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Abstract Based on Pawlak’s rough set theory, we study and investigate the roughness in
non-commutative residuated lattices, which are generalizations of non-commutative fuzzy
structures such as MV-algebras and BL-algebras. We give many theorems and examples
to describe the rough approximations. Also, to investigate the properties of roughness of
subsets (and of course filters) more closely, we consider some different kinds of filters such
as Boolean filters and prime filters. Especially, we prove that with respect to some certain
filters, the obtained approximations form a Boolean algebra or a pseudoMTL-algebra.

Keywords Algebras of fuzzy logics · Residuated lattice · Boolean algebra · Rough
approximation
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1 Introduction

The theory of rough sets, introduced by Pawlak [15], is an extension of set theory, in which
a subset of a universe is described by a pair of ordinary sets called the lower and upper
approximations. A key concept in Pawlak’s rough set model is that of equivalence relation.
The equivalence classes are the building blocks for the construction of the lower and upper
approximations. The rough sets theory has often proved to be an excellent mathematical
tool for the analysis of a vague description of objects called actions in decision problems.
Many different problems can be addressed by rough sets theory. During the last few years
this formalism has been approached as a tool used in connection with many different areas
of research. There have been investigations of the relations between rough sets theory and
fuzzy sets. Rough sets theory has also provided the necessary formalism and ideas for the
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development of some propositional machine learning systems. It has also been used for,
among many others, knowledge representation, data mining, dealing with imperfect data,
reducing knowledge representation and for analyzing attribute dependencies. The notions of
rough relations and rough functions are based on rough sets theory and can be applied as a
theoretical basis for rough controllers, among others.

An algebraic approach to rough sets has been given by Iwinski [9]. He also suggested the
lattice theoretical approach to rough sets. Estaji et al. [8] also studied rough set theory in
lattice theory. In 1994, Biswas and Nanda [2] introduced and discussed the concept of rough
groups and rough subgroups (see also [12,13]). Roughness in the other algebraic structures
such as semigroups and rings was studied by many authors (see [5,6,11,12,21]). Pomykala
and Pomykala [16] showed that the set of rough sets forms a Stone algebra. Comer [4]
presented an interesting discussion of rough sets and various algebras related to the study of
algebraic logic, such as Stone algebras and relation algebras. Jun applied rough set theory
to BCK-algebras [10]. Recently, Rasouli et al. [18] introduced and studied the notion of
roughness inMV-algebras. Also, Torkzadeh et al. studied the roughness of BL-algebras [19].
Roughness in (commutative) residuated lattices was also investigated by Rachu̇neck et al.
[17].

In this paper, we consider non-commutative residuated lattices [7,20], which are com-
mon structures among algebras associated with fuzzy logics, as the universal set. We give
a complete description of algebraic properties of roughness by giving many theorems and
examples, and so we extend the results of [17–19]. We characterize the approximations with
respect to some types of filters and give some interesting results: we consider different kinds
of filters (prime filters and Boolean filters) to study the approximations of sets (or filters)
and characterize the rough approximations. Particularly, we show that based on the kinds of
filters, the obtained approximations can be a Boolean algebra or a pseudo MTL-algebra, as
mentioned in the abstract.

2 Preliminaries

This section is devoted to give some definitions and results from the literature. For more
details, we refer to the references [1,3,8,15,20].

2.1 Residuated lattices

Definition 2.1 A structure (L,∨,∧, ∗,→,�, 0, 1) of type (2, 2, 2, 2, 2, 0, 0) is called a
(non-commutative) residuated lattice if

(RL1) (L,∨,∧, 0, 1) is a bounded lattice,
(RL2) (L, ∗, 1) is a monoid,
(RL3) x ∗ y ≤ z if and only if x ≤ y → z if and only if y ≤ x � z, for all x, y, z ∈ L.
• The elements x → 0 and x � 0 are denoted by ¬x and ∼ x , respectively.
• A residuated lattice L is called involutive if x−∼ = x∼− = x , for all x ∈ L.
• A residuated lattice L is called a pseudo MTL-algebra if it satisfies (PL)

(x → y) ∨ (y → x) = 1 = (x � y) ∨ (y � x), for all x, y ∈ L.
Proposition 2.2 In any residuated lattice L, the following properties hold:

(1) x ≤ y if and only if x → y = 1 if and only if x � y = 1,
(2) x → x = x � x = 1, 1 → x = 1 � x = x,
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Rough approximations in non-commutative residuated lattices 99

(3) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y,
(4) x ≤ y implies z → x ≤ z → y and z � x ≤ z � y,
(5) x ≤ y implies y → z ≤ x → z and y � z ≤ x � z, particularly, x ≤ y implies that

y− ≤ x− and y∼ ≤ x∼,
(6) y ≤ x → y and y ≤ x � y, x → (y � z) = y � (x → z),
(7) x ∗ y ≤ x ∗ (x � y) ≤ x ∧ y, y ∗ x ≤ (x → y) ∗ x ≤ x ∧ y,
(8) x → y ≤ (y → z) � (x → z), particularly, x → y ≤ y− � x−,
(9) x � y ≤ (y � z) → (x � z), particularly, x � y ≤ y∼ → x∼,

(10) x → y ≤ (z → x) → (z → y), x � y ≤ (z � x) � (z � y),
(11) (x ∗ y) � z = y � (x � z), (x ∗ y) → z = x → (y → z),
(12) x ∗ (y → z) ≤ y → (x ∗ z), (y � z) ∗ x ≤ y � (z ∗ x),

Definition 2.3 A nonempty subset F of residuated lattice L is called a filter if

(i) x, y ∈ F imply x ∗ y ∈ F ,
(ii) x ≤ y and x ∈ F imply y ∈ F

or equivalently, 1 ∈ F , and x → y ∈ F (or x � y ∈ F) and x ∈ F imply y ∈ F .

We mention that for nonempty subset X of residuated lattice L, the intersection of any
nonempty family of filters of Lwhich contain X is again a filter, denoted [x), which is called
the filter generated by X. Also, the set of all filters of L together with set inclusion, as the
partial ordering, forms a complete lattice in which for a family {Fi }i∈I of filters, ∧Fi = ∩Fi
and ∨Fi = [∪i∈I Fi ) (see [3]).

The next proposition gives a characterization of these filters.

Proposition 2.4 If X ⊆ L, then
[X) = {y ∈ L : y ≥ g1 ∗ g2 ∗ · · · ∗ gk, gi ∈ X, 1 ≤ i ≤ k}.

Definition 2.5 A filter F of L is called a Boolean filter

(i) of type 1 if x ∈ F or ¬x,∼ x ∈ F , for all x ∈ L,
(ii) of type 2 if x∨ ∼ x ∈ F and x ∨ ¬x ∈ F , for all x ∈ L.

Filter F is said to be normal if it satisfies

x → y ∈ F ⇔ x � y ∈ F.

Every normal filter F of residuated lattice L induces a congruence θF on L as

xθF y ⇔ x → y, y → x ∈ F.

L/F , the set of congruence classes of θF together with those operations induced from L
forms a residuated lattice. The induced partial ordering on L/F is defined as

x/θF ≤ y/θF ⇔ x → y ∈ F.

Theorem 2.6 Let F be a normal filter of L.
(i) F is a Boolean filter of type 1 if and only if |L/F | ≤ 2.
(ii) F is a Boolean filter of type 2 if and only if L/F is a Boolean algebra.

Definition 2.7 Let F be a filter of L. F is called a prime filter

(i) of type 1, if x → y ∈ F, x � y ∈ F or y → x ∈ F, y � x ∈ F,
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(ii) of type 2, if x ∨ y ∈ F implies x ∈ F or y ∈ F ,
(iii) of type 3, if (x → y) ∨ (y → x) ∈ F and (x � y) ∨ (y � x) ∈ F .

Theorem 2.8 Let F be a normal filter of L.
(i) F is a prime filter of type 1 if and only if L/F is a linearly ordered residuated lattice.
(ii) F is a prime filter of type 2 if and only if 1L/F is ∨-irreducible.
(iii) F is a prime filter of type 3 if and only if L/F is a pseudo MTL-algebra.

2.2 Rough sets

Definition 2.9 Let U be a universal set and θ an equivalence relation on U . The pair (U, θ)

is called the Pawlak’s approximation space (or briefly, an approximation space).

Definition 2.10 Let (U, θ) be an approximation space. A mapping Apr : 2U −→ 2U ×
2U with Apr(X) = (Apr(X), Apr(X)), where Apr(X) = {u ∈ U : [u]θ ⊆ X} and

Apr(X) = {u ∈ U : [u]θ ∩ X �= ∅} is called a rough approximation. In this case, Apr(X)

and Apr(X) are called, respectively, the lower approximation and the upper approximation
of X in (U, θ).

Also, Bndθ (X) = Apr(X) − Apr(X) is called the boundary area of X and

Aprc(X) = (U − Apr(X),U − Apr(X)) is called the complement of X in (U, θ).

Definition 2.11 For approximation space (U, θ), (A, B) ∈ 2U × 2U is called a rough set if
there exists X ⊆ U such that (A, B) = Apr(X).

Definition 2.12 Let (U, θ) be an approximation space and X ⊆ U . Then, with respect to θ ,
X is called

(i) definable if Apr(X) = Apr(X),
(ii) empty-interior if Apr(X) = ∅,
(iii) empty-exterior if Apr(X) = ∅.
Proposition 2.13 In any approximation space (U, θ), the following hold:

(1) Apr(X) ⊆ X ⊆ Apr(X),
(2) ∅ and U are definable with respect to every equivalence relation on U,
(3) if X ⊆ Y , then Apr(X) ⊆ Apr(Y ) and Apr(X) ⊆ Apr(Y ),
(4) Apr(X ∩ Y ) = Apr(X) ∩ Apr(Y ),

(5) Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y ),
(6) Apr(X ∪ Y ) = Apr(X) ∪ Apr(Y ),
(7) Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y ),
(8) Apr(Apr(X)) = Apr(X),

(9) Apr(Apr(X)) = Apr(X),
(10) Apr(Apr(X)) = Apr(X),

(11) Apr(Apr(X)) = Apr(X).

3 Properties of approximations in residuated lattices

First of all, we mention that throughout the paper, L will denote a residuated lattice, F a
normal filter of L and θF the congruence induced by F . Hence, the approximation space is
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Rough approximations in non-commutative residuated lattices 101

denoted by (L, F). The upper approximation and lower approximation with respect to θF
(or briefly, with respect to F) are denoted by Apr

F
and Apr F , respectively. Hence, for a

nonempty set X , if Apr F (X) = Apr
F
(X), we say that X is definable with respect to F .

Remark 3.1 (1) We observe that for the trivial filter F = {1}, every equivalence class [x]F
is singleton, more precisely, [x]F = {x}. Hence, for every X ⊆ L,

AprF (X) = (X, X)

(2) For F = L we have [u]L = L, for all u ∈ L, and so for every proper subset X of L we
get AprL(X) = ∅ and AprL(X) = L. Hence,

AprL(X) = (∅,L)

Thus, in a residuated lattice L
(1) any nonempty subset of L is definable with respect to the filter {1}.
(2) any proper subset of L is empty-interior with respect to L.

From the defn we know that for a set to be definable with respect to a filter, it must
Apr

F
(X) = X = Apr F (X). We show that one of the equalities can be omitted. Indeed, for

a set X to be definable, with respect to a filter F , it suffices Apr
F
(X) = X or Apr F (X) = X .

Theorem 3.2 For nonempty subset X of L,
Apr

F
(X) = X ⇔ Apr F (X) = X.

Proof Assume that Apr
F
(X) = X and x ∈ Apr F (X). Then, [x]F ∩ X �= ∅, whence

x ∈ [x]F = [u]F ⊆ X , for u ∈ X . This implies that Apr F (X) ⊆ X . Hence, Apr F (X) = X ;
i.e., X is definable with respect to F .

Now, we assume that Apr F (X) = X and x ∈ X . Then, [x]F ∩ X �= ∅. Let a ∈ [x]F .
Then, [a]F = [x]F , whence [a]F ∩ X �= ∅. This implies that a ∈ Apr F (X) = X , whence
[x]F ⊆ X . Then, x ∈ Apr

F
(X), i.e., X ⊆ Apr

F
(X), proving Apr

F
(X) = X . ��

Corollary 3.3 Nonempty subset X of L is definable, with respect to normal filter F, if and
only if Apr

F
(X) = X or Apr F (X) = X (or both).

From now on, in this paper, the set of all definable subsets of L is denoted by DF(L).
Notation. For nonempty subset X of L, we let

X− = {x− : x ∈ X} and X∼ = {x∼ : x ∈ X}.
Obviously, in an involutive residuated lattice L, X−∼ = X = X∼−, for any nonempty

subset X of L.

Proposition 3.4 Assume that L is an involutive residuated lattice and X a nonempty subset
of L. Then
(i) Apr F (X−) = Apr F (X)−,
(ii) Apr

F
(X−) = Apr

F
(X)−,

(iii) Apr F (X∼) = Apr F (X)∼,
(iv) Apr

F
(X∼) = Apr

F
(X)∼.
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Proof (i) Let x ∈ Apr F (X−). Then, there exists z ∈ X− such that x � z ∈ F and
z � x ∈ F . From x � z ≤ z∼ → x∼ it follows that z∼ → x∼ ∈ F . Similarly, from
z � x ≤ x∼ → z∼ it follows that x∼ → z∼ ∈ F . Since z∼ ∈ X−∼ = X we get
x∼ ∈ Apr F (X), whence x = x∼− ∈ Apr F (X)−, proving Apr F (X−) ⊆ Apr F (X)−.

Conversely, let x ∈ Apr F (X)−. Then, x = y−, where [y]F ∩ X �= ∅. This implies
that y → z, z → y ∈ F , for z ∈ X . From z → y ≤ y− � z− it follows that
x � z− = y− � z− ∈ F . Similarly, we can deduce that z− � x ∈ F . This implies
that z− ∈ [x]F ∩ X−, showing that x ∈ Apr F (X−). Hence, Apr F (X)− ⊆ Apr F (X−).
Therefore, (i) holds.

(ii) Let x ∈ Apr
F
(X−), i.e., [x]F ⊆ X−. Let a ∈ [x∼]F . Then, a → x∼ ∈ F and

x∼ → a ∈ F . Now, from a → x∼ ≤ x∼− � a− = x � a− and that a → x∼ ∈ F
it follows that x � a− ∈ F . Similarly, a− � x ∈ F . Thus, a− ∈ [x]F ⊆ X−, whence
a ∈ X . Hence, [x∼]F ⊆ X and so x∼ ∈ Apr

F
(X), whence x = x∼− ∈ Apr

F
(X)−, proving

Apr
F
(X−) ⊆ Apr

F
(X)−.

Now, let x ∈ Apr
F
(X)−. Then, x = y−, where [y]F ⊆ X . Let a ∈ [x]F . From a �

x ≤ x∼ → a∼ and that a � x ∈ F it follows that y → a∼ = x∼ → a∼ ∈ F . By a
similar way, it is shown that a∼ → y ∈ F . Hence, a∼ ∈ [y]F ⊆ X , whence a ∈ X−.
This implies that [x]F ⊆ X−, i.e., x ∈ Apr

F
(X−), proving Apr

F
(X)− ⊆ Apr

F
(X−).

Therefore, Apr
F
(X)− = Apr

F
(X−), proving (ii).

The proofs of (iii) and (iv) are similar to the proofs of (i) and (ii), respectively. ��
Proposition 3.5 Let X be a nonempty subset and F be a normal filter of L. Then,
(i) if F ∩ X �= ∅, then F ⊆ Apr F (X),
(ii) F ⊆ X if and only if F ⊆ Apr

F
(X),

(iii) X ⊆ F if and only if Apr F (X) = F,
(iv) if X is a filter, then X is definable with respect to F if and only if F ⊆ X.
(v) if X is a subalgebra of L, then so is Apr F (X),
(vi) if L is linearly ordered and X is a filter of L, then so is Apr F (X).

Proof (i), (ii) and (v) are proved easily. We prove (iii) and (iv).
(iii) Assume that X ⊆ F and a ∈ Apr F (X). Then, [a]F ∩ X �= ∅ and so [a]F ∩ F �= ∅,

whence y → a ∈ F , for some y ∈ F . This implies that a ∈ F , proving that Apr F (X) ⊆ F .
Now, for z ∈ F we have [z]F = F , whence [z]F ∩ X = F ∩ X = X �= ∅. i.e, z ∈ Apr F (X).
Thus, F ⊆ Apr F (X), proving Apr F (X) = F . The converse is obvious.

(iv) Assume that F ⊆ X and x ∈ Apr F (X). Then, there exists y ∈ X such that y →
x ∈ F ⊆ X , whence x ∈ X . This implies that Apr F (X) ⊆ X , proving X is definable with
respect to F , by Corollary 3.3. The converse follows from (ii).

(vi) It is similar to the proof of [19, Theorem 3.14(3)]. ��
Proposition 3.6 Let G be a normal filter of L containing F. Then for every X ⊆ L we have

(i) Apr F (X) ⊆ AprG(X),
(ii) Apr

G
(X) ⊆ Apr

F
(X).

Proof (i) Let a ∈ Apr F (X). Then, there exists x ∈ X such that a → x ∈ F and x → a ∈
F ⊆ G. This implies that x ∈ [a]G and so a ∈ AprG(X).

The proof of (ii) is similar. ��
The next corollary follows immediately from Proposition 3.6 and so we omit the proof.
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Corollary 3.7 Let {Gi }i∈I be a nonempty family of normal filters of L and X be a nonempty
subset of L. Then,
(i) Apr∩Gi

(X) ⊆ ∩i∈I AprGi
(X) ⊆ ∪i∈I AprGi

(X) ⊆ Apr∨Gi
(X),

(ii) Apr∨Gi
(X) ⊆ ∩i∈I AprGi

(X) ⊆ ∪i∈I AprGi
(X) ⊆ Apr∩Gi

(X).

Theorem 3.9 gives some conditions under which the equalities in Corollary 3.7 maybe
hold. Before we state and prove it we give a lemma (Lemma 3.8) which states, in any linearly
ordered residuated lattice, every two filters are comparable with respect to set inclusion as
the partial ordering.

Lemma 3.8 Assume that L is linearly ordered. Then, for any two filters F and G of L we
have F ⊆ G or G ⊆ F.

Proof Assume that F �⊆ G. Then, there exists f ∈ F such that f /∈ G. Let g ∈ G. Since L
is linear, so f ≤ g or g ≤ f . If g ≤ f , since G is a filter we must have f ∈ G, which is a
contradiction. Thus, f ≤ g, which implies that g ∈ F , proving G ⊆ F . ��
Theorem 3.9 Let {Gi }i∈I be a nonempty family of normal filters of L and X ⊆ L be
nonempty.

(i) If X is definable with respect to G j , for some j ∈ I , or L is linearly ordered then

Apr∩Gi
(X) = ∩AprGi

(X).

(ii) If X is a filter of L containing Gi (for all i ∈ I ), then

Apr∩Gi
(X) = ∩i∈I AprGi

(X) = ∪i∈I AprGi
(X) = Apr∨Gi

(X) = X

and

Apr∩Gi
(X) = ∩i∈I AprGi

(X) = ∪i∈I AprGi
(X) = Apr∨Gi

(X) = X.

Proof We assume that L is linearly ordered. By Lemma 3.8, for each i, j ∈ I , Gi ⊆ G j or
G j ⊆ Gi . Anyway, Gi ’s form a chain

Gi1 ⊆ Gi2 ⊆ · · · ,

where i1, i2, ... ∈ I . In this case,

Apr∩Gi
(X) = AprGi1

(X) and ∩ AprGi
(X) = AprGi1

(X).

The other cases follows from Theorem 3.2 and Proposition 3.5(iv). ��

Example 3.10 Let L = {0, a, b, c, d, e, f, 1} be a (non-linear) lattice whose Hasse diagram
is below (see Fig. 1). We define the operations ∗, →=� on L as shown in Tables 1 and 2.
Routine calculations show that (L; ∨,∧, ∗,→, 0, 1) is a (commutative) residuated lattice in
which

F1 = {1, f }, F2 = {1, e}, F3 = {1, d, e, f } and F4 = {1, a, c, e}
are (normal) filters of L and the equivalence classes are

[0]F1 = {0, a}, [b]F1 = {b, c}, [d]F1 = {d, e}, [1]F1 = {1, f } = F1,

[0]F2 = {0, b}, [a]F2 = {a, c}, [d]F2 = {d, f }, [1]F2 = {1, e} = F2,

[0]F3 = {0, a, b, c}, [1]F3 = F3,

[0]F4 = {0, b, d, f }, [1]F4 = F4.
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Fig. 1 The Hasse diagram of L

•
0

•b

•c•

1•

f

•a

•e

•d

Table 1 The action of ‘∗’ on L ∗ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0

a 0 a 0 a 0 a 0 a

b 0 0 b b 0 0 b b

c 0 a b c 0 a b c

d 0 0 0 0 d d d d

e 0 a 0 a d e f e

f 0 0 b b d d f f

1 0 a b c d e f 1

Table 2 The action of ‘→’ on L →=� 0 a b c d e f 1

0 1 1 1 1 1 1 1 1

a f 1 f 1 f 1 f 1

b e e 1 1 e e 1 1

c d e f 1 d d d 1

d c a b c 1 1 1 c

e b c b c f 1 f 1

f a a c c e e 1 1

1 0 a b c d e f 1

(i) Let X = {b, e}. We can see that X does not contain F3 and F4. It is easily checked
that Apr F3(X) = L = Apr F4(X), whereas Apr F3∩F4(X) = Apr F2(X) = {0, b, e, 1}.
Thus,

Apr F3∩F4(X) �= Apr F3(X) ∩ Apr F4(X).

(ii) Let X = {a}, which is not a filter of L and also does not contain F3 and F4.
Then, Apr F3(X) = {0, a, b, c} and Apr F4(X) = {1, a, c, e} and so Apr F3(X) ∪
Apr F4(X) = {0, a, b, c, e, 1}, whereas Apr F3∩F4 = Apr F2(X) = {a, c}. Furthermore,
Apr F3∨F4(X) = AprL(X) = L. Thus,

Apr F3(X) ∩ Apr F4(X) �= Apr F3(X) ∪ Apr F4(X) �= Apr F3∨F4(X).

123



Rough approximations in non-commutative residuated lattices 105

(iii) Let X = {a, b, c}. Then, Apr
F1

(X) = {b, c} and Apr
F2

(X) = {a, c}, whence
Apr

F1
(X) ∩ Apr

F2
(X) = {c}, whereas Apr

F1∩F2
(X) = Apr {1}(X) = X . Hence,

Apr
F1

(X) ∩ Apr
F2

(X) �= Apr
F1∩F2

(X).

Moreover, Apr
F4

(X) = ∅ and so Apr
F4

(X)∪Apr
F2

(X) = {a, c} and Apr
F2∨F4

(X) =
Apr

F4
(X) = ∅, showing that
Apr

F2
(X) ∩ Apr

F4
(X) �= Apr

F4
(X) ∪ Apr

F2
(X) �= Apr

F2∨F4
(X).

For nonempty subsets X1, . . . , Xn of L, let
X1 ∗ · · · ∗ Xn = {a ∈ L : a ≥ x1 ∗ · · · ∗ xn, for xi ∈ Xi , i = 1, 2, . . . , n}.

Remark 3.11 We mention that when Xi (1 ≤ i ≤ n) is a normal filter of L, X1 ∗ · · · ∗ Xn is
also a normal filter of L (see [3]).

Theorem 3.14 gives a characterization of Apr F (X1 ∗ X2 ∗ · · · ∗ Xn). For this, we first
give two lemmas.

Lemma 3.12 Let F be a normal filter of L. Then, for each f ∈ F and each x ∈ L we have
[ f ∗ x]F = [x]F .
Proof It follows from Proposition 2.2(11) and (12). ��
Lemma 3.13 Assume that L is linearly ordered and F a filter of L. If x, y ∈ L be such that
[x]F �= [y]F and x ≤ y, then for all t ∈ [x]F and s ∈ [y]F we have t ≤ s.

Proof The proof is the same as the proof of [19, Lemma 3.13]. ��
Theorem 3.14 Let Xi (1 ≤ i ≤ n) be a nonempty subset of L. Then,
(i) Apr

F
(X1) ∗ · · · ∗ Apr

F
(Xn) ⊆ Apr

F
(X1 ∗ · · · ∗ Xn),

(ii) if Xi (1 ≤ i ≤ n) is definable, with respect to F,

Apr
F
(X1) ∗ · · · ∗ Apr

F
(Xn) = Apr

F
(X1 ∗ · · · ∗ Xn),

(iii) Apr F (X1 ∗ X2 ∗ · · · ∗ Xn) ⊆ Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn),
(iv) under each of the conditions

(a) L is linearly ordered,
(b) Xi ⊆ F, for all i = 1, 2, . . . , n,
(c) Xi is definable, for all i = 1, 2, . . . , n,
(d) 0 ∈ X j , for some j ∈ {1, 2, . . . , n}, we have

Apr F (X1 ∗ X2 ∗ · · · ∗ Xn) = Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn).

Proof (i) Let x ∈ Apr
F
(X1) ∗ · · · ∗ Apr

F
(Xn). Then,

x ≥ x1 ∗ · · · ∗ xn, (3.1)

where [xi ]F ⊆ Xi , for i = 1, 2, . . . , n. Now, let a ∈ [x]F . From (3.1) and that
a ≥ (a → x) ∗ x we get

a ≥ (a → x) ∗ x1 ∗ · · · ∗ xn = [(a → x) ∗ x1] ∗ x2 ∗ · · · ∗ xn . (3.2)
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From Lemma 3.12 and that a → x ∈ F we deduce that

(a → x) ∗ x1 ∈ [(a → x) ∗ x1]F = [x1]F ⊆ X1,

whence, combining (3.2), we get a ∈ X1 ∗ · · · ∗ Xn . Hence, x ∈ Apr
F
(X1 ∗ · · · ∗ Xn),

proving Apr
F
(X1) ∗ · · · ∗ Apr

F
(Xn) ⊆ Apr

F
(X1 ∗ · · · ∗ Xn).

(ii) It is easy.
(iii) Let a ∈ Apr F (X1 ∗ X2 ∗ · · · ∗ Xn). Then, [a]F ∩ (X1 ∗ X2 ∗ · · · ∗ Xn) �= ∅, whence

for xi ∈ Xi (1 ≤ i ≤ n) and b ∈ [a]F we have

b ≥ x1 ∗ x2 ∗ · · · ∗ xn . (3.3)

From Proposition 2.2 we know that a ≥ (b → a) ∗ b, combining (3.3) we get

a ≥ (b → a) ∗ x1 ∗ x2 ∗ · · · ∗ xn = [(b → a) ∗ x1] ∗ x2 ∗ · · · ∗ xn . (3.4)

Lemma 3.12 and that b → a ∈ F imply that [(b → a) ∗ x1]F = [x1]F , showing
that (b → a) ∗ x1 ∈ Apr F (X1). Considering (3.4) and that xi ∈ Apr F (Xi ), for
i = 2, 3, . . . , n, we get a ∈ Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn). Hence,

Apr F (X1 ∗ X2 ∗ · · · ∗ Xn) ⊆ Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn).

(iv) (a) We assume that L is linearly ordered. Let a ∈ Apr F (X1) ∗ · · · ∗ Apr F (Xn). Then,
a ≥ x1 ∗· · ·∗xn , where xi ∈ Apr F (Xi ), for i = 1, 2, . . . , n, and so there exists bi ∈ Xi

such that bi ∈ [xi ]F . If [a]F = [x1 ∗ · · · ∗ xn]F , since
x1 ∗ · · · ∗ xn ∈ X1 ∗ · · · ∗ Xn ⊆ Apr F (X1 ∗ · · · ∗ Xn),

we must have a ∈ Apr F (X1 ∗ · · · ∗ Xn). Otherwise, from Lemma 3.13 it follows that
a ≥ b1 ∗ · · · ∗ bn ∈ X1 ∗ · · · ∗ Xn . Hence,

Apr F (X1) ∗ · · · ∗ Apr F (Xn) ⊆ Apr F (X1 ∗ · · · ∗ Xn).

(b) If Xi ⊆ F , for i = 1, 2, . . . , n, on one hand Apr F (Xi ) = F , by Proposition 3.5, and
on the other hand X1 ∗ X2 ∗ · · · ∗ Xn ⊆ F . Hence,

Apr F (X1 ∗ X2 ∗ · · · ∗ Xn) = F = Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn).

(c) If Xi is definable, for 1 ≤ i ≤ n, so

Apr F (X1) ∗ Apr F (X2) ∗ · · · ∗ Apr F (Xn) = X1 ∗ · · · ∗ Xn

and hence

Apr F (X1 ∗ X2 ∗ · · · ∗ Xn) = X1 ∗ · · · ∗ Xn .

(d) We observe that if 0 ∈ X j , for some j ∈ {1, 2, . . . , n}, then X1 ∗ · · · ∗ Xn = L, and
so Apr F (X1 ∗ · · · ∗ Xn) = L. By (iii), we get Apr F (X1) ∗ · · · ∗ Apr F (Xn) = L. ��

Examples 3.15 and 3.16 show that the equalities in Theorem 3.14may not hold, in general.

Example 3.15 Let L = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is below (see
Fig. 2). We define the operations ∗, →, � on L as shown in Tables 3, 4 and 5. Routine
calculations show that (L; ∨,∧, ∗,→,�, 0, 1) is a residuated lattice in which F = {1, d}
is a normal filter of L (see [14]). It is easy to see that

[0]F = {0}, [a]F = {a, b}, [c]F = [d]F = [1]F = F.

Now, let X = {d} and Y = {c}. Then, X ∗Y = {c, d, 1} and Apr
F
(X ∗Y ) = X ∗Y , whereas

Apr
F
(X) ∗ Apr

F
(Y ) = ∅, because Apr

F
(X) = ∅ = Apr

F
(Y ).
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Fig. 2 The Hasse diagram of L

•0
•a

•b • c
•d
•1

Table 3 The action of ‘∗’ on L ∗ 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a a a a a a

b 0 a a a a a b

c 0 a a c c c c

d 0 a a c c c d

e 0 a b c d e e

1 0 a b c d e 1

Table 4 The action of ‘→’ on L → 0 a b c d e 1

0 1 1 1 1 1 1 1

a 0 1 1 d 1 1 1

b 0 d 1 d 1 1 1

c 0 b b 1 1 1 1

d 0 b b d 1 1 1

e 0 b b d d 1 1

1 0 a b c d e 1

Table 5 The action of ‘�’on L � 0 a b c d e 1

0 1 1 1 1 1 1 1

a 0 1 1 1 1 1 1

b 0 e 1 e 1 1 1

c 0 b b 1 1 1 1

d 0 b b e 1 1 1

e 0 a b c d 1 1

1 0 a b c d e 1

Example 3.16 Consider the residuated lattice L given in Example 3.10. It is easy to check
that F5 = {1, c} is a filter of L and

[0]F5 = {0}, [a]F5 = {a, e}, [b]F5 = {b, f }, [d]F5 = {d}, [1]F5 = F5.
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Now, let X = {e} and Y = { f }. Then, X ∗ Y = {1, f } and Apr F5(X ∗ Y ) = {1, b, c, f },
whereas Apr F5(X) ∗ Apr F5(Y ) = {a, e} ∗ {b, f } = L, showing that

Apr F5(X) ∗ Apr F5(Y ) �= Apr F5(X ∗ Y ).

Lemma 3.17 Let F1, F2, . . . , Fn be filters of L. Then, Fi ⊆ F1 ∗ · · · ∗ Fn, for all i =
1, 2, . . . , n. Particularly, when Fi ’s are normal, then [x]Fi ⊆ [x]F1∗···∗Fn , for all x ∈ L.

Proof Straightforward. ��
Theorem 3.18 Let Fi (1 ≤ i ≤ n) be a normal filter and X a nonempty subset of L. Then,
(i) Apr F1∗···∗Fn (X) ⊆ Apr F1(X) ∗ · · · ∗ Apr Fn (X),
(ii) Apr

F1∗···∗Fn (X) ⊆ Apr
F1

(X) ∗ · · · ∗ Apr
Fn

(X),

(iii) Apr F1(X) ∗ · · · ∗ Apr Fn (X) ⊆ Apr F1∗···∗Fn (X) ∗ · · · ∗ Apr F1∗···∗Fn (X) (n times),

Proof (i) Let z ∈ Apr F1∗···∗Fn (X). Then x → z ≥ f1 ∗ · · · ∗ fn , where x ∈ X and fi ∈ Fi ,
for i = 1, 2, . . . , n. Now, from (RL3) and Proposition 2.2(6) it follows that

z ≥ f1 ∗ · · · ∗ fn ∗ x ≥ ( f1 ∗ x) ∗ · · · ∗ ( fn ∗ x). (3.5)

On the other hand, from Lemma 3.12, we know that [ fi ∗ x]Fi = [x]Fi , for all
i = 1, 2, . . . , n. Since x ∈ X , so [ fi ∗ x]Fi ∩ X �= ∅, whence fi ∗ x ∈ Apr Fi (X).
Combining (3.5) it follows that z ∈ Apr F1(X) ∗ · · · ∗ Apr Fn (X), proving

Apr F1∗···∗Fn (X) ⊆ Apr F1(X) ∗ · · · ∗ Apr Fn (X).

(ii) and (iii) follow from Lemma 3.17 and Propositions 2.2(6) and 3.6.
(iii) It follows from Lemma 3.17 and Proposition 3.6.

��
Theorem 3.19 Let Fi (1 ≤ i ≤ n) be a normal filter and X a nonempty subset of L.
(i) If L is linearly ordered and X is a filter of L, then

Apr F1∗···∗Fn (X) = Apr F1(X) ∗ · · · ∗ Apr Fn (X).

(ii) If X is a filter of L containing Fi , for all i = 1, 2, . . . , n, or L is commutative and X a
filter of L, then

Apr
F1∗···∗Fn (X) = Apr

F1
(X) ∗ · · · ∗ Apr

Fn
(X).

(iii) If X is a filter of L which is definable with respect to Fi , for i = 1, 2, . . . , n, or L is
commutative and X a subalgebra of L, then
Apr F1(X) ∗ · · · ∗ Apr Fn (X) = Apr F1∗···∗Fn (X) ∗ · · · ∗ Apr F1∗···∗Fn (X) (n times).

Proof (i) Let x ∈ Apr F1(X) ∗ · · · ∗ Apr Fn (X). Then, x ≥ x1 ∗ · · · ∗ xn , where
[xi ]Fi ∩ X �= ∅. From Lemma 3.17, it follows that [xi ]F1∗···∗Fn ∩ X �= ∅, means
that xi ∈ Apr F1∗···∗Fn (X), whence x1 ∗ · · · ∗ xn ∈ Apr F1∗···∗Fn (X), by Proposition
3.5(vi). This implies that x ∈ Apr F1∗···∗Fn (X), proving

Apr F1∗···∗Fn (X) = Apr F1(X) ∗ · · · ∗ Apr Fn (X).
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(ii) We assume that X is a filter ofL containing Fi , for i = 1, 2, . . . , n. Then, X is definable
with respect to Fi and also with respect to F1 ∗ · · · ∗ Fn . Hence,

Apr
F1∗···∗Fn (X) = X = Apr

F1
(X) ∗ · · · ∗ Apr

Fn
(X).

Now, we assume that L is commutative and X is a filter of L. Let X be an element of
Apr

F1
(X) ∗ · · · ∗ Apr

Fn
(X). Then,

x ≥ x1 ∗ · · · ∗ xn, (3.6)

where [xi ]Fi ⊆ X . Let a ∈ [x]F1∗···∗Fn . Then, there is fi ∈ Fi , for all i = 1, 2, . . . , n,
such that x → a ≥ f1 ∗ · · · ∗ fn , whence a ≥ f1 ∗ · · · ∗ fn ∗ x . Combining (3.6) and
observing the commutativity of L, we get

a ≥ ( f1 ∗ · · · ∗ fn) ∗ (x1 ∗ · · · ∗ xn) = ( f1 ∗ x1) ∗ · · · ∗ ( fn ∗ xn).

On the other hand, from Lemma 3.12 we get fi ∗ xi ∈ [ fi ∗ xi ]Fi = [xi ]Fi ⊆ X , whence
( f1 ∗ x1) ∗ · · · ( fn ∗ xn) ∈ X . Hence, a ∈ X , proving [x]F1∗···∗Fn ⊆ X . Thus,

Apr
F1

(X) ∗ · · · ∗ Apr
Fn

(X) ⊆ Apr
F1∗···∗Fn (X).

(iii) We observe that when X is a filter which is definable with respect to Fi , for all
i = 1, 2, . . . , n, so Fi ⊆ X , by Proposition 3.5(iv). Hence, F1 ∗ · · · ∗ Fn ⊆ X and
so X is definable with respect to F1 ∗ · · · ∗ Fn . Thus,

Apr F1∗···∗Fn (X) ∗ · · · ∗ Apr F1∗···∗Fn (X) = X = Apr F1(X) ∗ · · · ∗ Apr Fn (X).

Now, assume that L is commutative and X is a subalgebra of L. Let

x ∈ Apr F1∗···∗Fn (X) ∗ · · · ∗ Apr F1∗···∗Fn (X).

Then,
x ≥ x1 ∗ · · · ∗ xn, (3.7)

where xi ∈ Apr F1∗···∗Fn (X). Hence, for ai ∈ X we have ai → xi ≥ f1 ∗ · · · ∗ fn and
so

xi ≥ ( f1 ∗ · · · ∗ fn) ∗ ai ≥ ( f1 ∗ ai ) ∗ · · · ∗ ( fn ∗ ai ),

where f j ∈ Fj , for j = 1, 2, . . . , n. Since [ f j ∗ ai ]Fj = [ai ]Fj and [ai ]Fj ∩ X �= ∅,
so f j ∗ ai ∈ Apr Fj

(X), whence xi ∈ Apr F1(X) ∗ · · · ∗ Apr Fn (X). Now, since X

is a subalgebra of L, then so is Apr Fj
(X), by Proposition 3.5(v), whence combining

the commutativity of L we deduce that x1 ∗ · · · ∗ xn ∈ Apr F1(X) ∗ · · · ∗ Apr Fn (X).
Combining (3.7) we get x ∈ Apr F1(X) ∗ · · · ∗ Apr Fn (X), proving

Apr F1∗···∗Fn (X) ∗ · · · ∗ Apr F1∗···∗Fn (X) ⊆ Apr F1(X) ∗ · · · ∗ Apr Fn (X).

��

Example 3.20 shows that the conditions given in Theorem 3.19 are necessary.

Example 3.20 Consider the residuated lattice L given in Example 3.10.

123



110 M. Bakhshi, M. Izanlou

(i) Let X = {a, c}. We can see that X is not a filter of L, because c ≤ 1 and c ∈ X ,
whereas 1 /∈ X . Now, Apr F1(X) = {0, a, b, c} and Apr F2(X) = X and so Apr F1(X)∗
Apr F2(X) = L, whereas

Apr F1∗F2(X) = Apr F3(X) = {0, a, b, c}.
Thus,

Apr F1(X) ∗ Apr F2(X) �= Apr F1∗F2(X).

(ii) Let X = {0, a, b, c}, which is not a filter of L. Then,
Apr

F1
(X) = Apr

F2
(X) = Apr

F1∗F2(X) = X,

whereas Apr
F1

(X) ∗ Apr
F2

(X) = L. Hence,
Apr

F1
(X) ∗ Apr

F2
(X) �= Apr

F1∗F2(X).

(iii) Let X = {d} and F5 = {c, 1} be the filter of L as mentioned in Example 3.16. Then,
Apr F1(X) = {d, e} and Apr F5(X) = {d} and so Apr F1(X)∗ Apr F5(X) = {1, f, e, d},
whereas

Apr F1∗F5(X) = Apr {1,c, f,b}(X) = {0, a, c, e}.
Hence, Apr F1∗F5(X) ∗ Apr F1∗F5(X) = L, proving

Apr F1(X) ∗ Apr F5(X) �= Apr F1∗F5(X) ∗ Apr F1∗F5(X).

Theorem 3.21 Let {Xi }i∈I be a nonempty family of nonempty subsets of L such that ∩Xi �=
∅. Then,
(i) Apr F (∩Xi ) ⊆ ∩Apr F (Xi ) ⊆ ∪Apr F (Xi ) ⊆ Apr F (∨Xi ),
(ii) Apr

F
(∩Xi ) ⊆ ∩Apr

F
(Xi ) ⊆ ∪Apr

F
(Xi ) ⊆ Apr

F
(∨Xi ).

Proof It follows from Proposition 2.13. ��
Theorem 3.22 Let {Xi }i∈I be a nonempty family of nonempty subsets of L such that ∩Xi �=
∅.
(i) If Xi (for all i ∈ I ) is definable with respect to F, then

Apr F (∩Xi ) = ∩Apr F (Xi ) = Apr
F
(∩Xi ) = ∩Apr

F
(Xi ) = ∩Xi .

(ii) If Xi ⊆ F, for all i ∈ I , then

Apr F (∩Xi ) = ∩Apr F (Xi ) = ∪Apr F (Xi ) = Apr F (∨Xi ) = F.

(iii) If F ⊆ X j , for some j ∈ I , then Apr F (∨Xi ) = ∨Xi = Apr
F
(∨Xi ).

Proof (i) It follows from the defn.
(ii) It follows from Proposition 3.5(iii) and Theorem 3.21.
(iii) Let x ∈ Apr F (∨Xi ). Then, there exists a ∈ ∨Xi such that a → x ∈ F . Hence,

a ≥ x1 ∗ x2 ∗ · · · ∗ xn , where n ∈ N and xi ∈ ∪Xi , and so

(x1 ∗ x2 ∗ · · · ∗ xn) → x ≥ a → x ∈ F.

This implies that (x1 ∗ x2 ∗ · · · ∗ xn) → x ∈ F ⊆ X j ⊆ ∨Xi . Since ∨Xi is a filter and
xi ∈ ∪Xi ⊆ ∨Xi , for all i = 1, 2, . . . , n, so x1 ∗ · · · ∗ xn and hence x ∈ ∨Xi . Thus,
Apr F (∨Xi ) = ∨Xi . The other case follows from Theorem 3.2.

��
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Fig. 3 The lattice of
Example 3.24

•0
•a

•b • c
•d
•e

•f • g
•h
•1

Table 6 The action of ‘∗’ on L ∗ 0 a b c d e f g h 1

0 0 0 0 0 0 0 0 0 0 0

a 0 0 0 0 0 0 0 0 0 a

b 0 0 0 0 0 0 0 b b b

c 0 0 0 0 0 0 c 0 c c

d 0 0 0 0 0 0 c b d d

e 0 0 0 0 0 e e e e e

f 0 0 b 0 b e f e f f

g 0 0 0 c c e e g g g

h 0 0 b c d e f g h h

1 0 a b c d e f g h 1

From Theorem 3.22 it follows that

Corollary 3.23 If {Xi }i∈I is a family of nonempty subsets ofL such that each Xi is definable
with respect to F and F ⊆ X j , for some j ∈ I , then (DF(L),⊆) forms a complete lattice.

Example 3.24 shows that the equalities in Theorem 3.22 may not hold, in general.

Example 3.24 LetL = {0, a, b, c, d, e, f, g, h, 1} be a lattice whoseHasse diagram is below
(see Fig. 3). Define ∗, →, � on L as shown in Tables 6, 7 and 8. Then, L is a residu-
ated lattice in which F = {1, h, f, g, e} is a normal filter (see [14]). It is easily seen that

[x]F =
{ {0, a, b, c, d}, x ∈ L\F,

F, x ∈ F.

(i) Let X = {a, f } and Y = {a, c}. Then, X ∩ Y = {a} and so Apr F (X ∩ Y ) =
{0, a, b, c, d}, whereas Apr F (X) ∪ Apr F (Y ) = L. We observe that X �⊆ F and
Y �⊆ F .

(ii) Let X = {a, f } and Y = {b, c}. Then, X ∩ Y = ∅, and X �⊆ F and Y �⊆ F . Also,
Apr F (X) = L and Apr F (Y ) = {0, a, b, c, d}, means that X and Y are not definable
with respect to F . We can see that Apr F (X ∩ Y ) = ∅, Apr F (X) ∩ Apr F (Y ) =
{0, a, b, c, d} and Apr F (X) ∪ Apr F (Y ) = L. Thus,

Apr F (X ∩ Y ) �= Apr F (X) ∩ Apr F (Y ) �= Apr F (X) ∪ Apr F (Y ).
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Table 7 The action of ‘→’ on L → 0 a b c d e f g h 1

0 1 1 1 1 1 1 1 1 1 1

a h 1 1 1 1 1 1 1 1 1

b g g 1 g 1 1 1 1 1 1

c f f f 1 1 1 1 1 1 1

d e e f g 1 1 1 1 1 1

e d d d d d 1 1 1 1 1

f b b b d d g 1 g 1 1

g c c d c d f f 1 1 1

h a a b c d e f g 1 1

1 0 a b c d e f g h 1

Table 8 The action of ‘�’ on L � 0 a b c d e f g h 1

0 1 1 1 1 1 1 1 1 1 1

a h 1 1 1 1 1 1 1 1 1

b f f 1 f 1 1 1 1 1 1

c g g g 1 1 1 1 1 1 1

d e e g f 1 1 1 1 1 1

e d d d d d 1 1 1 1 1

f c c d c d g 1 g 1 1

g b b b d d f f 1 1 1

h a a b c d e f g 1 1

1 0 a b c d e f g h 1

(iii) Let X = {a} and Y = {b}. Then, Apr F (X) = Apr F (Y ) = {0, a, b, c, d}, whereas
Apr F (X ∨ Y ) = Apr F (L) = L, proving

Apr F (X) ∪ Apr F (Y ) �= Apr F (X ∨ Y ).

(iv) Let X = {1} and Y = {h}. It is seen that F �⊆ X and F �⊆ Y . Now, X ∨ Y = {1, h} and
so Apr F (X ∨ Y ) = F while Apr

F
(X ∨ Y ) = ∅. Thus,

Apr F (X ∨ Y ) �= Apr
F
(X ∨ Y ).

We terminate our results by investigating the properties of rough approximations based
on different types of filters.

Theorem 3.25 Let X be a nonempty subset of L. If L is linearly ordered and X is a Boolean
filter of type 1 or of type 2, then so is Apr F (X), respectively.

Proof It follows from Proposition 3.5 and that X ⊆ Apr F (X). ��
Wemention that when X is a subalgebra ofL, Apr F (X) is also a subalgebra ofL contain-

ing F (see Proposition 3.5). This means that Apr F (X)/F , together with those operations
induced from L, forms a residuated lattice. Here, we give some characterizations of this
residuated lattice based on different types of filters.
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For normal filter F and nonempty subset X of L, let

Apr F (X) = {[x]F ∈ L/F : [x]F ∩ X �= ∅}
Obviously,

Apr F (X) = {[x]F : x ∈ Apr F (X)} = Apr F (X)/F

Theorem 3.26 Let X be a subalgebra and F a normal filter of L.
(i) If F is a Boolean filter of type 1, |Apr F (X)| ≤ 2, whence Apr F (X) = F or

Apr F (X) = L\F.
(ii) If F is a Boolean filter of type 2, Apr F (X) is a Boolean algebra.

(iii) If F is a prime filter of type 1, Apr F (X) is linearly ordered.
(iv) If F is a prime filter of type 2, 1

Apr F (X)
is ∨-irreducible.

(v) If F is a prime filter of type 3, Apr F (X) is a pseudo MTL-algebra.

Proof It follows from Theorems 2.6 and 2.8. ��

4 Discussion

We investigated the properties of roughness of a set X with respect to some types of filters
such as Boolean filters (equivalently, implicative filters, see [14]) and also prime filters. There
is a question: What we can say about the approximation of a set with respect to other types
of filters such as positive implicative filters and fantastic filters (see [14,22]) or about the
approximation of different kinds of filters with respect to a filter. At present, we know that if
G is a positive implicative filter (or fantastic filter), Apr F (G) is also a positive implicative
filter (fantastic filter) if and only if G is definable with respect to F .

Open Problem 4.1 What under conditions, otherwise definability, the rough approximation
of a set, or a filter, with respect to a positive implicative filter (fantastic filter) is again a
positive implicative filter (fantastic filter, respectively)?

5 Conclusions

We investigated rough approximations in residuated lattices.Many theorems and propositions
were given that stated the properties of them. We characterized rough approximations based
on different kinds of filters and gave some structural theorems. Furthermore, we showed that
the set of all definable sets of a residuated lattice forms a complete lattice. This approach is
different from and more general than the usual one on algebras of fuzzy logics.
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