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Abstract A new strong convergence theorem for approximation of common fixed points of
family of uniformly asymptotically regular asymptotically nonexpansive mappings, which is
also a unique solution of some variational inequality problem is proved in the framework of a
real Banach space. The Theorem presented here extend, generalize and unify many recently
announced results.
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1 Introduction

Let E be areal Banach space and E* be the dual space of E. A mapping ¢ : [0, 00) — [0, 00)
is called a guage function if it is strictly increasing, continuous and ¢(0) = 0. Let ¢ be a
gauge function, a generalized duality mapping with respect to ¢, J, : E — 2E" is defined
by, x € E,

Jox ={x" € E* : {x, x*) = |lxllo(lx D, Ix*I = o(lx D},
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where (-, -) denotes the duality pairing between element of E and that of E*. If ¢(¢) = ¢,
then J, is simply called the normalized duality mapping and is denoted by J. For any x € E,
an element of Jyx is denoted by j, (x).

Let S(E) := {x € E : | x|| = 1} be the unit sphere of E. The space E is said to have Gateaux
differentiable norm if for any x € S(E) the limit

i 1 20— ] 0
A—0 A
exists Vy € S(E). The norm of E is said to be uniformly Gateaux differentiable if for each
y € S(E), the limit (1.1) is attained uniformly for x € S(FE).
If E has a uniformly Gateaux differentiable, then J, : E — 2E" is uniformly continuous
on bounded subsets of E from the strong topology of E to the weak™ topology of E*. All
L,,£,(1 < p < 00) spaces has uniformly Gateaux differentiable.
A mapping T : E — E is said to be L-Lipschitz if there exists a constant L > 0 such that

ITx —Ty|| < L|lx —y| forallx,y e E. (1.2)

If in this case, (1.2) is satisfied with L € [0, 1), respectively L = 1, then the mapping
T is called a contraction, respectively nonexpansive. A mapping T : E — FE is called
asymptotically nonexpansive if there exists a sequence {p,} C [1, 00), lim,_,o0p, = 1 such
that forall x,y € E

|1T"x — T"y|| < pullx — y|| forall ne N. (1.3)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[13] as an important generalization of the class of nonexpansive mappings. A pointx € E is
called a fixed point of T provided Tx = x. We denote by F(T') the set of all fixed point of
T (ie., F(T)={x € E:Tx =x}).

Goebel and Kirk [13] proved that if C is a nonempty, bounded, closed and convex subset of
areal uniformly convex Banach space and 7 is a self asymptotically nonexpansive mapping
of C, then T has a fixed point in C.

The mapping T is said to be asymptotically regular if

lim |T"H'x = T"x|| =0

n—o0
for all x € C. Itis said to be uniformly asymptotically regular if for any bounded subset K
of C,

lim sup||T""'x — T"x| = 0.
l’l-)OOXEK

A mapping G : E — E is saild to be accretive if for all x,y
€ E, there exists j(x — y) € J(x — y) such that

(Gx =Gy, jx —y)) = 0.
For some positive real numbers 1 and u the mapping G is called n-strongly accretive if
(Gx = Gy, j(x =) = nllx = y|?
holds Vx, y € E and u-strictly pseudocontractive if
(Gx =Gy, j(x =) < |lx = yI> = ull(I = G)x = (I = G)y|)?
holds Vx,y € E. It is known that if G is wu-strictly pseudocontractive then it is

1+ i)—Lipschitzian.
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Let C be a nonempty closed convex subset of E, a variational inequality problem with respect
to C and G, is to find x € C such that

(GX),j(y=x)=0 VyekE. (1.4)

The problem of solving variational inequality of the form (1.4) has been intensively studied
by numerous authors due to its various applications in several physical problems, such as in
operational research, economics, engineering, e.t.c.

A typical problem is to minimize a quadratic function over the set of fixed points of some
nonexpansive mapping in a real Hilbert space H:

min%(Ax,x) — (x, D). (1.5)

xeF

Here F is a fixed point set of some nonexpansive mapping 7 of H, b is a pointin H, and A
is some bounded, linear and strongly positive operator on H, where amap A : H — H is
said to be strongly positive if there exist a constant 7 > 0 such that

(Ax,x) > ¥lx|?>, Vx € H.

Iterative methods for approximating fixed points of nonexpansive mappings and their
generalizations which solves some variational inequalities problems have been studied by a
number of authors, see for examples [1-23,26,30,31] and the references contained in them.
In 2000, Moudafi [17] introduced viscosity approximation method for nonexpansive
mappings. He proved that if a sequence {x,} is defined by

Xnt1 = (1 —a)Txp +an f(xy), n=0 (1.6)
then {x,} converges strongly to the unique solution x* € F of the variational inequality
(= fHx*,x —x*) >0, VxeF (1.7)

where {«,} € (0, 1) is a real sequence satisfying some conditions and f : H — H is a
contraction map.

In 2003, Xu [29] proved that for a strongly positive linear bounded operator A on H a
sequence {x,} defined by xo € H

Xn+1 = — 0y A)Txy +ayb, n >0, (1.8)
converges strongly to the unique solution of the minimization problem (1.5) provided the
sequence {c,} satisfies some control conditions.

In 2006, Marino and Xu [16] combined the iterative methods of Xu [29] and that of Moudafi
[17] and studied the following general iterative method:

X1 = U — 0 A)Txy + oy f(x,), n>0. (L.9)

They proved that if the sequence {«,} satisfies appropriate conditions, then {x,} converges
strongly to the unique solution of the variational inequality

(A=yf)x*,x —x*) >0, VxeF. (1.10)
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LetTy : E — E, k=1,2,3,...N be a finite family of nonexpansive maps. For n € N,
define amap W, : E — E by

Uni = yu1Ti + (A = yu, D1,
Un,2 = Vn,ZTZUn,l + (1 - yn,Z)I

Wi =UnN = VaNINUn,N—1 + (A — Yu, N,

where I = U, o and {yn,k},iv C [0, 1]. The mapping W,, here is called the W mapping
generated by 77, T, ..., Ty and {yy k}n>1, k € {1,2,..., N}.

In 2007, Shang et al. [22] introduced a composite iterative scheme as follows: given
xo = x € C arbitrarily chosen,

Yn = Buxn + (1 = Bu) Wyxp,
Xpy1 = apyf(xn) + U —ayA)yn,
where f is a contraction, and A is a strongly positive bounded linear operator on H.
In 2009, Kangtunyakarn and Suantai [15] introduced and studied the following scheme for

approximation of common fixed point of a finite family of nonexpansive mappings {Tk},iV: >
forn e N;

Ui = voaTi + (1 — v 1)1,
Un2 = vn2ToUy 1 + (1 - Vn,Z)Un,la

Ky =Upn = VuNINUyN—1 + 1 = Yu,N)Up N-1. (1.1D)

The mapping K, here is called the K mapping generated by 71, T2, ..., Ty and {yy k}n>1,
ke{l,2,...,N}.

Recently, Singthong and Suantai [24] studied the convergence of the following composite
scheme xg € C,

Yn = Bnxn + (1 — Bn) Kyxn,

Xn+1 = Pc(any f () + (I — oy A)yn), (1.12)
where C is a nonempty, closed convex subset of Hilbert space H, f : C — C is acontraction,
and A is a strongly positive bounded linear operator on H.

More recently, Ali et al. [2] introduce a modified iterative scheme for approximation of
common fixed point of a finite family of nonexpansive mappings {Tk},ivzl ,forn e Nand a
sequence {y, «}, k € {1,2,..., N},

Uni=yn1Th + (1 — yu, )1,

Un,2 - Vn,ZTZUn,l + (1 - Vn,Q)Un,h

Upn-1 = VaN-1Tn-1Up N2+ (1 = Vun—DUp Nn—2
Ky =Uyn = VuNTNUy N-1 + 1 - J/n,N)[' (1.13)

They proved strong convergence of an iterative scheme to a common fixed point of a
finite family of nonexpansive mappings which is also a unique solution of some variational
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inequality problem in a framework of a Banach space much more general than Hilbert space.
They actually proved the following theorems:

Theorem 1.1 (Ali et al. [2]) Let E be a real reflexive and strictly convex Banach space
with a uniformly Gateaux differentiable norm. Let {T; }1N=1 be a finite family of nonexpansive
mappings of E into itself and F = ﬂlN:l F(Ti) # 0. Let f : E — E be a contraction
with constant @ € (0,1). Let G : E — E be an n— strongly accretive and p— strictly

pseudocontractive withn +upu > landlett =1— / 1%’7 Let y be a real number satisfying

0<y < _Zandlet K : E — E beas in(1.13). Given B € (0, 1), then for any t € (0, 1).
Let {z;};¢(0,1) be a path defined by

2 =1tyf@)+ U —tG)[Bz + (1 = PKz]. (1.14)

Then {z;} converges strongly to a common fixed point of the family say p which is a unique
solution of the variational inequality

(G—=yf)p,jlg—p)) =0, Vg € F. (1.15)

Theorem 1.2 (Ali et al. [2]) Let E be a real, reflexive and strictly convex Banach space
with a uniformly Gateaux differentiable norm, C a nonempty closed convex subset of E. Let
G : E — E be an n-strongly accretive and p-strictly pseudocontractive withn+u > 1 and
let f : E — E be a contraction with coefficient a € (0, 1). Let {Tk},iv:1 be a finite family of
nonexpansive mappings of E into itself and F = ﬂ;(v:l F(Ty) # 9. Let K,, be as in (1.13).

Assume that0 <y < 5, where T := (1 —,/177") and let xo € C. Let {ot,}52 | and {B,}52

be sequences in (0, 1), and suppose that the following conditions are satisfied:

(Cl) a, > 0as n — o0;

(C2) T2y =00

(C3) 0 < liminf, o By <limsup,_, ., By < 1;

(C4) =% |ynk — Yu—1xl < oo, for all k = 1,2,3,....N and {yax}l_, C
la, b], where0<a<b<1l;

(C5) 272 lap41 — apl| < oo;

(C6) T2 1Bns1 — Bul < 0.

If {xn},2 | is a sequence defined by,

Yu = Buxn + (A — Bu) Kpxp,
Xpt1 = apVf(xn) + I — anG)yn, n >0, (1.16)

then {x,}° | converges strongly to p € F, which also solves the following variational
inequality problem,
(G—yf)x*,x —x*)>0, VxeF. (1.17)

It is our purpose in this paper to continue the study of the above problem and prove a new
convergence theorems for approximation of common fixed point of finite family {Tk},I(V: ; of
asymptotically nonexpansive mappings which is also a unique solution of some variational
inequality problem. The result presented here generalize and improve those recent ones such
as in [2,24]. In particular our Theorem extend the result in [24] to more general Banach space
setting than Hilbert and generalizes it to family of asymptotically nonexpansive mappings.
On the other hand our result also not only generalizes Theorems 1.1 and 1.2 to the family
of asymptotically nonexpansive mappings but also conditions C5 and C6 imposed in both
Theorems 1.2 above and Theorem 2.1 of [24] are dispensed with.
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2 Preliminaries

The following lemmas will be use for the main result.

Lemma 2.1 Let E be a real normed linear space. Then the following inequality holds:
e+ 317 < Il + 20y, j(x + ), Vx,y € E, jx+y) € J(x +y).

Lemma 2.2 (Suzuki [25]) Let {x,} and {y,} be bounded sequences in a Banach space E
and let {B,} be a sequence in [0, 1] with 0 < liminf 8, < limsup 8, < 1. Suppose that
Xn+1 = Bnyn + (1 — Bn)x, for all integer n > 1 and

lim sup(||yn+1 = Yull = [1Xn+1 — xal]) < 0.
n—o0

Then, limp,— oo || yn — x| = 0.

Lemma 2.3 (Xu [27]) Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let B,(0) := {x € E : ||x|| < r}and » € [0, 1]. Then, there exists a continuous strictly
increasing convex function

g:1[0,2r] - R, g(0)=0
such that for every x, y € B(0), the following inequality holds:
12 4+ (1= )y117 < Ax |12+ (1= DIIYIP =20 = 2gllx = ylD.

Lemma 2.4 (Xu [28]) Let {a,} be a sequence of nonegative real numbers satisfying the
following relation:

a1 < (1 —ap)ay +ayo, +yu, n >0

where, (i) {a,} C [0,1], Y o, = o0; (ii) limsupo, < 0; (i) y, > 0; (n > 0),
> yn < 0. Then, a, — 0 asn — oo.

Lemma 2.5 (Chang et al. [9]) Let E be a uniformily convex Banach space, K be a nonempty
closed convex subset of E and T : K — K be an asymptotically nonexpansive mapping,
then I — T is demiclosed at zero.

Lemma 2.6 (Piri and Vaezi [19] see also [1]) Let E be a real Banach space and G : E — E
be a mapping.

(1) If G is n-strongly accretive and -strictly pseudo-contractive with n + . > 1, then
I — G is contractive with constant ./ l;—n
(ii) If G is n-strongly accretive and p-strictly pseudo-contractive with n + w > 1, then for

any fixed number k € (0, 1), I — kG is contractive with constant 1 — /c(l — ./ 1_7" )

3 Main results

Lemma 3.1 Let C be a nonempty closed convex subset of a uniformly convex real Banach
space E. Let {Tk},](v:1 be finite family of uniformly asymtotically regular asymptotically
nonexpansive mappings of C into itself with sequences {px} C [1,00), let {yn,k},i\/:1
be a sequence in (0, 1) such that 0 < liminf, oo Ypk < limsup, ,Vak < 1 and
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limy— oo [Vnk — Va—1kl = OVk € {1,2,3,..., N}. Let K,, be a mapping generated by
T\, 1o, T3, ..., Tn and Yu,1, V2, Yn,3+ - - - » Yn,N as follows;

Upi = )’n,lT]n + =y,
Upp = Vn,ZTann,l + (1 - )’n,2)Un,ls

UnN=1 = VuN=1Ty_1Unn—2+ (1 — Yy n—1)Un N—2,
Kn = Un,N = Vn,NTjeUn,Nfl + (1 - Vn,N)I' (31)

Then, the following holds:

@) I1Kpx — Kpyll < (L +vp)llx — yll, where v, = py N(1 + Ay n—1) — 1, and {Ay N} is
some sequence in [0, 00), with A, y — 0 asn — oo.
(i) ]flimn%oo”Tkn—H Unk—120 — Tkn Uni—1z2 =0,

then lim ||Ky41z2n — Knzall = 0, for every bounded sequence {z,} in E,k
n—00
=1,2,...,N
(iii) For every bounded sequence {z,} in C such that lim, oo ||Kuzn — zal| = 0, we
have limy, o0 || Tk zn — znl|l = O for any k € {1,2,3, ..., N}. Furthermore , we have

N _N N
W (za) € NY_ F(T}) and F(K,) =C NY_, F(T}).

Proof (i) Let x, y € C then from (3.1), if N = 1 the result follows. Assume N # 1 and
U,.0 = I (identity map), then fork € {1,2,..., N — 1}, we have

1Upix — Un iyl < va il T U g—1x — T Uy k—1||
+( = V) Unk—1x — Up g1yl
< Wnkpnik + A = yu ) NUnk—1x — Up g1yl
=1+ Yuk(onk — DNUnk—1% — Up k=1l
<[+ Yk onk — DI k=1 1T Ung—2x — T Up -2y ||
+(I = Yu k=D NUn k—2x — Up -2yl
<1+ Yk onk — DI+ Vuk—1(onk—1 — DIUn k—2X — Un g2l

= [+ Yak(onk = DI+ Vak—1(Pak—1 — DI [T+ ¥n 20002 = D]
1Un1x — Un1yll

<[+ )/n,k(,on,k — DI + Vn,k—l(ﬂn,k—l —D]...[1+ )’n,Z(Pn,Z - D]
[1+ Yn,1(on1 — DIllx =yl

k
=[]0+ v = DIIx = ¥l
]:

= (14 A0)lx = yll,
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where ]_[];-:1 (1 + VY, j(On,j — 1)) = (1 + Apn k), observe that lim,,_, oo Ap x = 0. Then,

[Knx — Knyll = |Un,nX — Un, Nyl
< Y NITNUp N=1X — TRUp vyl + (= v i) llx =yl
< Vu NP NI Un N—1X — Up =1y + (1 = yu,n) X = ]
S VaNon N+ A v—Dllx =yl + (1 =y, ) llx =l
= [+ yan(ea v+ rpn—1) — DIllx =yl
< [1+ (oo, N (I + 2Ap,n—1) = DIllx — ¥l
= (L +uv)llx =y,
where v, = p,,v(1 + A, n—1) — 1, observe that lim,_, o v, = 0.
Next we show (ii). For k € {2,3,..., N — 1} and any bounded sequence {z,} C E,
letting 8p41.k == [1 + Vat1k(ont1,k — DI, My = [IIT;;'HUn,anII + Un.kzxll] and
Pk = 1T U zn — T Un kzall, we have

1Unt142n = Undznll = Va1 kT Unt k- 120
~ Vst k T Unk—12n
1

vtk — Vn,k]Tkn+ Unk—12n
+yn,k[Tkn+lUn,klen - Tann,kflzn]
+ = Vut+1.0) Unt1,k—120 — Unk—12n)
+[(A = Yar1.6) — (1 = Y, ) WU k—12al

<[+ Vn+1,k(,0n+1,k - 1)]||Un+1,k—lzn —Upi=1zall
ek = vubl [ 1T Unkorzall + 1Unicrzall]
i T U120 — T Up 12l

<[+ Yus1.4(ons1k — 1)][[1 + Vnt1.k=1(Pnt1,k=1 — D] Uns1,k—220 — Unk—22all
Yt k=1 = Vak—t [N T Un k=22l + 1Un k220 11]
+Vn.k—1 ”Tknj_]l Up k=220 — TknflUn,k—ZZn”iI
Hyns1k = Ykl 1T Unk1zal + 1 Un k=124 ]
+)’n,k||Tkn+lUn,k—IZn - Tann,k—IZn”

= Snt1.k0n+1.k—1 1Un+1.6~22n — Un k—22ull
F0nr 1.k V1 k—1 — Vak—11Mp k2
+8n+1,kVnk—1Pu k-2
FVn+1.k — Vnk| Mn k-1
+ Vi k P k-1

< 5n+1,k5n+1,k—1[5n+1,k—2||Un+1,k—3Zn — U k—32nll
+1
+|Vn+l,k72 - Vn,k72|[”Tkn_2 Un,k73zn|| + ”Un,kaZn”]
1
kot 1Ty Unkazn = Ty Un 2l

F8n 1,k Vnt1,k—1 — Vak—11Mp k—2
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+8n+1.kVnk—1Pn k-2
FVn+1.k — Vnk| Mn k-1
+ ¥k Pnk—1
= Snt1.kOn+1.k—10n+1,k—211Un+1,k—32n — Unk—32al
F8n+1.k0n+1,k—11Vn+1,k—2 — Vnk—2|Mp k-3
Fn4 1,kOn 1, k—1Vnk—1 P k-3
F0n+1.k Vnt1.k-1 — V=11 Mp k-2
+8n+1,kVnk—1Pnk—2
HVn+1.k — Vnk| Mp k-1
+yn,kPn,kfl

=

< St 1,k0n 1, k1804 1,k—2 - - - 841,300 41,21 Uns1,120 — Un 124l
+(5n+1,k5n+1,k—15n+1,k—2 e Sn1,3Yn+1,2Pn 1
+ o+ a1 kOnt1,k—1 Va1, k—2Pnk—3

+8n41.kVnt1,k—1Pnk—2 + )/n+1,kPn,k—1)

+<5n+1,k5n+1,k—15n+1,k—2 1 31Vn1,2 — Va2 My

+ o St 1k Snt L k=1 V1 k=2 — Vnk—2|Mn k-3
F8n1,k | Vnt1,k—1 — Vak—11Mp k—2

+Vnr1k — Vn,k|Mn,k—1)

k
= 1Uns1.120 = Unazall [ [ n41.5
j=2
k

+Zyn+l ifni—1 l_[ Snt1, j+ Z [Va+1,i = Vn,ilMp,i—1 1_[ 8n+1,j

i=2 Jj=i+1 Jj=i+1

k
1
< [rerna T+ 20 = TPzl + s = Yot Qlzall #1720l ] [T 60415
j=2

k
+ Z Vat+1,i Pu,i—1 l_[ Sn1, j+ Z [Vas1,i — Vil Mu,i—1 1_[ 8n+1,j
i=2 Jj=it1 j=itl
k k k
= Var1iPui 1_[ Sutj+ Y Warri = voilMui [ Sntrj
i=1 j=i+l i=1 j=i+1

Hence, we have

|Kn+12n — Knznll = ||Un+l NZn — Un, NZnll
1
< Var N IITNT n+1N 120 = T3 Unon—1zal|
Yt NI TN Ut =120 — T Un N—120]|

(3.2)

(3.3)
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1.8 = VaN TN Un,N-120ll + 11zall]
< Vu+1,NOn+1L, N\ Unt1,N=120 — Un n—122

Yt NITR T Ut N—120 — TR U n—12]

Y1 v = VaN TN Un,n—12all + |1zall]

N-1 N-1
< outin | D vartiPai [T Sntr
i=1

Jj=i+1
N-1 N-1
+ Y vasri = vailMui [ Surr
i=1 j=i+l

1
AVt NITN Ut v—120 — T Un N—12n]]
HYn+1,N — )’n,N|[||T]I\}Un,N—IZn|| + ||Zn||]
Therefore

lim ||Kpt12n — Knzall = 0.
n— 00

Hence (ii) is satisfied.
Next, we show (iii), let {z,,} be a bounded sequence in E such that
limy,— ool |[Knzn — zall = 0, then for x* € NY_, F(Ty), we obtain
Knzn — x*1* < Y NITRUn N—120 — ¥ 1> + (1 = yu 0|20 — x|
< VN Pg N1 Un =120 — X* 12+ (1 = yu.)lzn — x¥|?
=< yn,Npr%,N[yn,N—l||T]’\1/71Un,N—ZZn - X*”Z
+( = YuN=DI|Un =220 — x*1*]
+(1 =y M)zn — x*|?
2 2 *112
=< J/n,an,N[Vn,N—llOn,N_]||Un,N—2Zn — x|
+(1 = YuN=DI|Un =220 — x*1?]
+( = Y n)lzn — x*|
= v (14 a1 0 vy = DIUnn—220 = 51
+(1 = yun)lzn — x*|
=< )’n,Npr%,N[l + Vn,N—l(PZ,N_l - 1)][1 + )/n,N—2(,03,N_2 - 1)]
ceoxX [y (opy = Dllzn — x* 117 + (1= yun)llze — x*|12

= (1 yun{ P2 W+ vano1(0F oy = DI+ Yaw—202 -2 = D]

e ARV B EEE
= (14 Du)llzn — 2|12,

3.4

(3.5)

(3.6)

3.7

where ¥, = Vn,N[piN[l + Vn,N—l(ps,N_l — DI + Vn,N—Z(P,%,N_z

—D]...[1+ )/,,,2(,03,2 — DI+ J/n,l(,Oi,l -] - 1] and observe that lim,_, ¥, = 0.

Then by using Lemma 2.3, (3.6) and (3.7), we have

Knzn — *I1* = Nyu N TR Un.n—120 — x*) + (1 = yun) (20 — x5
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< VNI T UnN-120 = X112 + (1= yum)llzn — |17
VN = Vu )& TN Un,N—120 — 2alD)
< (L + O)llzn — X117 = YN (1= Yo MU T{Un N—120 — ZulD
from this we obtain
Yu N (L= YuNEUITRUn =120 = 2al)) < 12w = x*I1* = [|Knzn = x*I1* + Oullzn — x*|1?
= (llzn — X*|| = [|Knzn = x*IDUlzn = x*|| + [ Knzn — X*[1) + Onllzn — x*I?
< lzn — Knzall(1zn = x*|| + [|Knzn — x*[)) + O llzn — x*I7
< (llzn = Knzall +9)Mo — 0 as n — oo,
for some My > 0. Thus, by the property of g, we obtain that

lim || T3 Un v—12n — 2ul| = 0. (3.8)
n—o0

Moreover,
lzn — x*1* < (lzn — T Un.N—120ll + [T Un.n—120 — x*I)?
= |lzn — TN Un,N=12nl| (20 — T Un,n—12nll + 21 TN Un.N—120 — x*[])
HN TN U n—120 — X*]]?
< llzn = TyUn,n—12n]|M1 + p;%,NHUn,N—lZn —x*||> (for some M; > 0)
< lzn = TN Un.n-120 1M1 + p §IYa Nt IT" N7 U N 220 — X5
+(1 = Y N DU N—220 — x*]?
~YuN=1(L = Ya N-DTN_ Un,N—22n — Un,n—22n )]
< llzn = Ty Un.n-120lIM1 + 0 x1nN=195 -1 /|Un, 220 — ¥
+(1 = Y N DU n—220 — x*|?
=Y N—1(1 = Yo, N=DZUITY _  Un,N=22n — Un,n—22n|])]
< llan = TR Un N1zl 1M1 + o3y L+ Y1 (05 vy = D) IUn N-220 = 5712
=V, N—1 (L = Yu N=D8UITN _ 1 Un,N—220n — Un,n—22nl])]
< llzn = TR Un,N—12n]IM1 + (1 + 920 — x*|?
—n wVaN—1(1 = Yun-1)gUIT} _ Un.n—22n = Unn—22al D],
gUITN_1Un,N=22n — Un,Nn—22nl])

(1120 = T Unv—12allM1 + Ballzn = 27112)

IA

pg,NVn,N—](l — Yn.N—1)
(”Zn - T}’\;Un,N—lZnH + 19n)M

<
B piNVn,Nfl(l — VYn,N—1)

for some M > 0. Thus, using property of g,

lim [|T5_Un,n—22n — Un,n—22| = 0. (3.9
n—0o0
Continuing in this fashion we observe that for k € {2,3,4,..., N — 1}
lim ||Tann,kflzn —Unji—12all = 0, (3.10)
n—oo
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and
lim ||T'z, — z4|| = 0. 3.11)
n—oo

Also

NUnkzn — zall < NUnkzn — T Un k=120l + 1T Up k=120 — Un k=12all
+||Un,klen - Tkn_lUn,k—ZZn”
HI T Un k=220 — Un k—22all
+-- ||T2nUn,lzn - Un,IZn” + ||Un,1Zn — zull
< =Y NUnk—12n — T]élUn,k—IZnH
HIT Unk—12n — Upk—12all
+(I = Y k=D U k—22n — Tkn_lUn,k—zZn”
+oo A+ (U= v D) NUn 120 — T3 Un 120l
+¥u tlIT{'zn — znll > 0 as n — oo.

Thus

T Un =120 — znll < NT{Un k=120 — Un 124l
+|Unk—12n — zall > 0 as n — oo.

So forany k € {1,2,3,..., N}, we obtain

llzn — Tann” < llzn — Tann,k—IZn” + ||Tann,k—IZn - Tknzn”
=< ||Zn - Tann,k—lan
+0nkllUn k=120 — z2nll = 0 as n — oo. (3.12)

Hence

Tkzn — zull < 1 Tkzn — Tk(Tkn)Zn” + ||Tk(Tkn)Zn - Tknzn” + ||Tknzn — Znl|
< (L + Dllan = T zall + 1T 20 — Tzl

Therefore, from (3.12), foreach k € {1, 2,3, ..., N}, we obtain

lim [[Txzy — zall = 0. (3.13)
n—0o0

Moreover, by Lemma 2.5, we have wy, (x,) C ﬂ,ivzl F(Ty), also since ﬂ,{vzl F(Ty) C F(Ky)
is obvious, we only need to show that F(K,) C ﬁ,’(V:lF(Tk). Letz* € F(K,), and z,, = z*,
then, we have that ||z* — Tz*|| = O foreach k € {1, 2, 3, ..., N} thatis z* = T;z*, for each
ke{l,2,3,...,N},sothat z* € ﬂ,i\’:] F(T;). Hence (iii) is satisfied. O

Theorem 3.2 Let E be a real uniformly convex Banach space with a uniformly Gateaux
differentiable norm, C a nonempty closed convex subset of E. Let G : E — E be an
n-strongly accretive and ji-strictly pseudocontractive withn +u > landlet f : E — E be
a contraction with coefficient o € (0, 1). Let {T; }lN: | be a family of uniformly asymptotically
regular asymptotically nonexpansive self mappings of C into itselfand F = ﬂlNzl F(T)) # 0.

Let K,, be as in Lemma 3.1. Assume that0 < y < é, where t ;= (1 — 1;—/]) and let xy € C.
Let {a,}72 | and {B,};2 | be sequences in (0, 1), and suppose that the following conditions

are satisfied:
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(Cl) a, = Oand Z—j’l — 0 asn — oo, where vy, is as in (i) of Lemma 3.1;
(C2) Z;’;l oy = 00

If {xn};2 | is a sequence defined by,
Xn =y f(xn) + (I — anG)[Buxn + (1 — Bp) Kpxnl, n>0, (3.14)

then {x,}° | converges strongly to p € F, which also solves the following variational
inequality:
(vf(p) =Gp.jlg—p) =0, VgeF. (3.15)

Proof First, we show that {x, } defined by (3.14) is well defined. For all n € N, let us define
the mapping

T x i= awy f(0) + (I — 0y G)[Bux + (1 — B)Kux].

Indeed, for all x, y € E, we have
T x = Tyl = llawy (F@) = ) + (= au G Bulx — y) + (1 = B) (Kpx — Ky)]I|

< apyallx =yl + A —anO[Bullx — yI| + (1 = Bu) (1 + vu)llx — yll]

< [apya + (I —ap7)(1 + vo)lllx — yl|

= (1= aul(r = yo) = (1 = @) @a )] ) I = .
Since, lim;,— oo (1 — @, T)v, /o, — 0, then there exist ng € N such that (1 — o, 7)v, /2y
< (t — ya)/2 for all n > ng. Therefore, for n > np, we have

1-— O‘n[(T - )’Ol) - (1 _anf)(vn/an)] <1 _an[(T - ]/Ol) - (T - yoz)/2] < 1.
Hence,
T x = Tyl < 11x = yll.

Thus, {x,} defined by (3.14) is well defined. Therefore, by the contraction mapping principle,
there exists a unique fixed point x,, € C of T,,f which satisfies (3.14).

From the choice of the parameter y, it is easy to see that the mapping (G —yf) : E — E
is strongly accretive and so the variational inequality (3.15) has unique solution in F. Let
p € F then,

Ixn = pII* = an (¥ f(p) — Gp, j(xn — P)) + (I — @y G)[Buxn + (1 — Bu) Knxn]
—(I —anG)p, j(xn — p)) +on(yf(xn) —vf(p), jxn — p))
< [1 —an(r — ya) + (1 — a0 valllxn — plI* + an (v f — G)p, j(xa — p)).

Letd, = (1 — a,7)(v,/ay). Since, lim,,_, oo (1 — oy T)v, /o, = 0, then there exist ng € N
such that (1 — «,7)v, /oy < (T — ya)/2 forall n > ng.

n — plI? < (rf =G)p, jxn = p))
TP =TT e e —d,

) (3.16)

thatis ||x, — p|| < 2LP=GWI forall p > ng. Thus {x,} is bounded implies that { £ (x,)},

T—yo

{G(x,)} and {K,,(x,,)} are also bounded. From (3.14) we also obtain

lxn — Knxnll < Bullxn — Knxull + onlly f(xn) — G(Bpxn + (1 = Bn) Kn(xu))l
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and hence
oy
- ﬂn
as n — oo. Since {x,} is bounded, using (3.17), it follows from (iii) of Lemma 3.1 that

F = F(K,). We claim that the set {x,} is sequentially compact. Indeed, define a map
¢ : E— Rby

”xn - Knxn ” =

lyf(xn) — G(Buxy + (1 = B) Ky (x|l — 0, 3.17)

¢ () == wnllxn — yII>, Vy € E.

Then, ¢(y) — oo as ||y|| — oo, ¢ is continuous and convex, so as E is reflexive, there
exists ¢ € E such that ¢ (¢) = min,cr ¢ (u). Hence, the set

K*:={yeE:¢(y) = Lréigd)(u)} #0.

Since lim,,—, o||Xp — Kpxp || = 0, lim,, s oo ||x, — K" x,|| = 0, for anym > 1 by induction.
Now let v € K*, we have

lim ¢ (K,v) = lim w,llx, — Kyvl?
n—o0 n—oo

= lim //Ln”xn — Kpxy + Kyxp — I(nUH2
n— 00

IA

lim g0, [(1 4+ v)||x, — v[]1* = lim ¢ (v),
n—oo n—oo

and hence K, v € K*.
Now letz € F, then z = K,z. Since K* is a closed convex set, there exists a unique v* € K*
such that

—* — 1 — .
llz — vl g%llz ull
But
lim ||z — K,v*|| = lim ||Kyz — Kv™|| < lim (14 vy)||z — 0™l
n—oo n—o0 n—o0
which implies v* = K,v* and so K* N F # (.
Let p € K*NF and € € (0, 1). Then, it follows that ¢ (p) < ¢ (p — (G — yf) p) and using
Lemma 2.1, we obtain that
IXn — P+ €(G = yAIPI* < |lxu — pII* +26((G — yf)p. j(xn — p+€(G — yf)p))
which implies
unl{(yf = G)p, jxn — p+ (G —yf)p)) 0.

Moreover,

unlf = G)p, jOn — p)) = wnl{Vf — G)p, j(xu — p) — jxn — p+ (G —yf)p))
+un{(yf = G)p, jxn — p+€(G —yf)p))
S unlyf =G)p, jxpn—p)—jxn —p+e(G—yf)p)).

Since j is norm-to-weak™ uniformly continuous on bounded subsets of E, we have that

(v f —G)p, jxn — p)) <0.
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It follows from (3.16) that

((vf —G)p, jlxn — p))
(T - )/O[) - dn

2
lxn — pII* <

)

and so
tnllxn — plI* < 0.
Thus there exist a subsequence say {xy,,} of {x,} such that lim;_, oo x,, = p.
Define S, as S,x := B,x + (1 — B,)K,x, then lim;_, o S, x,, = p and S, p = p. Thus for
any z € F, using (3.14) we have

-1
p

(G(xny) — vf Geny)s o, —2)) = (I = Sp)xn, — (I = Sp)p, J(xn, — 2))
nj

+H(Gxpy — GSpxpy, j(Xn, — 2))
< (Gxnl - GSnxn17 j(xm —2))

1
=d+ ;)len, — S [|1xn, — 21l (3.18)

since (I — Sy)xy, — (I — Sy)p, j(xn, —2)) = 0 and G is Lipschitzian. Using the fact
that ||x,, — Spxpll = (1 — ﬂn])”xm - Kn1xn1|| — 0 as ! — oo, we have |x,, — Snxn/”
— 0as ! — oo. From (3.18), taking limit as / — oo we obtain

(G =vHp.jlp—2)=0.

Hence p is the unique solution of the variational inequality (3.15). Now assume there exists
another subsequence of {x,} say {x,,} such that limy_, o x,, = p*. Then, using (3.17) we
have p* € F. Repeating the above argument with p replaced by p* we can easily obtain
that p* also solved the variational inequality (3.15). By uniqueness of the solution of the
variational inequality, we obtained that p = p* and this completes the proof. O

Theorem 3.3 Let E be a real, uniformly convex Banach space with a uniformly Gateaux
differentiable norm,C a nonempty closed convex subset of E. Let G : E — E be an
n-strongly accretive and p-strictly pseudocontractive withn+u > l andlet f : E — E be
a contraction with coefficient @ € (0, 1). Let {Ti}lN:1 be family of uniformly asymptotically
regular asymptotically nonexpansive self mappings of C into itselfand F = ﬂlNzl F(T)) # 0.

o0

Let K, be as in Lemma 3.1. Assume that ) < y < ﬁ, where T := (1 —,/ 1;—"). Let {a,},2

and (B, )72, be sequences in (0, 1), and suppose that the following conditions are satisfied:
(C1) limy— oo ap = 0 and lim,,_, o g—z = 0, where v, is as in (i) of Lemma 3.1;

(C2) T2y =00

(C3) 0 < liminf, o By <limsup,_, ., Bn < 1;

Let {x,}°2_, be a sequence defined iteratively by letting xo € C arbitrary and,

n=1
Yn = Bnxn + (1 = Bu) Knxy,
Xpp1 = apyf(xn) + U —ayG)y,, n >0, (3.19)
then, the following holds

(@) {xn}52, is bounded;
(b) hmn%oo IIKnxn — )Cn” = O;
(© F(Kn) =F;
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(d) {xn}32 | converges strongly to p € F, where p is a solution of the variational inequality:
(vf(p) —Gp,jl@—p) =0, VqeF. (3.20)

Proof First, we show that the sequence {x,};2, is bounded. Let u € F then, since (1
— ay7)(vy/ay) — 0 as m — o0, there exists ng € N such that (1 — «,7)(v,/an)
< (t — ya)/2 for all n > ng. Hence, for n > ng, we have the following.

lyn —ull < Bullxn —ull + (1 = Bl Knxp — ull
< Bullxn —ull + A = B) (A + va) X0 — ull
=+ v)llxn —ull, (3.21)

so that,

nst — el = llawyf Cen) + (I — @aG)yn — ull
=l f () — @y f () +ony f @) — @ G(u) +auG W) + (I — 0y G)y, —ull
< @yl F ) — FA I+ anllyf @) — Gl + 1T — anG)yn — (I — ay Gul
<yl f ) — Fall+ anllyf @) — Ga)ll+ (1 —ayt)llyn— ul
< apyal, — ull + anllyf @) — Gl + (1 — ey (1 + vo) iy — ull
= [1=an(—ar) = =) ) iy — ul

2y - Gl

< max { v, — u]
T—ay

Thus by induction, we’ve

2|y fw) =Gl

lotw =l < max {1x0 — u
T—ay

}, Vn > ny. (3.22)
Hence, {x,} is bounded. As such {y,}, {Gy,} and { f(x,)} are also bounded. Next, we show
that limy,— o0 ||Xy+1 — x| = 0.

Let 2, := =05 which implies

s
n

_ apyfxn) + U —anG)y, — Buxn

n =

1 — By
oy vf (xn) = Gyn) + Yu — Buxn
1 - ﬂn
N an(yf(xn) — Gyn) + (1 — Bn) Knxn
- ﬂn
— an()/f(xn) B Gyn) + Knxn

1 - ﬁn
then

D1 (Y (nt1) = Gyns1) oy f (xn) — Gyn)
1 — Bu+i 1= B

+Kn+1xn+l — Kyxy.

in+l —Zn =
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Hence, by letting M = sup, ||y f (xx)[| 4 [|Gyn|]), we obtain

Iy f G DI+ Gy D)+ o
1~ oot YJ Xn+1 Yn+1 1— 8,

I Kn+1Xn+1 — Knxnl|
Op+1 273
= + M + || Kpsr1xn+1 — Kpt1xa|

zn1 — znll < (v f )l + Gyall)

1 - 5n+1 1 — ﬂn
'H |Kn+lxn - Knxn”
< (2 VM (1 v b — 3l
1 - ﬂnJrl 1 - ,Bn
HKng1x0 — Knxul|
Therefore
Up+1 o
lznst = zall = nsr = xll < (o= 4 =2 VM vt —
1 - ,8n+1 1- ,Bn

HIKn+1Xn — Knxull
which implies
lim sup(|[zn+1 — zall = [[¥n+1 — xal) < O.
n—o0

Hence, by Lemma 2.2, we obtain
lim ||z, — x| =0
n—oo
thus
Nxpge1 — xull = A = Bz — x4l > 0 as n — oo.
From (3.19) it follows that,
X1 = Yull = Ny f(xn) + U — nG)yn — yall
< lapyfE)l+ 1 —anG)yn — yall
= o { Iy f @l + 1G],

we have |[x,+1 — yull = 0asn — oo. As

lxn — Yull < %0 — Xn1 1l + X041 — yulls

we also get
lxn — yull = 0 asn — oo. (3.23)

On the other hand, we obtain
1Knxn — xpll < %0 — Yull + lyn — Knxall

= llxp — yull + 1(Bnxn + (1 — Bu) Kpnxn) — Kpxy|l
= X0 — Yull + Bullxn — Knxall, (3.24)

which implies that (1 — 8,) || Knx, — x| < |Xn — yn||. From condition (C3) and (3.23) we
obtain
IKnxn — xu|l = 0asn — oo. (3.25)

Hence (b) is satisfied.
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Next, we show that (c) is satisfied, that is F(K,,) = ﬂl.Nzl F (T;), but from (a), (b) above and
(iii) of Lemma 3.1, (c) is satisfied.
Next, we show that

limsup((yf — G)p. j (xu — p)) <0, (3.26)

n—o0

where p is the unique solution of the variational inequality (3.15). Let z,, = amyf (2m)
+ (I — o G)ym, where y,, = Bzm + (1 — Bn) Kimzim and {a,, }, {Bm} satisfy the condition
of Theorem 3.2. Then it follows from Theorem 3.2 that p = lim,;,— 0 2, SO that

Zm — Xn = (V[ (@m) — Gzm) + 0 (Gzy — Gym) + Y — Xn

Hence
zm = xall” = & (vf zm) = Gzm, j (@m — Xn))
+o(Gzm — Gym, j(@m — Xn))
H(Ym — Xu, j@m — Xn))
< oy f@m) — Gzm, j(@m — Xn))
+amllGzm — Gymllllzm — xnull
Fym — xullllzm — xnll
< am(yf(@m) — Gzm, j(@m — Xn))
1
+ouy (1 + ;)“Zm = Ymllllzm — xull
Fym — xullllzm — xnll
< am{yf(@m) — Gzm, j(@m — Xn))
1
+a, (1 + ;)(1 = Bm)llzm — Kmzmlllzm — Xnll
Hllxn = zmll* + (1 = B Vml1zm — Xl
I Kmxn — xnlllllzm — xnll-
Therefore

1
(Vf(@m) = Gzm, jxu —zm)) < (1 + ;)(1 = Bud)llzm — Kmzm||1zm — xnll

+(1 = B [Wm/m | zm — Xl
+||Kmxn _xn”“Zm _xn”.
(xm

Now, taking limit superior as n — oo firstly, and then as m — oo, we have

lim suplim sup(y f (zm) — Gzm, j (xn — zm)) <0 (3.27)

m—0o0 n—>0o0
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Moreover, we note that

rf(p) = Gp, jxn —p)) =vf(p) = Gp, jxn — p)) = (vf(p) — Gp, j(Xn — Zm))
Hyf(p) = Gp, jxn — zm)) — (¥f(P) — Gzm, j(xn — z2m))
Hyf(P)=Gzm, jn—2m)) = VS @m) — Gzm, J (X — 2m))
v f@m) — Gzm, (X0 — zm))

= (vf(p) = Gp, j(xp —p) — jOxn — 2m))

HGzm — Gp, j(xn — zZm))
+(yf @m) —vf(p), jln — zm))
S @m) — Gzm, jon — zZm)) (3.28)

Taking limit superior as n — oo in (3.28), we have

lim sup(y f(p) = Gp, j(xn — p)) < limsup(yf(p) = Gp. j(xn = p) = j(n — 2m))

n—oo n—oo

+Gzm — Gplllim sup||x, — Zpml|
n—00
+lyf(@m) — v f(p)lllimsup|lx, — zml|
n—00

+lim sup(y f (zm) — Gzm, j (Xn — Zm))

n—oo
< limsup(yf(p) — Gp, j(xn — p) — j(xXn — Zm))
n—0o0
1 .
+((+ =) +ay )z = pltim supllx, = 2l
)2 n—o0o

+lim sup(y f(zm) — Gzm, j(xXn — 2m))

n—oo

By Theorem 3.2, z,, - p € F asm — 0.
Since j is norm-to-weak™ uniformly continuous on bounded subset of E, we obtain

lim suplim sup(y f (p) — Gp, j(xn — p) — j(xn — 2m)) =0,

m—o0 n—0o0

therefore, from (3.27) we obtain

limsup(y f(p) — Gp, j(xn —p)) <0

n—o0o

Finally, we show that (d) is satisfied, since lim,_, (v, /®,) = 0, if we denote by o, the
value of 2v,, + v,% then, clearly lim,,— (0, /at,) = 0. Let Ng € N be large enough such that
(1 —oaut)(0y/0on) < (t —2ya)/2, for all n > Ny. Then, using the recursion formula (3.19)
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and for all n > Ny, we obtain.

Xns1 =PI = llany f () — anG(p) + (1 = €y G)yn — (1 — @4 G) pl|?

< (0 = aGyn — (1 — anG) pl1* + 20, (Y f (xn) — G(P). j (ns1 — P))

< (1= an)?llyn — pIP + 200 (y.f (n) = V(D). j g1 — P))
+20, (Y (p) = G(P). j (Xng1 — D))

< (1 —anD)llyn — pI* + 2y allxy — pllllxas1 — pll
20,y f(p) — G(P), j(Xn+1 — P))

< (1 —ayD)[Br + (1= )1+ v)*1lxn — plf?
+anya|lxy — plI* + anyallxass — pll*
+20, (Y (p) = G(P). j (g1 — D))

< (1 — a0l +0ulllxs — plI
tanyallx, — plI* + anyallx,er — pl*
20,y f(p) — G(P), j(Xn+1 — P))

= (1= aul(c —ay) = (1 = ayv)@n/en)]) 15 = pIP
tanya|lxapr — plI* + 2a,(y.f (p) — G(p). j (tug1 — P)).-

Therefore

-2 —(I—ay n/%n
[xn41 — P||2 = (1 _Oln[(T ay)] —(Ol Ol(;[/ Donfa )])”xn - P||2

+20£n[(f —2ay) — (I —apt)(on/an) v f(p) — G(p), j(Xnt+1 — P))
(I —apye)l(t = 2ay) — (1 — ay7)(0n/0tn)] '
Observe that Y a,[(t — 2ay) — (1 — 7)) (0, /aty)] = 00 and

20, (v f(p) — G(p), j(xps1 — P)) ) -
(I —opya)[(t —2ay) — (1 —aut)(0n/an)]/ —

Consequently, applying Lemma 2.4, we conclude that x,, — p asn — oo.

lim sup (

Corollary 3.4 Let E be a real uniformly convex Banach space whose duality mapping J is
weakly sequentially continuous. LetG : H - H, f : E — E, {T,-}lN:1 F )32 1 Ba)ie

and {x,}° | be as in Theorem (3.3), then {x,};° | converges strongly to p € F, which is also
the unique solution of the variational inequality

(vf(p)—Gp,jlg—p) <0, VgeF

Corollary 3.5 Let H be a real Hilbert space, {z:}:c(0,1), be as in Theorem 3.2. Then {z;}
converges strongly to a common fixed point of the family {T,-}lN: | say p which is a unique
solution of the variational inequality

(G—=vfp,q—p)=0, VgeF.

Corollary 3.6 Let H be a real Hilbert space and let C a nonempty closed convex subset
of H. Let G : H —- H, f : E > E, {T,-}lN:1 F, {an}02 1, ABn)y and {x,},2, be as in
Theorem (3.3), then {x,};° | converges strongly to p € F, which is also the unique solution

of the variational inequality

(vf(p)—Gp,q—p) <0, VgeF
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