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Abstract As extensions of Vandermonde determinant, we establish a general determinant
evaluation formula by means of the Laplace expansion formula. Several interesting determi-
nant identities are consequently derived by computing divided differences.
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1 Introduction and motivation

Divided differences (cf. [7, Chapter 1]) are useful tools in mathematics and physics. For
example, their applications to symmetric functions and approximation theory can be found
respectively in [6, § 1.2] and [8, § 2.4]. For a complex function f(y) and uneven spaced grid
points {x};_,. the divided differences with respect to y are defined in succession as follows:

Alxo.x1f () = T2,
Alxo, — Alx1,
Alxo, x1, x2] f(y) = [x0 xl]f(i’()) _XZ[X] xz]f(y)’
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_ A[xo’xls .. sxnfl]f(y) - A[-x17x21 .o 7-xn]f(y)
- X0 — Xp ’

Alxo, x1, -5 Xu1f(Y)
In general, they can be expressed through the Newton formula:

S ()
Alxo, x1, ..., xa1f(y) = ey
! Z < T ok — x0)”
Between the divided differences of monomials and complete symmetric functions, there
holds the following well-known formula due to Sylvester (1839), whose proofs can be found
n[1-3]:

n

Alxg, X1, ... Xy Y = xil’f
k=0 l_[,‘#k(xk - Xi)
0, m=0,1,...,n—1;
= hpm_n(xo, X1, ..., Xn), m=n,n+1, ...; )
(S L), m=—1-2,-3,

Here and below, we shall denote the elementary and complete symmetric functions (cf. Mac-
donald [6, § 1.2]) of variables X = {xo, x1, ..., x,}, respectively, by

ep(X) =1 and e,(X)= Z Xk Xky * -+ Xk, for m e N;
0<k)<ky<--<ky<n
ho(X) =1 and hpu(X) = > Xk, Xk, - Xp, for m € N,

0<ki<kp<--<km=n

They admit the following generating functions:

n+1 n
ey =TT +xy. 3)
= k=0
oo n 1
hi(X) Y = : €
,; ,1:[0 L —xpy

Recently, divided differences have been employed by the first author [4,5] and Tang—Xu [9]
to investigate determinant evaluations. In this paper, we shall utilize the Laplace expansion
formula to establish an extension of Vandermonde determinant. By computing divided dif-
ferences, it will further be specialized to several interesting Vandermonde—like determinant
identities.

2 Extensions of Vandermonde determinant

For the indeterminates X := {xx}7_, denote the divided differences by
ALX]f(y) :== Alxo, x1, ..., X0 1 f ()

and the Vandermonde determinant by

o = N
VX) = det [+/] = O<E<n(x~, xi).
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Theorem 1 (Extension of Vandermonde determinant)

I 4 up;] = " iy ,,(X\{})}
Of?stS”[Xi +u,vj]—V(X){1+ Z( b [T 0 —x0) }

Proof Consider the extended matrix of order (n + 2) x (2 4 n) given explicitly by

1,7=0

wi ©ox} +uivj O=ij<n

whose determinant is obviously equal to the determinant stated in the theorem.
Now subtracting v; times the first column from each other column, we transform the matrix
into the following one:

wi 1 x! 0=ij=n

Applying the Laplace expansion formula to the last matrix with respect to the first column
and then to the first row, we have

. . n vj
det [x/ +ujvi]= det [x/ —D'u, det
Ofi,jfn[ i 05i,j5n[ ’]+§( ) Yo<ijen | j
- Hi i 5)

n

_ + .
=V(X)+ E (—1) ju’vjos(il,e}tSn [xi],_#,.
1,)=0 J#)

Let [x¥] f(x) stand for the coefficient of x* in the formal power series f(x). Then the
determinant displayed in (5) can be evaluated as

det [xf]l;zl =DV IV = [T e —x [T e —x)
J7F]

0<i.j<n O<i<j<n 0<k<n
i,j# k#1
— en—y (X\{x,}
=ey(X\x) J] @j—x)=(D"" ny (X)) V(X).
0<i<j<n l_[k#’ (6 — X))
i,j#1

Substituting this expression into (5) and then simplifying the result, we obtain the determinant
identity stated in the theorem. O

When u; = 1, Theorem 1 leads immediately to the following determinant identity.

Corollary 2

det [x,:i +v;] = V(X)) + vp).

0<i,j=n

Proof According to (3), there holds the expression

N | APYG IR e TS
en—y (X\fx,)) = [y 11% = ;(—1)%5@%7,0().
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Then we have, from (2), the relation
A[X]yk = A[xo,xl,...,xn]yk =xk=n) fork=0,1,...,n

where x is the logical function defined by x (true) = 1 and x (false) = 0. Therefore, the
double sum displayed in Theorem 1 with u; = 1 can be rewritten as follows

ohs ven—y (X\tu) _ < “—

DO =y L = N ) T, Y (=D e, (O ALX Y
1=0 j=0 Hk#l (= x%) 7=0 k=0

which reduces to the single term vy, corresponding to k = n and j = 0. O

For v, = v* with0 < k < n, observing that

n n
1 1
(D" vlen; (X\{x,}) = | |(v —xx) and A[X] = ,
2 et =11 o= = Moo
j— =
k1
we derive from Theorem 1 another determinant identity.

Proposition 3

0<i,j<n e xk.
ki
Suppose further that g := u(xx) is a function of xg for0 < k < n, we may state Proposition 3
equivalently in terms of divided differences.

n n
det [x/ +uio/] = V) 3 (0 ) [ o
i=0 k=0

Corollary 4

. . 1 n
det [/ +uxi)v/] = V(X)A[X]{L(y)} [T —x0.
0<i,j<n v—Yy 0
Form < n, letting u(x;) = A ]_[’,:’z1 (xi — yx) and appealing to the formula
[T 0= e 0 — )

v—Yy HZ:()(U — Xk) '

we derive from Corollary 4 the following determinant identity.

A[X]

Example 5

det [xl‘»i + 2/ l_l(xz' - J/k)] = V(X){l + A H(U - J/k)}-

0<i,j<n
k=1 k=1

Instead, letting u(x;) = A [[;_o(x; — yx) and then applying the formula

n n
ALX] [Tz =v0) _ 11 Lt (R
v—y o U Mk

we establish from Corollary 4 another determinant identity.
Example 6

. n n n

J j _ — _ _ —

oJet [x,- + a0l [T yk)} = V(X){l Jo-xo+a]]w yk)}.

k=0 k=0 k=0
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Specifying A = —1/ [[{_¢(v — y&) further in the last example, we obtain a more symmetric

determinant formula:

PR EE I

Vk'
Finally, if we let in Corollary 4
n+1 Y —
u(y) =
=
and applying the formula
(y v6) é o =)
A[X]n =Vur1 —V+ ) (= X) + e —— ji
-y =0 1(:0(1) - xk)
we would derive further the following determinant identity.
Example 7
n+1 X — Xi — Vi n v —xp
det |[x/ — v/ ! ] V(X)11+ g .
0<i,j<n |: l_[ Z — Vn+1 ,H UV — Yk

3 Further variants of Vandermonde determinant

(©)

For the sake of brevity, this section will use the indeterminates X := {x}_, and the following

notation for the corresponding Vandermonde determinant

l
V(X) = 1<cilet xi] 1_[ (xj — xi).
=t 1<i<j<n

Then Theorem 1 can be reformulated equivalently as follows:
‘ n
(et [ +uiv;] = V(e (X){l + 1,2:1(_1) i
For uy = 1, this equality becomes the following determinant identity.
Proposition 8

det [x/ +v,]= V(X){en(X) - Z(—l)kvken_k(X)}.

1<i,j<
=hy=n k=1

Proof Recalling (3), we have the expression
n n—j
- —1+yx)
en, 0\ () = -y st L2 Y (=D, (3.
1+yx =

According to (2), it is trivial to check the relations

(1)n1

1
[X]f and A[X]y* = xtk=n—1) for k=0,1,....,n—1.

en(X)

nty Wiy en—; (X\{x;}) }

)
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Then for ux = 1, we may reformulate the double sum displayed in (7) as

Do Y Sy e, G0 A
J=1

=1 =1 X l_[k?g, (o — xx)

n n—j
+ ) (=D, Y (=D ek, OAIXY

7=1 k=1

Observing that the last double sum vanishes and then evaluating the divided differences in
the penultimate line, we confirm the identity stated in the Proposition. O

Letting v; = v/ in Proposition 8, we get the simplified determinant identity.

Example 9

det [x/ +0/]= V(X){ze,,(X) — [ - v)}.
k=1

1<i,j<n
Notice that the determinant in Corollary 4 can be expressed equivalently as

j N ) .
15(1'1,?5;1 [xi + u(x,)v/] = V(X)en(X)[l + A[X]y(v ) ,E(U xk)’. 8)

Form < n, letting u(x;) = A ]_[',Z’:1 (xi — yx) and appealing to the formula

v HZ”:] (y - yk) — (_1)m+n+1 nz’:l Yk HZ:I(U - yk)
y(v—y) [Tecixe  Thiciv—x0)’

we obtain from (8) another determinant identity.

A[X]

Corollary 10

det [x{' +a0d [ i - yk)] = V(X){en(X) +a] [ ][o-w

1=h,jzn k=1 k=1 k=1
m n
-y [n]]e- xk>}.
k=1 k=1
Whenm = nandA = —1/ []}_; (v—yx), the last corollary yields further to a more symmetric
determinant identity:
; . 5 vk — xe)
det |:le Y/ 1_[ ’7W¢:| =V(X) 1_[ u 9)
I<i,j=n kel vV — Yk k1 V= Vk

Finally, for vy = h(X), Proposition 8 reduces to the strange looking identity:

det [x/ +h;(0] = 2V (X)en (X). (10)

I<i,j<n
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