+|γn+1,N − γn,N |[||T n
NUn,N−1zn || + ||zn ||]

≤ γn+1,Nρn+1,N ||Un+1,N−1zn −Un,N−1zn ||
+γn+1,N ||T n+1

N Un+1,N−1zn − T n
NUn,N−1zn ||

+|γn+1,N − γn,N |[||T n
NUn,N−1zn || + ||zn ||]

≤ ρn+1,N

⎡

⎣
N−1∑

i=1

γn+1,i Pn,i

N−1∏

j=i+1

δn+1, j

+
N−1∑

i=1

|γn+1,i − γn,i |Mn,i

N−1∏

j=i+1

δn+1, j

⎤

⎦

+γn+1,N ||T n+1
N Un+1,N−1zn − T n

NUn,N−1zn ||
+|γn+1,N − γn,N |[||T n

NUn,N−1zn || + ||zn ||
]
. (3.4)

Therefore

lim
n→∞||Kn+1zn − Knzn || = 0. (3.5)

Hence (ii) is satisfied.
Next, we show (iii), let {zn} be a bounded sequence in E such that
limn→∞||Knzn − zn || = 0, then for x∗ ∈ ∩N

k=1F(Tk), we obtain

||Knzn − x∗||2 ≤ γn,N ||T n
NUn,N−1zn − x∗||2 + (1 − γn,N )||zn − x∗||2

≤ γn,Nρ2
n,N ||Un,N−1zn − x∗||2 + (1 − γn,N )||zn − x∗||2

≤ γn,Nρ2
n,N

[
γn,N−1||T n

N−1Un,N−2zn − x∗||2
+(1 − γn,N−1)||Un,N−2zn − x∗||2]

+(1 − γn,N )||zn − x∗||2 (3.6)

≤ γn,Nρ2
n,N

[
γn,N−1ρ

2
n,N−1||Un,N−2zn − x∗||2

+(1 − γn,N−1)||Un,N−2zn − x∗||2]

+(1 − γn,N )||zn − x∗||2
= γn,Nρ2

n,N

(
[1 + γn,N−1(ρ

2
n,N−1 − 1)]||Un,N−2zn − x∗||2

)

+(1 − γn,N )||zn − x∗||2
≤ γn,Nρ2

n,N

[
1 + γn,N−1(ρ

2
n,N−1 − 1)

][
1 + γn,N−2(ρ

2
n,N−2 − 1)

]

. . . × [1 + γn,1(ρ
2
n,1 − 1)]||zn − x∗||2 + (1 − γn,N )||zn − x∗||2

=
(
1 + γn,N

{
ρ2
n,N [1 + γn,N−1(ρ

2
n,N−1 − 1)][1 + γn,N−2(ρ

2
n,N−2 − 1)]

. . . × [1 + γn,1(ρ
2
n,1 − 1)] − 1

})
||zn − x∗||2

= (1 + ϑn)||zn − x∗||2, (3.7)

where ϑn := γn,N

{
ρ2
n,N [1 + γn,N−1(ρ

2
n,N−1 − 1)][1 + γn,N−2(ρ

2
n,N−2

− 1)] . . . [1 + γn,2(ρ
2
n,2 − 1)][1 + γn,1(ρ

2
n,1 − 1)] − 1

}
and observe that limn→∞ϑn = 0.

Then by using Lemma 2.3, (3.6) and (3.7), we have

||Knzn − x∗||2 = ||γn,N (T n
NUn,N−1zn − x∗) + (1 − γn,N )(zn − x∗)||2
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≤ γn,N ||T n
NUn,N−1zn − x∗||2 + (1 − γn,N )||zn − x∗||2

−γn,N (1 − γn,N )g(||T n
NUn,N−1zn − zn ||)

≤ (1 + ϑn)||zn − x∗||2 − γn,N (1 − γn,N )g(||T n
NUn,N−1zn − zn ||),

from this we obtain

γn,N (1 − γn,N )g(||T n
NUn,N−1zn − zn ||) ≤ ||zn − x∗||2 − ||Knzn − x∗||2 + ϑn ||zn − x∗||2

= (||zn − x∗|| − ||Knzn − x∗||)(||zn − x∗|| + ||Knzn − x∗||) + ϑn ||zn − x∗||2
≤ ||zn − Knzn ||(||zn − x∗|| + ||Knzn − x∗||) + ϑn ||zn − x∗||2
≤ (||zn − Knzn || + ϑn)M0 → 0 as n → ∞,

for some M0 > 0. Thus, by the property of g, we obtain that

lim
n→∞||T n

NUn,N−1zn − zn || = 0. (3.8)

Moreover,

||zn − x∗||2 ≤ (||zn − T n
NUn,N−1zn || + ||T n

NUn,N−1zn − x∗||)2
= ||zn − T n

NUn,N−1zn ||(||zn − T n
NUn,N−1zn || + 2||T n

NUn,N−1zn − x∗||)
+||T n

NUn,N−1zn − x∗||2
≤ ||zn − T n

NUn,N−1zn ||M1 + ρ2
n,N ||Un,N−1zn − x∗||2 (for someM1 > 0)

≤ ||zn − T n
NUn,N−1zn ||M1 + ρ2

n,N [γn,N−1||T n,N−1Un,N−2zn − x∗||2
+(1 − γn,N−1)||Un,N−2zn − x∗||2
−γn,N−1(1 − γn,N−1)g(||T n

N−1Un,N−2zn −Un,N−2zn ||)]
≤ ||zn − T n

NUn,N−1zn ||M1 + ρ2
n,N [γn,N−1ρ

2
n,N−1||Un,N−2zn − x∗||2

+(1 − γn,N−1)||Un,N−2zn − x∗||2
−γn,N−1(1 − γn,N−1)g(||T n

N−1Un,N−2zn −Un,N−2zn ||)]
≤ ||zn − T n

NUn,N−1zn ||M1 + ρ2
n,N [(1 + γn,N−1(ρ

2
n,N−1 − 1))||Un,N−2zn − x∗||2

−γn,N−1(1 − γn,N−1)g(||T n
N−1Un,N−2zn −Un,N−2zn ||)]

≤ ||zn − T n
NUn,N−1zn ||M1 + (1 + ϑn)||zn − x∗||2

−ρ2
n,Nγn,N−1(1 − γn,N−1)g(||T n

N−1Un,N−2zn −Un,N−2zn ||)],
g(||T n

N−1Un,N−2zn −Un,N−2zn ||)

≤
(
||zn − T n

NUn,N−1zn ||M1 + ϑn ||zn − x∗||2
)

ρ2
n,Nγn,N−1(1 − γn,N−1)

≤
(
||zn − T n

NUn,N−1zn || + ϑn

)
M

ρ2
n,Nγn,N−1(1 − γn,N−1)

,

for some M > 0. Thus, using property of g,

lim
n→∞||T n

N−1Un,N−2zn −Un,N−2zn || = 0. (3.9)

Continuing in this fashion we observe that for k ∈ {2, 3, 4, . . . , N − 1}
lim
n→∞||T n

k Un,k−1zn −Un,k−1zn || = 0, (3.10)
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and

lim
n→∞||T n

1 zn − zn || = 0. (3.11)

Also

||Un,k zn − zn || ≤ ||Un,k zn − T n
k Un,k−1zn || + ||T n

k Un,k−1zn −Un,k−1zn ||
+||Un,k−1zn − T n

k−1Un,k−2zn ||
+||T n

k−1Un,k−2zn −Un,k−2zn ||
+ · · · + ||T n

2 Un,1zn −Un,1zn || + ||Un,1zn − zn ||
≤ (1 − γn,k)||Un,k−1zn − T n

k Un,k−1zn ||
+||T n

k Un,k−1zn −Un,k−1zn ||
+(1 − γn,k−1)||Un,k−2zn − T n

k−1Un,k−2zn ||
+ · · · + (1 − γn,2)||Un,1zn − T n

2 Un,1zn ||
+γn,1||T n

1 zn − zn || → 0 as n → ∞.

Thus

||T n
k Un,k−1zn − zn || ≤ ||T n

k Un,k−1zn −Un,k−1zn ||
+||Un,k−1zn − zn || → 0 as n → ∞.

So for any k ∈ {1, 2, 3, . . . , N }, we obtain
||zn − T n

k zn || ≤ ||zn − T n
k Un,k−1zn || + ||T n

k Un,k−1zn − T n
k zn ||

≤ ||zn − T n
k Un,k−1zn ||

+ρn,k ||Un,k−1zn − zn || → 0 as n → ∞. (3.12)

Hence

||Tkzn − zn || ≤ ||Tkzn − Tk(T
n
k )zn || + ||Tk(T n

k )zn − T n
k zn || + ||T n

k zn − zn ||
≤ (Lk + 1)||zn − T n

k zn || + ||T n+1
k zn − T n

k zn ||.
Therefore, from (3.12), for each k ∈ {1, 2, 3, . . . , N }, we obtain

lim
n→∞||Tkzn − zn || = 0. (3.13)

Moreover, by Lemma 2.5, we have ww(xn) ⊂ ∩N
k=1F(Tk), also since ∩N

k=1F(Tk) ⊂ F(Kn)

is obvious, we only need to show that F(Kn) ⊂ ∩N
k=1F(Tk). Let z∗ ∈ F(Kn), and zn = z∗,

then, we have that ||z∗ − Tkz∗|| = 0 for each k ∈ {1, 2, 3, . . . , N } that is z∗ = Tkz∗, for each
k ∈ {1, 2, 3, . . . , N }, so that z∗ ∈ ∩N

k=1F(Tk). Hence (iii) is satisfied. ��
Theorem 3.2 Let E be a real uniformly convex Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of E. Let G : E → E be an
η-strongly accretive and μ-strictly pseudocontractive with η +μ > 1 and let f : E → E be
a contraction with coefficient α ∈ (0, 1). Let {Ti }Ni=1 be a family of uniformly asymptotically

regular asymptotically nonexpansive selfmappings ofC into itself and F = ⋂N
i=1 F(Ti ) �= ∅.

Let Kn be as in Lemma 3.1. Assume that 0 < γ < τ
α
, where τ := (1−

√
1−η
μ

) and let x0 ∈ C.

Let {αn}∞n=1 and {βn}∞n=1 be sequences in (0, 1), and suppose that the following conditions
are satisfied:
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(C1) αn → 0 and vn
αn

→ 0 as n → ∞, where vn is as in (i) of Lemma 3.1;

(C2)
∑∞

n=1 αn = ∞
If {xn}∞n=1 is a sequence defined by,

xn = αnγ f (xn) + (I − αnG)[βnxn + (1 − βn)Knxn], n ≥ 0, (3.14)

then {xn}∞n=1 converges strongly to p ∈ F, which also solves the following variational
inequality:

〈γ f (p) − Gp, j (q − p)〉 ≤ 0, ∀q ∈ F. (3.15)

Proof First, we show that {xn} defined by (3.14) is well defined. For all n ∈ N, let us define
the mapping

T f
n x := αnγ f (x) + (I − αnG)[βnx + (1 − βn)Knx].

Indeed, for all x, y ∈ E , we have

||T f
n x − T f

n y|| = ||αnγ ( f (x) − f (y)) + (1 − αnG)[βn(x − y) + (1 − βn)(Knx − Kn y)]||
≤ αnγα||x − y|| + (1 − αnτ)[βn ||x − y|| + (1 − βn)(1 + vn)||x − y||]
≤ [αnγα + (1 − αnτ)(1 + vn)]||x − y||
=

(
1 − αn[(τ − γα) − (1 − αnτ)(vn/αn)]

)
||x − y||.

Since, limn→∞(1 − αnτ)vn/αn → 0, then there exist n0 ∈ N such that (1 − αnτ)vn/αn

< (τ − γα)/2 for all n ≥ n0. Therefore, for n ≥ n0, we have

1 − αn[(τ − γα) − (1 − αnτ)(vn/αn)] < 1 − αn[(τ − γα) − (τ − γα)/2] < 1.

Hence,

||T f
n x − T f

n y|| < ||x − y||.
Thus, {xn} defined by (3.14) is well defined. Therefore, by the contraction mapping principle,
there exists a unique fixed point xn ∈ C of T f

n which satisfies (3.14).
From the choice of the parameter γ, it is easy to see that the mapping (G −γ f ) : E → E

is strongly accretive and so the variational inequality (3.15) has unique solution in F. Let
p ∈ F then,

‖xn − p‖2 = αn〈γ f (p) − Gp, j (xn − p)〉 + 〈(I − αnG)[βnxn + (1 − βn)Knxn]
−(I − αnG)p, j (xn − p)〉 + αn〈γ f (xn) − γ f (p), j (xn − p)〉

≤ [1 − αn(τ − γα) + (1 − αnτ)vn]‖xn − p‖2 + αn〈(γ f − G)p, j (xn − p)〉.
Let dn = (1 − αnτ)(vn/αn). Since, limn→∞(1 − αnτ)vn/αn = 0, then there exist n0 ∈ N

such that (1 − αnτ)vn/αn < (τ − γα)/2 for all n ≥ n0.

‖xn − p‖2 ≤ 〈(γ f − G)p, j (xn − p)〉
(τ − γα) − dn

, (3.16)

that is ||xn − p|| ≤ 2||γ f (p)−G(p)||
τ−γα

, for all n ≥ n0. Thus {xn} is bounded implies that { f (xn)},
{G(xn)} and {Kn(xn)} are also bounded. From (3.14) we also obtain

‖xn − Knxn‖ ≤ βn‖xn − Knxn‖ + αn‖γ f (xn) − G(βnxn + (1 − βn)Kn(xn))‖
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and hence

‖xn − Knxn‖ ≤ αn

1 − βn
‖γ f (xn) − G(βnxn + (1 − βn)Kn(xn))‖ → 0, (3.17)

as n → ∞. Since {xn} is bounded, using (3.17), it follows from (iii) of Lemma 3.1 that
F = F(Kn). We claim that the set {xn} is sequentially compact. Indeed, define a map
φ : E → R by

φ(y) := μn ||xn − y||2, ∀y ∈ E .

Then, φ(y) → ∞ as ||y|| → ∞, φ is continuous and convex, so as E is reflexive, there
exists q ∈ E such that φ(q) = minu∈E φ(u). Hence, the set

K ∗ := {y ∈ E : φ(y) = min
u∈Eφ(u)} �= ∅.

Since limn→∞||xn − Knxn || = 0, limn→∞||xn − Km
n xn || = 0, for anym ≥ 1 by induction.

Now let v ∈ K ∗, we have

lim
n→∞φ(Knv) = lim

n→∞μn ||xn − Knv||2

= lim
n→∞μn ||xn − Knxn + Knxn − Knv||2

≤ lim
n→∞μn[(1 + vn)||xn − v||]2 = lim

n→∞φ(v),

and hence Knv ∈ K ∗.
Now let z ∈ F, then z = Knz. Since K ∗ is a closed convex set, there exists a unique v∗ ∈ K ∗
such that

||z − v∗|| = min
u∈K ∗||z − u||.

But

lim
n→∞||z − Knv

∗|| = lim
n→∞||Knz − Knv

∗|| ≤ lim
n→∞(1 + vn)||z − v∗||,

which implies v∗ = Knv
∗ and so K ∗ ∩ F �= ∅.

Let p ∈ K ∗ ∩ F and ε ∈ (0, 1). Then, it follows that φ(p) ≤ φ(p− ε(G − γ f )p) and using
Lemma 2.1, we obtain that

||xn − p + ε(G − γ f )p||2 ≤ ||xn − p||2 + 2ε〈(G − γ f )p, j (xn − p + ε(G − γ f )p)〉
which implies

μn〈(γ f − G)p, j (xn − p + ι(G − γ f )p)〉 ≤ 0.

Moreover,

μn〈(γ f − G)p, j (xn − p)〉 = μn〈(γ f − G)p, j (xn − p) − j (xn − p + ε(G − γ f )p)〉
+μn〈(γ f − G)p, j (xn − p + ε(G − γ f )p)〉

≤ μn〈(γ f − G)p, j (xn − p) − j (xn − p + ε(G − γ f )p)〉.
Since j is norm-to-weak∗ uniformly continuous on bounded subsets of E , we have that

μn〈(γ f − G)p, j (xn − p)〉 ≤ 0.
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It follows from (3.16) that

‖xn − p‖2 ≤ 〈(γ f − G)p, j (xn − p)〉
(τ − γα) − dn

,

and so

μn‖xn − p‖2 ≤ 0.

Thus there exist a subsequence say {xnl } of {xn} such that liml→∞xnl = p.
Define Sn as Snx := βnx + (1 − βn)Knx, then liml→∞Snxnl = p and Sn p = p. Thus for
any z ∈ F, using (3.14) we have

〈G(xnl ) − γ f (xnl ), j (xnl − z)〉 = −1

αnl
〈(I − Sn)xnl − (I − Sn)p, j (xnl − z)〉

+〈Gxnl − GSnxnl , j (xnl − z)〉
≤ 〈Gxnl − GSnxnl , j (xnl − z)〉
≤ (1 + 1

μ
)||xnl − Snxnl ||||xnl − z||, (3.18)

since 〈(I − Sn)xnl − (I − Sn)p, j (xnl − z)〉 ≥ 0 and G is Lipschitzian. Using the fact
that ‖xnl − Snxnl‖ = (1 − βnl )‖xnl − Knl xnl‖ → 0 as l → ∞, we have ‖xnl − Snxnl‖
→ 0 as l → ∞. From (3.18), taking limit as l → ∞ we obtain

〈(G − γ f )p, j (p − z)〉 ≤ 0.

Hence p is the unique solution of the variational inequality (3.15). Now assume there exists
another subsequence of {xn} say {xnk } such that limk→∞ xnk = p∗. Then, using (3.17) we
have p∗ ∈ F. Repeating the above argument with p replaced by p∗ we can easily obtain
that p∗ also solved the variational inequality (3.15). By uniqueness of the solution of the
variational inequality, we obtained that p = p∗ and this completes the proof. ��
Theorem 3.3 Let E be a real, uniformly convex Banach space with a uniformly Gâteaux
differentiable norm,C a nonempty closed convex subset of E. Let G : E → E be an
η-strongly accretive and μ-strictly pseudocontractive with η +μ > 1 and let f : E → E be
a contraction with coefficient α ∈ (0, 1). Let {Ti }Ni=1 be family of uniformly asymptotically

regular asymptotically nonexpansive selfmappings ofC into itself and F = ⋂N
i=1 F(Ti ) �= ∅.

Let Kn be as in Lemma 3.1. Assume that 0 < γ < τ
2α , where τ := (1−

√
1−η
μ

). Let {αn}∞n=1

and {βn}∞n=1 be sequences in (0, 1), and suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and limn→∞ vn
αn

= 0, where vn is as in (i) of Lemma 3.1;
(C2) �∞

n=0αn = ∞
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
Let {xn}∞n=1 be a sequence defined iteratively by letting x0 ∈ C arbitrary and,

yn = βnxn + (1 − βn)Knxn,

xn+1 = αnγ f (xn) + (I − αnG)yn, n ≥ 0, (3.19)

then, the following holds

(a) {xn}∞n=1 is bounded;
(b) limn→∞ ||Knxn − xn || = 0;
(c) F(Kn) = F;
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(d) {xn}∞n=1 converges strongly to p ∈ F, where p is a solution of the variational inequality:

〈γ f (p) − Gp, j (q − p)〉 ≤ 0, ∀q ∈ F. (3.20)

Proof First, we show that the sequence {xn}∞n=1 is bounded. Let u ∈ F then, since (1
− αnτ)(vn/αn) → 0 as n → ∞, there exists n0 ∈ N such that (1 − αnτ)(vn/αn)

< (τ − γα)/2 for all n ≥ n0. Hence, for n ≥ n0, we have the following.

‖yn − u‖ ≤ βn‖xn − u‖ + (1 − βn)‖Knxn − u‖
≤ βn‖xn − u‖ + (1 − βn)(1 + vn)‖xn − u‖
≤ (1 + vn)‖xn − u‖, (3.21)

so that,

‖xn+1 − u‖ = ‖αnγ f (xn) + (I − αnG)yn − u‖
= ‖αnγ f (xn)− αnγ f (u) +αnγ f (u)− αnG(u) +αnG(u) + (I − αnG)yn −u‖
≤ αnγ ‖ f (xn) − f (u)‖ + αn‖γ f (u) − G(u)‖ + ‖(I − αnG)yn − (I − αnG)u‖
≤ αnγ ‖ f (xn)− f (u)‖+ αn‖γ f (u)− G(u)‖+ (1 −αnτ)‖yn− u‖
≤ αnγα‖xn − u‖ + αn‖γ f (u) − G(u)‖ + (1 − αnτ)(1 + vn)‖xn − u‖
=

[
1 − αn

(
(τ − αγ ) − (1 − αnτ)

vn

αn

)]
‖xn − u‖

+αn

(
(τ − αγ ) − (1 − αnτ)

vn

αn

)2‖γ f (u) − G(u)‖
τ − αγ

≤ max
{
‖xn − u‖, 2‖γ f (u) − G(u)‖

τ − αγ

}
.

Thus by induction, we’ve

‖xn − u‖ ≤ max
{
‖x0 − u‖, 2‖γ f (u) − G(u)‖

τ − αγ

}
, ∀n ≥ n0. (3.22)

Hence, {xn} is bounded. As such {yn}, {Gyn} and { f (xn)} are also bounded. Next, we show
that limn→∞ ||xn+1 − xn || = 0.
Let zn := xn+1−βn xn

1−βn
, which implies

zn = αnγ f (xn) + (I − αnG)yn − βnxn
1 − βn

= αn(γ f (xn) − Gyn) + yn − βnxn
1 − βn

= αn(γ f (xn) − Gyn) + (1 − βn)Knxn
1 − βn

= αn(γ f (xn) − Gyn)

1 − βn
+ Knxn

then

zn+1 − zn = αn+1(γ f (xn+1) − Gyn+1)

1 − βn+1
− αn(γ f (xn) − Gyn)

1 − βn

+Kn+1xn+1 − Knxn .
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Hence, by letting M = supn(||γ f (xn)|| + ||Gyn||), we obtain
||zn+1 − zn || ≤ αn+1

1 − βn+1
(||γ f (xn+1)|| + ||Gyn+1||) + αn

1 − βn
(||γ f (xn)|| + ||Gyn ||)

+||Kn+1xn+1 − Knxn ||
≤

( αn+1

1 − βn+1
+ αn

1 − βn

)
M + ||Kn+1xn+1 − Kn+1xn ||

+||Kn+1xn − Knxn ||
≤

( αn+1

1 − βn+1
+ αn

1 − βn

)
M + (1 + vn+1)||xn+1 − xn ||

+||Kn+1xn − Knxn ||
Therefore

||zn+1 − zn || − ||xn+1 − xn || ≤
( αn+1

1 − βn+1
+ αn

1 − βn

)
M + vn+1||xn+1 − xn ||

+||Kn+1xn − Knxn ||
which implies

lim sup
n→∞

(||zn+1 − zn || − ||xn+1 − xn ||) ≤ 0.

Hence, by Lemma 2.2, we obtain

lim
n→∞||zn − xn || = 0

thus

||xn+1 − xn || = (1 − βn)||zn − xn || → 0 as n → ∞.

From (3.19) it follows that,

‖xn+1 − yn‖ = ‖αnγ f (xn) + (I − αnG)yn − yn‖
≤ ‖αnγ f (xn)‖ + ‖(I − αnG)yn − yn‖
= αn

{
‖γ f (xn)‖ + ‖G(yn)‖

}
,

we have ‖xn+1 − yn‖ → 0 as n → ∞. As

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖,
we also get

‖xn − yn‖ → 0 as n → ∞. (3.23)

On the other hand, we obtain

‖Knxn − xn‖ ≤ ‖xn − yn‖ + ‖yn − Knxn‖
= ‖xn − yn‖ + ‖(βnxn + (1 − βn)Knxn) − Knxn‖
= ‖xn − yn‖ + βn‖xn − Knxn‖, (3.24)

which implies that (1− βn)‖Knxn − xn‖ ≤ ‖xn − yn‖. From condition (C3) and (3.23) we
obtain

‖Knxn − xn‖ → 0 as n → ∞. (3.25)

Hence (b) is satisfied.
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Next, we show that (c) is satisfied, that is F(Kn) = ∩N
i=1F(Ti ), but from (a), (b) above and

(iii) of Lemma 3.1, (c) is satisfied.
Next, we show that

lim sup
n→∞

〈(γ f − G)p, j (xn − p)〉 ≤ 0, (3.26)

where p is the unique solution of the variational inequality (3.15). Let zm = αmγ f (zm)

+ (1− αmG)ym , where ym = βmzm + (1− βm)Kmzm and {αm}, {βm} satisfy the condition
of Theorem 3.2. Then it follows from Theorem 3.2 that p = limm→∞ zm , so that

zm − xn = αm(γ f (zm) − Gzm) + αm(Gzm − Gym) + ym − xn

Hence

||zm − xn ||2 = αm〈γ f (zm) − Gzm, j (zm − xn)〉
+αm〈Gzm − Gym, j (zm − xn)〉
+〈ym − xn, j (zm − xn)〉

≤ αm〈γ f (zm) − Gzm, j (zm − xn)〉
+αm ||Gzm − Gym ||||zm − xn ||
+||ym − xn ||||zm − xn ||

≤ αm〈γ f (zm) − Gzm, j (zm − xn)〉
+αm(1 + 1

μ
)||zm − ym ||||zm − xn ||

+||ym − xn ||||zm − xn ||
≤ αm〈γ f (zm) − Gzm, j (zm − xn)〉

+αm(1 + 1

μ
)(1 − βm)||zm − Kmzm ||||zm − xn ||

+||xn − zm ||2 + (1 − βm)[vm ||zm − xn ||
+||Kmxn − xn ||]||zm − xn ||.

Therefore

〈γ f (zm) − Gzm, j (xn − zm)〉 ≤ (1 + 1

μ
)(1 − βm)||zm − Kmzm ||||zm − xn ||

+(1 − βm)[vm/αm]||zm − xn ||2

+||Kmxn − xn ||||zm − xn ||
αm

.

Now, taking limit superior as n → ∞ firstly, and then as m → ∞, we have

lim sup
m→∞

lim sup
n→∞

〈γ f (zm) − Gzm, j (xn − zm)〉 ≤ 0 (3.27)
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Moreover, we note that

〈γ f (p) − Gp, j (xn − p)〉 = 〈γ f (p) − Gp, j (xn − p)〉 − 〈γ f (p) − Gp, j (xn − zm)〉
+〈γ f (p) − Gp, j (xn − zm)〉 − 〈γ f (p) − Gzm, j (xn − zm)〉
+〈γ f (p)−Gzm, j (xn−zm)〉−〈γ f (zm) − Gzm, j (xn − zm)〉
+〈γ f (zm) − Gzm, j (xn − zm)〉

= 〈γ f (p) − Gp, j (xn − p) − j (xn − zm)〉
+〈Gzm − Gp, j (xn − zm)〉
+〈γ f (zm) − γ f (p), j (xn − zm)〉
+〈γ f (zm) − Gzm, j (xn − zm)〉 (3.28)

Taking limit superior as n → ∞ in (3.28), we have

lim sup
n→∞

〈γ f (p) − Gp, j (xn − p)〉 ≤ lim sup
n→∞

〈γ f (p) − Gp, j (xn − p) − j (xn − zm)〉
+||Gzm − Gp||lim sup

n→∞
||xn − zm ||

+||γ f (zm) − γ f (p)||lim sup
n→∞

||xn − zm ||
+lim sup

n→∞
〈γ f (zm) − Gzm, j (xn − zm)〉

≤ lim sup
n→∞

〈γ f (p) − Gp, j (xn − p) − j (xn − zm)〉

+
(
(1 + 1

μ
) + αγ

)
‖zm − p‖lim sup

n→∞
||xn − zm ||

+lim sup
n→∞

〈γ f (zm) − Gzm, j (xn − zm)〉

By Theorem 3.2, zm → p ∈ F as m → ∞.
Since j is norm-to-weak∗ uniformly continuous on bounded subset of E , we obtain

lim sup
m→∞

lim sup
n→∞

〈γ f (p) − Gp, j (xn − p) − j (xn − zm)〉 = 0,

therefore, from (3.27) we obtain

lim sup
n→∞

〈γ f (p) − Gp, j (xn − p)〉 ≤ 0

Finally, we show that (d) is satisfied, since limn→∞(vn/αn) = 0, if we denote by σn the
value of 2vn + v2n then, clearly limn→∞(σn/αn) = 0. Let N0 ∈ N be large enough such that
(1− αnτ)(σn/αn) < (τ − 2γα)/2, for all n ≥ N0. Then, using the recursion formula (3.19)
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and for all n ≥ N0, we obtain.

||xn+1 − p||2 = ||αnγ f (xn) − αnG(p) + (1 − αnG)yn − (1 − αnG)p||2
≤ ||(1 − αnG)yn − (1 − αnG)p||2 + 2αn〈γ f (xn) − G(p), j (xn+1 − p)〉
≤ (1 − αnτ)2||yn − p||2 + 2αn〈γ f (xn) − γ f (p), j (xn+1 − p)〉

+2αn〈γ f (p) − G(p), j (xn+1 − p)〉
≤ (1 − αnτ)||yn − p||2 + 2αnγα||xn − p||||xn+1 − p||

+2αn〈γ f (p) − G(p), j (xn+1 − p)〉
≤ (1 − αnτ)[βn + (1 − βn)(1 + vn)

2]||xn − p||2
+αnγα||xn − p||2 + αnγα||xn+1 − p||2
+2αn〈γ f (p) − G(p), j (xn+1 − p)〉

≤ (1 − αnτ)[1 + σn]||xn − p||2
+αnγα||xn − p||2 + αnγα||xn+1 − p||2
+2αn〈γ f (p) − G(p), j (xn+1 − p)〉

=
(
1 − αn[(τ − αγ ) − (1 − αnτ)(σn/αn)]

)
||xn − p||2

+αnγα||xn+1 − p||2 + 2αn〈γ f (p) − G(p), j (xn+1 − p)〉.
Therefore

||xn+1 − p||2 ≤
(
1 − αn[ (τ − 2αγ ) − (1 − αnτ)(σn/αn)

1 − αnαγ
]
)
||xn − p||2

+2αn[(τ − 2αγ ) − (1 − αnτ)(σn/αn)]〈γ f (p) − G(p), j (xn+1 − p)〉
(1 − αnγα)[(τ − 2αγ ) − (1 − αnτ)(σn/αn)] .

Observe that
∑

αn[(τ − 2αγ ) − (1 − αnτ)(σn/αn)] = ∞ and

lim sup
( 2αn〈γ f (p) − G(p), j (xn+1 − p)〉

(1 − αnγα)[(τ − 2αγ ) − (1 − αnτ)(σn/αn)]
)

≤ 0

Consequently, applying Lemma 2.4, we conclude that xn → p as n → ∞.

Corollary 3.4 Let E be a real uniformly convex Banach space whose duality mapping J is
weakly sequentially continuous. Let G : H → H, f : E → E, {Ti }Ni=1 F, {αn}∞n=1, {βn}∞n=1
and {xn}∞n=1 be as in Theorem (3.3), then {xn}∞n=1 converges strongly to p ∈ F, which is also
the unique solution of the variational inequality

〈γ f (p) − Gp, j (q − p)〉 ≤ 0, ∀q ∈ F

Corollary 3.5 Let H be a real Hilbert space, {zt }t∈(0,1), be as in Theorem 3.2. Then {zt }
converges strongly to a common fixed point of the family {Ti }Ni=1 say p which is a unique
solution of the variational inequality

〈(G − γ f )p, q − p〉 ≥ 0, ∀q ∈ F.

Corollary 3.6 Let H be a real Hilbert space and let C a nonempty closed convex subset
of H. Let G : H → H, f : E → E, {Ti }Ni=1 F, {αn}∞n=1, {βn}∞n=1 and {xn}∞n=1 be as in
Theorem (3.3), then {xn}∞n=1 converges strongly to p ∈ F, which is also the unique solution
of the variational inequality

〈γ f (p) − Gp, q − p〉 ≤ 0, ∀q ∈ F
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