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Abstract In this paper, we introduce and study the concept of almost continuity in weak
structures (Császár in Acta Math Hung 131(1–2):193–195, 2011) and discuss some of its
characteristic properties. Finally, we give some applications of this new kind of continuity.
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1 Introduction and preliminaries

Császár [1] defined generalized topology and studied some of its concepts like generalized
open sets and continuity. Later on, Maki et al. [6] introduced minimal structures and inves-
tigated some of its concepts. Lately, Császár [2] presented the weak structures (A family
W ⊂ P(X) is called a weak structure on X (briefly, WS) iff ∅ ∈ W). A non-empty set X
with a weak structure W is called simply a space (X,W). The members of W are W-open
subsets and their complements are W-closed subsets. Moreover, Császár [2] presented the
operations cW (A) and iW (A) inWS as the intersection of allW-closed set containing A and
the union of all W-open subsets of A. Also, the properties of cW (A) and iW are introduced
and discussed. For more details about weak structures, the readers should refer [4,5,7–9].

Theorem 1.1 [2] For any space (X,W) and A, B ⊆ X, we have:

(1) A ⊆ cW (A) and A ⊇ iW (A);
(2) If A ⊆ B, then cW (A) ⊂ cW (B) and iW (A) ⊂ iW (B);
(3) If A is W-closed, then A = cW (A), and if A is W-open, then A = iW (A);
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(4) cW (cW (A)) = cW (A) and iW (iW (A)) = iW (A);
(5) cW (X − A) = X − iW (A) and iW (X − A) = X − cW (A);
(6) iW (cW (iW (cW (A)))) = iW (cW (A)) and cW (iW (cW (iW (A)))) = cW (iW (A));
(7) x ∈ cW (A) iff V ∩ A �= ∅ for every W-open subset V containing x;
(8) x ∈ iW (A) iff there exists a W-open subset V such that x ∈ V ⊂ A.

Theorem 1.2 [3] For a space (X,W) and U, V ⊆ X, we have:

(1) iW (U
⋂

V ) ⊆ iW (U )
⋂

iW (V );
(2) cW (U ) ∪ cW (V ) ⊆ cW (U ∪ V ).

Definition 1.1 Let (X,W) be a space and A ⊆ X . Then

(1) A ∈ α(W) [2] if A ⊆ iW (cW (iW (A)));
(2) A ∈ π(W) [2] if A ⊆ iW (cW ((A)));
(3) A ∈ σ(W) [2] if A ⊆ cW ((iW (A));
(4) A ∈ β(W) [2] if A ⊆ cW (iW (cW (A)));
(5) A ∈ ρ(W) [2] if A ⊆ iW (cW (A))

⋃
cW (iW (A));

(6) A ∈ r(W) [3] if A = iW (cW (A));
(7) A ∈ rc(W) [3] if A = cW (iW ((A)).

2 AlmostW-continuity

Lemma 2.1 For any space (X,W) andW-open set V , if U
⋂

V = ∅, then cW (U )
⋂

V = ∅
for each subset U of X.

Proof Let V be an W-open set and U ⊆ X . Suppose U
⋂

V = ∅ and cW (U )
⋂

V �= ∅,
then there exists x ∈ X such that x ∈ cW (U ) and x ∈ V . Since x ∈ cW (U ) and V is an
W-open set containing x , thenU

⋂
V �= ∅. This is a contradiction. Therefore ifU ⋂

V = ∅,
then cW (U )

⋂
V = ∅ for each subset U of X . 
�

Definition 2.1 For any space (X,W) and S ⊆ X , a point x ∈ X is said to be:

(1) Wθ -cluster point of S if cW (V )
⋂

S �= ∅ for every W-open set V containing x .
(2) Wδ-cluster point of S if iW (cW (V ))

⋂
S �= ∅ for every W-open set V containing x .

The set of all Wθ (resp. Wδ)-cluster points of S is called the Wθ (resp. Wδ)-closure of S
and is denoted by cθ

W (S) (resp. cδ
W (S)). If S = cθ

W (S) (resp. S = cδ
W (S)), then A is called

Wθ (resp. Wδ)-closed. The complement of an Wθ (resp. Wδ)-closed set is called Wθ (resp.
Wδ)-open.

The union of all Wθ (resp. Wδ)-open sets contained in S is called the Wθ (resp. Wδ)-
interior of S and is denoted by iθW (S) (resp. iδW (S)). The class of Wθ (resp. Wδ)-open sets
in W is denoted by θ(W) (resp. δ(W)) and the class of Wθ (resp. Wδ)-closed sets in W is
denoted by θc(W) (resp. δc(W)).

Remark 2.1 One may notice that if (X,W) a space and V ⊆ X , then

cW (V ) ⊆ cδ
W (V ) ⊆ cθ

W (V ).

Lemma 2.2 Let (X,W) be a space. Then

cW (V ) = cδ
W (V ) = cθ

W (V )

for each W-open set V in X.
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Proof We aim to prove that cθ
W (N ) ⊆ cW (N ). Let N be an W-open set in X and let

x /∈ cW (N ). Then there exists M ∈ W such that x ∈ M and M
⋂

N = ∅. By Lemma
2.1, we have cW (M)

⋂
N = ∅ and hence x /∈ cθ

W (N ). Thus cθ
W (N ) ⊆ cW (N ). Since

cW (N ) ⊆ cθ
W (N ) for each subset N in X , then cW (N ) = cθ

W (N ). 
�
Definition 2.2 A function f : (X,WX ) → (Y,WY ) from a space (X,WX ) to a space
(Y,WY ) is called almost W-continuous at x ∈ X if for every WY -open set N contain-
ing f (x), there is a WX -open set M including x such that f (M) ⊆ iW (cW (N )). A map f
is called almost W-continuous if it is almost W-continuous at each x ∈ X .

Theorem 2.1 For a function f : (X,WX ) → (Y,WY ). The following statements are equiv-
alent:

(1) f is almost W-continuous;
(2) f −1(V ) ⊆ iW ( f −1(V )) for each V ∈ r(WY );
(3) cW ( f −1(F)) ⊆ f −1(F) for each F ∈ rc(WY );
(4) f −1(V ) ⊆ iW ( f −1(iW (cW (V )))) for each W-open set V in Y ;
(5) cW ( f −1(cW (iW (F)))) ⊆ f −1(F) for each W-closed set F in Y ;
(6) f −1(V ) ⊆ iW ( f −1(iW (cW (V )))) for each V ∈ π(WY );
(7) cW ( f −1(cW (iW (F)))) ⊆ f −1(F) for each F ∈ πc(WY );
(8) f −1(V ) ⊆ iW ( f −1(iW (cW (V )))) for each V ∈ α(WY );
(9) cW ( f −1(cW (iW (F)))) ⊆ f −1(F) for each F ∈ αc(WY );

(10) For each a point x ∈ X and a V ∈ π(WY ) containing f (x), there exists anWX -open
set U containing x such that f (U ) ⊆ iW (cW (V ));

(11) For each a point x ∈ X and a V ∈ α(WY ) containing f (x), there exists anWX -open
set U containing x such that f (U ) ⊆ iW (cW (V ));

(12) cW ( f −1(V )) ⊆ f −1(cW (V )) for each V ∈ β(WY );
(13) f −1(iW (F)) ⊆ iW ( f −1(F)) for each F ∈ βc(WY );
(14) cW ( f −1(V )) ⊆ f −1(cW (V )) for each V ∈ σ(WY );
(15) f −1(iW (F)) ⊆ iW ( f −1(F)) for each F ∈ σc(WY );
(16) cW ( f −1(V )) ⊆ f −1(cW (V )) for each V ∈ π(WY );
(17) f −1(iW (V )) ⊆ iW ( f −1(V )) for each V ∈ πc(WY );
(18) cW ( f −1(V )) ⊆ f −1(cW (V )) for each V ∈ α(WY );
(19) f −1(iW (V )) ⊆ iW ( f −1(V )) for each V ∈ αc(WY ).

Proof (1) ⇒ (2): Suppose that V ∈ r(WY ) and x ∈ f −1(V ). Then V = iW (cW (V )) and
f (x) ∈ V = iW (cW (V )), then there exists U ∈ WY containing f (x) such that f (x) ∈
U ⊆ cW (V ). By (1), there exists an WX -open set W in X containing x such that f (W ) ⊆
iW (cW (U )). Thus

f (x) ∈ f (W ) ⊆ iW (cW (U )) ⊆ iW (cW (V ))

and hence x ∈ W ⊆ f −1(iW (cW (V ))). Therefore

x ∈ W ⊆ iW (W ) ⊆ iW ( f −1(iW (cW (V )))) = iW ( f −1(V )).

(2) ⇒ (1): Suppose that V be an WY -open set such that f (x) ∈ V . Then x ∈ f −1(V ) ⊆
f −1(iW (cW (V ))). Since iW (cW (V )) ∈ r(WY ). By (2),

x ∈ iW ( f −1(iW (cW (V )))),

then there is x ∈ U ∈ WX provided that x ∈ U ⊆ f −1(iW (cW (V ))). Thus there exists an
WX -open setU containing x and f (U ) ⊆ iW (cW (V )). Therefore f is almostW-continuous.
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834 A. M. Zahran et al.

(2) ⇔ (3): Obvious.
(1) ⇒ (4): Let V be anWY -open set and x ∈ f −1(V ). Then V is anWY -open set containing
f (x). From (1), there is a WX -open set U containing x such that f (U ) ⊆ iW (cW (V )).
Thus x ∈ U ⊆ f −1(iW (cW (V ))). Since U is WX -open, then x ∈ iW ( f −1(iW (cW (V )))).
Therefore

f −1(V ) ⊆ iW ( f −1(iW (cW (V )))).

(4) ⇒ (1): Let V be an WY -open set containing f (x). Then

x ∈ f −1(V ) ⊆ iW ( f −1(iW (cW (V )))

and then there is a WX -open set U containing x such that

x ∈ U ⊆ f −1(iW (cW (V ))).

Thus x ∈ U and f (U ) ⊆ iW (cW (V )). Therefore f is almost W-continuous.
(4) ⇔ (5): It is clear.
(2) ⇒ (6): Let V ∈ π(WY ). Then V ⊆ iW (cW (V )) and hence f −1(V ) ⊆
f −1(iW (cW (V )). Since iW (cW (V )) ∈ r(WY ), then by (2), we get f −1(V ) ⊆ iW ( f −1(iW
(cW (V )))).
(6) ⇔ (7): It is clear.
(6) ⇒ (4): It follows from W ⊆ π(W).
(7) ⇒ (9) ⇔ (8): It follows from α(W) ⊆ π(W).
(8) ⇒ (4): It follows from W ⊆ α(W).
(1) ⇒ (10): Let x ∈ X and V ∈ π(WY ) containing f (x). Then f (x) ∈ iW (cW (V )) and
hence there exists U ∈ WY such that f (x) ∈ U ⊆ cW (V ). By (1), there exists a WX -
open set W containing x such that f (W ) ⊆ iW (cW (U )). Hence f (W ) ⊆ iW (cW (U )) ⊆
iW (cW (V )).
(10) ⇒ (11): It follows from α(W) ⊆ π(W).
(11) ⇒ (1): It follows from W ⊆ α(W).
(3) ⇒ (12): Let V ∈ β(WY ). Then cW (V ) = cW (iW (cW (V ))) and hence cW (V ) ∈
rc(WY ). By (3), we get cW ( f −1(V )) ⊆ cW ( f −1(cW (V ))) ⊆ f −1(cW (V )).
(12) ⇒ (3): Let H ∈ rc(WY ). Then H ∈ β(WY ) and hence by (12), we get cW ( f −1(H) ⊆
f −1(cW (H)) = f −1(cW (iW (H))) = f −1(H).
(12) ⇔ (13): Obvious.
(12) ⇒ (14) ⇔ (15): It follows from β(W) ⊆ σ(W).
(14) ⇒ (3): It is similar to that of (12) ⇒ (3).
(12) ⇒ (16) ⇔ (17) ⇒ (18) ⇔ (19): It follows from β(W) ⊆ π(W) and π(W) ⊆ α(W).
(19) ⇒ (3): It is similar to that of (12) ⇒ (3). 
�

Theorem 2.2 For a function f : (X,WX ) → (Y,WY ). Consider the following statements:

(1) f is almost W-continuous;
(2) f (cW (V )) ⊆ cδ

W ( f (V )) for each subset V of X;

(3) cW ( f −1(U )) ⊆ f −1(cδ
W (U )) for each subset U of Y ;

(4) f −1(iWδ (U )) ⊆ iW ( f −1((U )) for each subset U of Y ;
(5) cW ( f −1(F)) ⊆ f −1(F) for each F ∈ δc(WY );
(6) f −1(V ) ⊆ iW ( f −1(V )) for each V ∈ δ(WY ).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).
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Proof (1) ⇒ (2): Let x ∈ cW (V ) and U be an W-open set of Y containing f (x).
By (1), there exists an W-open set W containing x such that f (W ) ⊆ iW (cW (U )) and
hence W

⋂
V �= ∅. Thus f (W )

⋂
f (V ) �= ∅ which implies iW (cW (U ))

⋂
f (V ) �= ∅.

Then f (x) ∈ cWδ ( f (V )) and hence x ∈ f −1(cWδ f (V )) which implies cW (V ) ⊆
f −1(cδ

W f (V )). Therefore f (cW (V )) ⊆ cδ
W f (V )).

(2) ⇒ (3) ⇔ (4): It is clear.
(3) ⇒ (5): Let H ∈ δc(WY ). Then H = cδ

W (H). By (3), we get cW ( f −1(H) ⊆
f −1(cδ

W (H)) = f −1(H).
(5) ⇔ (6): It is clear.

Lemma 2.3 Let (X,W) be a space and iW (V ) be W-open for each V ∈ rc(W). Then
rc(W) ⊆ δc(W).

Proof Let V ∈ rc(W) and let x /∈ V . Then x /∈ cW (iW (V )) and hence there exists
an W-open set U containing x such that U

⋂
iW (V ) = ∅. Since V ∈ rc(W), then

iW (V ) is W-open. Then by Lemma 2.1, we have cW (U )
⋂

iW (V ) = ∅ and hence
iW (cW (U ))

⋂
iW (V ) = ∅. Since U is W-open, then cW (U ) ∈ rc(W) and hence

iW (cW (U )) is W-open. By Lemma 2.1, we have iW (cW ((U ))
⋂

cW (iW (V )) = ∅. Thus
iW (cW (U ))

⋂
V = ∅ and hence x /∈ cδ

W (V ). Therefore cδ
W (V ) ⊆ V and hence V ∈ δc(W).


�
Theorem 2.3 Let (X,W) be a space and V ∈ rc(W). If iW (V ) is W-open set, it leads to
the equality of the statements in Theorem 2.2.

Proof It is clear from Lemma 2.3 and Theorem 2.1(3). 
�
Theorem 2.4 Let f : (X,WX ) → (Y,WY ) be an almost W-continuous function and let V
be an W-open set of Y . If x ∈ cW ( f −1(V )) − ( f −1(V )), then f (x) ∈ cW (V ).

Proof Let x ∈ X and V be an W-open set of Y such that x ∈ cW ( f −1(V )) − f −1(V ) and
f (x) /∈ cW (V ). Then there exists an W-open set U containing f (x) such that U

⋂
V = ∅.

Since f is almost W-continuous, then there exists an W-open set W containing x such that
f (W ) ⊆ iW (cW (U )). Since U

⋂
V = ∅, then by Lemma 2.1, we have cW (U )

⋂
V = ∅

and hence iW (cW (U ))
⋂

V = ∅. Thus f (W )
⋂

V = ∅. Since x ∈ cW ( f −1(V )) and W is
an W-open set containing x , then W

⋂
f −1((V ) �= ∅ and hence f (W )

⋂
V �= ∅. This is a

contradiction. Therefore f (x) ∈ cW (V ). 
�
Definition 2.3 For any WSW on X and A ⊂ X . A point x ∈ X is calledW-boundary point
of A iff x ∈ cW (A)

⋂
cW (X − A). The family of allW-boundary points of A is denoted by

BdW (A).

Theorem 2.5 For any space (X,W) and A ⊆ X, we have:

(1) BdW (A) = BdW (X − A);
(2) BdW (A) = cW (A) − iW (A);
(3) A ∩ BdW (A) = ∅ if A ∈ W;
(4) BdW (A) ⊂ A if X − A ∈ W .

Proof It follows from Theorem 1.1 and Definition 2.3. 
�
Remark 2.2 It is clear that the converse of (3) and (4) in the above theorem are not correct
in general as illustrated by the next example.
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Example 2.1 Let X = {x, y, z} and W = {∅, {x}, {y}, {z}}. It is clear that:
(1) A = {x, z} achieves A ∩ BdW (A) = ∅, but A /∈ W;
(2) A = {z} achieves BdW (A) ⊂ A, but A is not W-closed.

Theorem 2.6 Let f : (X,WX ) → (Y,WY ) be a function and let A = {x ∈ X : f is not
almost W-continuous at x}. Then A = BdW ( f −1(iW (cW (V )))) for each W-open set V
containing f (x).

Proof Let x ∈ A. Then f is not almostW-continuous at x and hence there exists anW-open
set V of Y containing f (x) such that U

⋂
(X − f −1(iW (cW (V ))) �= ∅ for each W-open

set U of X containing x and hence x ∈ cW (X − f −1(iW (cW (V )))). Since f (x) ∈ V ,
then x ∈ f −1(V ) ⊆ f −1(iW (cW (V ))) and thus x ∈ cW ( f −1(iW (cW (V )))). Thus we get
x ∈ BdW ( f −1(iW (cW (V )))). Therefore

A ⊆ BdW ( f −1(iW (cW (V )))) (1)

Let x /∈ A and V be an W-open set containing f (x). Then f is almost W-continuous
at x and V is an W-open set containing f (x) and hence there exists an W-open set U
containing x such that U ⊆ f −1(iW (cW (V ))). Thus x ∈ iW ( f −1(iW (cW (V )))) and
hence x /∈ X − iW ( f −1(iW (cW (V )))) = cW (X − f −1(iW (cW (V )))) which implies
x /∈ BdW ( f −1(iW (cW (V ))). Therefore

A ⊇ BdW ( f −1(iW (cW (V )))) (2)

From (1) and (2) we have A = BdW ( f −1(iW (cW (V )))). 
�

Definition 2.4 A map f : (X,WX ) → (Y,WY ) is said to be r(W)-continuous iff f −1(H)

is an W-open set in X for every H ∈ r(WY ).

Remark 2.3 One may notice that each r(W)-continuous function is almost W-continuous,
but the converse need not be true in general as shown by the following example.

Example 2.2 Let X = {a, b, c}, WX = {∅, {a}, {b}, {c}}, Y = {x, y}, WY = {∅, {x}, {y}}
and f : (X,WX ) → (Y,WY ) be a map defined by f (a) = f (b) = x , f (c) = y. One may
notice that:

(1) A = {x} ∈ r(WY ) and f −1(A) = {a, b} which is not an W-open set in X .
(2) For WY -open set ∅, we have cW (∅) = ∅ and hence iW (cW (∅)) = ∅ which implies

f −1(iW (cW (∅))) = f −1(∅) = ∅. Thus f −1(∅) ⊆ iW ( f −1(iW (cW (∅)))). For
WY -open set {x}, we have cW ({x}) = {x} and hence iW (cW ({x})) = {x} which
implies f −1(iW (cW ({x}))) = f −1({x}) = {a, b}. Thus iW ( f −1(iW (cW ({x})))) =
iW ({a, b}) = {a, b} and hence f −1({x}) ⊆ iW ( f −1(iW (cW ({x})))). For WY -open
set {y}, we have cW ({y}) = {y} and hence iW (cW ({y})) = {y} which implies
f −1(iW (cW ({y}))) = f −1({y}) = {c}. Thus iW ( f −1(iW (cW ({y})))) = iW ({c}) =
{c} and hence f −1({y}) ⊆ iW ( f −1(iW (cW ({y})))). Then f satisfy (4) in Theorem 2.1
and hence f is almost W-continuous. Hence f is almost W-continuous but it is not
r(W)-continuous.

Theorem 2.7 If a function f : (X,WX ) → (Y,WY ) is almostW-continuous and cW (V ) is
W-closed for each V ⊆ X, then f is r(W)-continuous.
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Proof Let H ∈ rc(WY ). Then by Theorem 2.1(3) we have cW ( f −1(H) ⊆ f −1(H)

and hence cW ( f −1(H) = f −1(H). Since cW (V ) is W-closed for each V ⊆ X , then
cW ( f −1(H) isW-closed in X and hence ( f −1(H) isW-closed in X . Therefore f is r(W)-
continuous. 
�
Theorem 2.8 If a function f : (X,WX ) → (Y,WY ) is r(W)-continuous, then for each
V ∈ r(WY ) such that f (x) ∈ V , there is aWX -open set U such that x ∈ U and f (U ) ⊆ V .

Proof Let V ∈ r(WY ) containing f (x). Then f −1(V ) is an WX -open set containing x and
hence there exists an WX -open set U such that x ∈ U ⊆ f −1(V ). Thus there exists an
WX -open set U containing x such that f (U ) ⊆ V . 
�
Remark 2.4 By the following example, we show that the converse of the above theorem need
not be true in general.

Example 2.3 Let X = {a, b, c}, WX = {∅, {a}, {b}, {c}}, Y = {x, y}, WY = {∅, {x}, {y}}
and f : (X,WX ) → (Y,WY ) be a function defined by f (a) = f (b) = x , f (z) = c. One
may notice that:

(1) A = {x} ∈ r(WY ) and f −1(A) = {a, b} which is not an W-open set in X .
(2) For a ∈ X, f (a) = x ∈ {x} = V which is an WY -open set, there exists an WX -open

set U = {a} containing a such that f (U ) = f ({a}) = {x} ⊆ {x} = iW (cW {x})) =
iW (cW (V )). For b ∈ X, f (b) = x ∈ {x} = V which is an WY -open set, there exists
an WX -open set U = {b} containing b such that f (U ) = f ({b}) = {x} ⊆ {x} =
iW (cW {x})) = iW (cW (V )). For c ∈ X, f (c) = y ∈ {y} = V which is an WY -open
set, there exists an WX -open set U = {c} containing c such that f (U ) = f ({c}) =
{y} ⊆ {y} = iW (cW {y})) = iW (cW (V )).

Theorem 2.9 Let f : (X,WX ) → (Y,WY ) be a function. If for each x ∈ X and each V ∈
r(WY ) containing f (x), there exists an WX -open set U containing x such that f (U ) ⊆ V ,
then f is almost W-continuous.

Proof Let x ∈ X and V be anWY -open set such that f (x) ∈ V . Then iW (cW (V )) ∈ r(W)

containing f (x) and hence there is U ∈ WX such that x ∈ U and f (U ) ⊆ iW (cW (V )).
Therefore f is almost W-continuous. 
�
Theorem 2.10 Let f : (X,WX ) → (Y,WY ) be a map. If iW (V ) is anW-open set for each
V ∈ r(W), then the converse of Theorem 2.9 is true.

Proof Let x ∈ X and V ∈ r(WY ) containing f (x). Then iW (cW (V )) = iW (V ) and hence
iW (cW (V ) is an WY -open set containing f (x) and hence there exists an WX -open set U
containing x such that f (U ) ⊆ iW (cW (V )) = V . 
�
Remark 2.5 If we replaced a space (Y,WY ) by a topological space (Y, τ ) in Theorems 2.7,
2.8, and in r(W)-continuity definition, then the statements in these theorem are equivalents.

Definition 2.5 A family of sets ξ = {λα : α ∈ �} in a space (X,W) is said to be a cover of
X if

⋃

λα∈�

λα = X and a subfamily of ξ having a similar property is called a subcover of ξ .

Definition 2.6 A space (X,W) is called:

(1) W-regular if for every x ∈ X andW-closed setU such that x /∈ U , there existM, N ∈ W
such that x ∈ M , U ⊆ N and M

⋂
N = ∅.
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(2) AlmostW-regular if for every x ∈ X and F ∈ rc(W)with x /∈ F , there existM, N ∈ W
such that x ∈ M , F ⊆ N and M

⋂
N = ∅.

(3) W-normal if for every twoW-closed setsU and V withU
⋂

V = ∅, there exist M, V ∈
W such that U ⊆ M , V ⊆ N and M

⋂
N = ∅.

(4) AlmostW-normal if for everyU, V ∈ rc(WY )withU
⋂

V = ∅, there exist M, N ∈ W
such that U ⊆ M , V ⊆ N and M

⋂
N = ∅.

(5) W-compact if every W-open cover of X has a finite subcover.
(6) Nearly W-compact if every cover ξ = {λα : α ∈ �,λα ∈ r(W)} of X has a finite

subcover.

Theorem 2.11 If f : (X,WX ) → (Y,WY ) is an r(W)-continuous, W-open function and
(X,WX ) is W-regular, then (Y,WY ) is almost W-regular.

Proof Let f be r(W)-continuous andW-open function and F ∈ rc(WY ) with x /∈ F . Then
f −1(H) are W-closed set in X with f −1(x) /∈ f −1(F). Since (X,WX ) is W-regular, then
there exist M, N ∈ WX such that f −1(F) ⊆ M , f −1(x) ∈ N and M

⋂
N = ∅ and hence

F ⊆ f (M), x ∈ f (N ) and f (M)
⋂

f (N ) = ∅. Since f is W-open, then f (M) and f (N )

are WY -open sets. Therefore (Y,WY ) is almost W-regular. 
�
Theorem 2.12 If f : (X,WX ) → (Y,WY ) is an r(W)-continuous, W-open function and
(X,WX ) is W-normal, then (Y,WY ) is almost W-normal.

Proof Let f be r(W)-continuous and F1, F2 ∈ rc(WY ) such that F1
⋂

F2 = ∅, then
f −1(F1), f −1(F2) areW-closed sets in X with f −1(F1)

⋂
f −1(F2) = ∅. Since (X,WX ) is

W-normal, then there exist twoWX -open setsM and N such that f −1(F1) ⊆ M , f −1(F2) ⊆
N and M

⋂
N = ∅ and then F1 ⊆ f (M), F2 ⊆ f (N ) and f (M)

⋂
f (N ) = ∅. Since f is

W-open, then f (M) and f (N ) are WY -open sets. Therefore (Y,WY ) is almost W-normal.

�

Theorem 2.13 If f : (X,WX ) → (Y,WY ) is an r(W)-continuous surjective function and
(X,WX ) is W-compact, then (Y,WY ) is nearly W-compact.

Proof Let f be r(W)-continuous,W-open and ξ = {λα : α ∈ �,λα ∈ r(W)} be a cover of
Y . Then f −1(ξ) = { f −1(λα) : α ∈ �,λα ∈ r(W)} is anW-open cover of X . Since (X,WX )

isW-compact, then { f −1(λα) : α = 1, 2, 3, . . . , n} is a finite subcover of f −1(ξ) and hence
X = ⋃n

α=1 f −1(λα). Thus Y = ⋃n
α=1 f ( f −1(λα)) = ⋃n

α=1 λα . Therefore (Y,WY ) is
nearly W-compact. 
�
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