

Almost continuity and its applications on weak structures

A. M. Zahran¹ · A. Ghareeb² · A. K. Mousa^{1,3}

Received: 4 October 2015 / Accepted: 30 January 2017 / Published online: 9 February 2017 © African Mathematical Union and Springer-Verlag Berlin Heidelberg 2017

Abstract In this paper, we introduce and study the concept of almost continuity in weak structures (Császár in Acta Math Hung 131(1–2):193–195, 2011) and discuss some of its characteristic properties. Finally, we give some applications of this new kind of continuity.

Keywords Weak structures \cdot Almost W-continuous function \cdot Almost W-regular \cdot Almost W-normal \cdot W-compact \cdot Nearly W-compact

1 Introduction and preliminaries

Császár [1] defined generalized topology and studied some of its concepts like generalized open sets and continuity. Later on, Maki et al. [6] introduced minimal structures and investigated some of its concepts. Lately, Császár [2] presented the weak structures (A family $W \subset P(X)$ is called a weak structure on X (briefly, WS) iff $\emptyset \in W$). A non-empty set X with a weak structure W is called simply a space (X, W). The members of W are W-open subsets and their complements are W-closed subsets. Moreover, Császár [2] presented the operations $c_W(A)$ and $i_W(A)$ in WS as the intersection of all W-closed set containing A and the union of all W-open subsets of A. Also, the properties of $c_W(A)$ and i_W are introduced and discussed. For more details about weak structures, the readers should refer [4,5,7–9].

Theorem 1.1 [2] For any space (X, W) and $A, B \subseteq X$, we have:

(1) $A \subseteq c_{\mathcal{W}}(A)$ and $A \supseteq i_{\mathcal{W}}(A)$;

- (2) If $A \subseteq B$, then $c_{\mathcal{W}}(A) \subset c_{\mathcal{W}}(B)$ and $i_{\mathcal{W}}(A) \subset i_{\mathcal{W}}(B)$;
- (3) If A is W-closed, then $A = c_{W}(A)$, and if A is W-open, then $A = i_{W}(A)$;

A. Ghareeb nasserfuzt@hotmail.com, a.ghareeb@sci.svu.edu.eg

¹ Department of Mathematics, Faculty of Science, Al-Azhar University, Assuit, Egypt

² Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt

³ Department of Mathematics, College of Al-Wajh, University of Tabuk, Tabuk, Saudi Arabia

- (4) $c_{\mathcal{W}}(c_{\mathcal{W}}(A)) = c_{\mathcal{W}}(A)$ and $i_{\mathcal{W}}(i_{\mathcal{W}}(A)) = i_{\mathcal{W}}(A);$
- (5) $c_{\mathcal{W}}(X A) = X i_{\mathcal{W}}(A)$ and $i_{\mathcal{W}}(X A) = X c_{\mathcal{W}}(A)$;
- (6) $i_{\mathcal{W}}(c_{\mathcal{W}}(i_{\mathcal{W}}(c_{\mathcal{W}}(A)))) = i_{\mathcal{W}}(c_{\mathcal{W}}(A))$ and $c_{\mathcal{W}}(i_{\mathcal{W}}(c_{\mathcal{W}}(i_{\mathcal{W}}(A)))) = c_{\mathcal{W}}(i_{\mathcal{W}}(A));$
- (7) $x \in c_{\mathcal{W}}(A)$ iff $V \cap A \neq \emptyset$ for every \mathcal{W} -open subset V containing x;
- (8) $x \in i_{\mathcal{W}}(A)$ iff there exists a \mathcal{W} -open subset V such that $x \in V \subset A$.

Theorem 1.2 [3] For a space (X, W) and $U, V \subseteq X$, we have:

(1) $i_{\mathcal{W}}(U \cap V) \subseteq i_{\mathcal{W}}(U) \cap i_{\mathcal{W}}(V);$ (2) $c_{\mathcal{W}}(U) \cup c_{\mathcal{W}}(V) \subseteq c_{\mathcal{W}}(U \cup V).$

Definition 1.1 Let (X, W) be a space and $A \subseteq X$. Then

(1) $A \in \alpha(\mathcal{W})$ [2] if $A \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(i_{\mathcal{W}}(A)));$

- (2) $A \in \pi(\mathcal{W})$ [2] if $A \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}((A)));$
- (3) $A \in \sigma(\mathcal{W})$ [2] if $A \subseteq c_{\mathcal{W}}((i_{\mathcal{W}}(A));$
- (4) $A \in \beta(\mathcal{W})$ [2] if $A \subseteq c_{\mathcal{W}}(i_{\mathcal{W}}(c_{\mathcal{W}}(A)));$
- (5) $A \in \rho(\mathcal{W})$ [2] if $A \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(A)) \bigcup c_{\mathcal{W}}(i_{\mathcal{W}}(A));$
- (6) $A \in r(\mathcal{W})$ [3] if $A = i_{\mathcal{W}}(c_{\mathcal{W}}(A));$
- (7) $A \in rc(\mathcal{W})$ [3] if $A = c_{\mathcal{W}}(i_{\mathcal{W}}((A)))$.

2 Almost *W*-continuity

Lemma 2.1 For any space (X, W) and W-open set V, if $U \cap V = \emptyset$, then $c_W(U) \cap V = \emptyset$ for each subset U of X.

Proof Let *V* be an *W*-open set and $U \subseteq X$. Suppose $U \cap V = \emptyset$ and $c_{\mathcal{W}}(U) \cap V \neq \emptyset$, then there exists $x \in X$ such that $x \in c_{\mathcal{W}}(U)$ and $x \in V$. Since $x \in c_{\mathcal{W}}(U)$ and *V* is an *W*-open set containing *x*, then $U \cap V \neq \emptyset$. This is a contradiction. Therefore if $U \cap V = \emptyset$, then $c_{\mathcal{W}}(U) \cap V = \emptyset$ for each subset *U* of *X*.

Definition 2.1 For any space (X, W) and $S \subseteq X$, a point $x \in X$ is said to be:

(1) \mathcal{W}_{θ} -cluster point of *S* if $c_{\mathcal{W}}(V) \cap S \neq \emptyset$ for every \mathcal{W} -open set *V* containing *x*.

(2) \mathcal{W}_{δ} -cluster point of S if $i_{\mathcal{W}}(c_{\mathcal{W}}(V)) \cap S \neq \emptyset$ for every \mathcal{W} -open set V containing x.

The set of all \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-cluster points of *S* is called the \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-closure of *S* and is denoted by $c_{\mathcal{W}}^{\theta}(S)$ (resp. $c_{\mathcal{W}}^{\delta}(S)$). If $S = c_{\mathcal{W}}^{\theta}(S)$ (resp. $S = c_{\mathcal{W}}^{\delta}(S)$), then A is called \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-closed. The complement of an \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-closed set is called \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-open.

The union of all \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-open sets contained in *S* is called the \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-interior of *S* and is denoted by $i_{\mathcal{W}}^{\theta}(S)$ (resp. $i_{\mathcal{W}}^{\delta}(S)$). The class of \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-open sets in \mathcal{W} is denoted by $\theta(\mathcal{W})$ (resp. $\delta(\mathcal{W})$) and the class of \mathcal{W}_{θ} (resp. \mathcal{W}_{δ})-closed sets in \mathcal{W} is denoted by $\theta c(\mathcal{W})$ (resp. $\delta c(\mathcal{W})$).

Remark 2.1 One may notice that if (X, W) a space and $V \subseteq X$, then

$$c_{\mathcal{W}}(V) \subseteq c_{\mathcal{W}}^{\delta}(V) \subseteq c_{\mathcal{W}}^{\theta}(V).$$

Lemma 2.2 Let (X, W) be a space. Then

$$c_{\mathcal{W}}(V) = c_{\mathcal{W}}^{\delta}(V) = c_{\mathcal{W}}^{\theta}(V)$$

for each W-open set V in X.

🖉 Springer

Proof We aim to prove that $c_{\mathcal{W}}^{\theta}(N) \subseteq c_{\mathcal{W}}(N)$. Let N be an W-open set in X and let $x \notin c_{\mathcal{W}}(N)$. Then there exists $M \in \mathcal{W}$ such that $x \in M$ and $M \cap N = \emptyset$. By Lemma 2.1, we have $c_{\mathcal{W}}(M) \cap N = \emptyset$ and hence $x \notin c_{\mathcal{W}}^{\theta}(N)$. Thus $c_{\mathcal{W}}^{\theta}(N) \subseteq c_{\mathcal{W}}(N)$. Since $c_{\mathcal{W}}(N) \subseteq c_{\mathcal{W}}^{\theta}(N)$ for each subset N in X, then $c_{\mathcal{W}}(N) = c_{\mathcal{W}}^{\theta}(N)$. П

Definition 2.2 A function $f: (X, \mathcal{W}_X) \to (Y, \mathcal{W}_Y)$ from a space (X, \mathcal{W}_X) to a space (Y, W_Y) is called almost W-continuous at $x \in X$ if for every W_Y -open set N containing f(x), there is a \mathcal{W}_X -open set M including x such that $f(M) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(N))$. A map f is called almost W-continuous if it is almost W-continuous at each $x \in X$.

Theorem 2.1 For a function $f: (X, W_X) \to (Y, W_Y)$. The following statements are equivalent:

- (1) *f* is almost *W*-continuous;
- (2) $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(V))$ for each $V \in r(\mathcal{W}_Y)$; (3) $c_{\mathcal{W}}(f^{-1}(F)) \subseteq f^{-1}(F)$ for each $F \in rc(\mathcal{W}_Y)$;
- (4) $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$ for each \mathcal{W} -open set V in Y;
- (5) $c_{\mathcal{W}}(f^{-1}(c_{\mathcal{W}}(i_{\mathcal{W}}(F)))) \subseteq f^{-1}(F)$ for each W-closed set F in Y;
- (6) $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$ for each $V \in \pi(\mathcal{W}_Y)$; (7) $c_{\mathcal{W}}(f^{-1}(c_{\mathcal{W}}(i_{\mathcal{W}}(F)))) \subseteq f^{-1}(F)$ for each $F \in \pi c(\mathcal{W}_Y)$;

- (8) $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$ for each $V \in \alpha(\mathcal{W}_Y)$; (9) $c_{\mathcal{W}}(f^{-1}(c_{\mathcal{W}}(i_{\mathcal{W}}(F)))) \subseteq f^{-1}(F)$ for each $F \in \alpha c(\mathcal{W}_Y)$;
- (10) For each a point $x \in X$ and a $V \in \pi(W_Y)$ containing f(x), there exists an W_X -open set U containing x such that $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$;
- (11) For each a point $x \in X$ and a $V \in \alpha(W_Y)$ containing f(x), there exists an W_X -open set U containing x such that $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$;

- (12) $c_{\mathcal{W}}(f^{-1}(V)) \subseteq f^{-1}(c_{\mathcal{W}}(V))$ for each $V \in \beta(W_Y)$; (13) $f^{-1}(i_{\mathcal{W}}(F)) \subseteq i_{\mathcal{W}}(f^{-1}(F))$ for each $F \in \beta c(W_Y)$; (14) $c_{\mathcal{W}}(f^{-1}(V)) \subseteq f^{-1}(c_{\mathcal{W}}(V))$ for each $V \in \sigma(W_Y)$; (15) $f^{-1}(i_{\mathcal{W}}(F)) \subseteq i_{\mathcal{W}}(f^{-1}(F))$ for each $F \in \sigma c(W_Y)$;

- (15) $f^{-1}(i_{\mathcal{W}}(T)) \subseteq i_{\mathcal{W}}(f^{-1}(T))$ for each $V \in \sigma(W_Y)$, (16) $c_{\mathcal{W}}(f^{-1}(V)) \subseteq f^{-1}(c_{\mathcal{W}}(V))$ for each $V \in \pi(W_Y)$; (17) $f^{-1}(i_{\mathcal{W}}(V)) \subseteq i_{\mathcal{W}}(f^{-1}(V))$ for each $V \in \pi c(W_Y)$; (18) $c_{\mathcal{W}}(f^{-1}(V)) \subseteq f^{-1}(c_{\mathcal{W}}(V))$ for each $V \in \alpha(W_Y)$; (19) $f^{-1}(i_{\mathcal{W}}(V)) \subseteq i_{\mathcal{W}}(f^{-1}(V))$ for each $V \in \alpha c(W_Y)$.

Proof (1) \Rightarrow (2): Suppose that $V \in r(W_Y)$ and $x \in f^{-1}(V)$. Then $V = i_{\mathcal{W}}(c_{\mathcal{W}}(V))$ and $f(x) \in V = i_{\mathcal{W}}(c_{\mathcal{W}}(V))$, then there exists $U \in \mathcal{W}_Y$ containing f(x) such that $f(x) \in$ $U \subseteq c_{\mathcal{W}}(V)$. By (1), there exists an \mathcal{W}_X -open set W in X containing x such that $f(W) \subseteq C_{\mathcal{W}}(V)$. $i_{\mathcal{W}}(c_{\mathcal{W}}(U))$. Thus

$$f(x) \in f(W) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$$

and hence $x \in W \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Therefore

$$x \in W \subseteq i_{\mathcal{W}}(W) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))) = i_{\mathcal{W}}(f^{-1}(V)).$$

(2) \Rightarrow (1): Suppose that V be an \mathcal{W}_Y -open set such that $f(x) \in V$. Then $x \in f^{-1}(V) \subseteq$ $f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Since $i_{\mathcal{W}}(c_{\mathcal{W}}(V)) \in r(\mathcal{W}_Y)$. By (2),

$$x \in i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))),$$

then there is $x \in U \in \mathcal{W}_X$ provided that $x \in U \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Thus there exists an \mathcal{W}_X -open set U containing x and $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$. Therefore f is almost \mathcal{W} -continuous. (2) \Leftrightarrow (3): Obvious.

(1) \Rightarrow (4): Let *V* be an \mathcal{W}_Y -open set and $x \in f^{-1}(V)$. Then *V* is an \mathcal{W}_Y -open set containing f(x). From (1), there is a \mathcal{W}_X -open set *U* containing *x* such that $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$. Thus $x \in U \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Since *U* is \mathcal{W}_X -open, then $x \in i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$. Therefore

$$f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))).$$

(4) \Rightarrow (1): Let V be an W_Y -open set containing f(x). Then

$$x \in f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$$

and then there is a W_X -open set U containing x such that

$$x \in U \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))).$$

Thus $x \in U$ and $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$. Therefore f is almost \mathcal{W} -continuous. (4) \Leftrightarrow (5): It is clear.

(2) \Rightarrow (6): Let $V \in \pi(\mathcal{W}_Y)$. Then $V \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$ and hence $f^{-1}(V) \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Since $i_{\mathcal{W}}(c_{\mathcal{W}}(V)) \in r(\mathcal{W}_Y)$, then by (2), we get $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))))$.

(6) \Leftrightarrow (7): It is clear.

(6) \Rightarrow (4): It follows from $\mathcal{W} \subseteq \pi(\mathcal{W})$.

(7) \Rightarrow (9) \Leftrightarrow (8): It follows from $\alpha(\mathcal{W}) \subseteq \pi(\mathcal{W})$.

(8) \Rightarrow (4): It follows from $\mathcal{W} \subseteq \alpha(\mathcal{W})$.

(1) \Rightarrow (10): Let $x \in X$ and $V \in \pi(W_Y)$ containing f(x). Then $f(x) \in i_{\mathcal{W}}(c_{\mathcal{W}}(V))$ and hence there exists $U \in W_Y$ such that $f(x) \in U \subseteq c_{\mathcal{W}}(V)$. By (1), there exists a \mathcal{W}_X open set W containing x such that $f(W) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(U))$. Hence $f(W) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$.

(10) \Rightarrow (11): It follows from $\alpha(W) \subseteq \pi(W)$.

(11) \Rightarrow (1): It follows from $\mathcal{W} \subseteq \alpha(\mathcal{W})$.

(3) \Rightarrow (12): Let $V \in \beta(W_Y)$. Then $c_W(V) = c_W(i_W(c_W(V)))$ and hence $c_W(V) \in rc(W_Y)$. By (3), we get $c_W(f^{-1}(V)) \subseteq c_W(f^{-1}(c_W(V))) \subseteq f^{-1}(c_W(V))$.

(12) \Rightarrow (3): Let $H \in rc(\mathcal{W}_Y)$. Then $H \in \beta(\mathcal{W}_Y)$ and hence by (12), we get $c_{\mathcal{W}}(f^{-1}(H) \subseteq f^{-1}(c_{\mathcal{W}}(H)) = f^{-1}(c_{\mathcal{W}}(i_{\mathcal{W}}(H))) = f^{-1}(H)$.

(12) \Leftrightarrow (13): Obvious.

 $(12) \Rightarrow (14) \Leftrightarrow (15)$: It follows from $\beta(\mathcal{W}) \subseteq \sigma(\mathcal{W})$.

 $(14) \Rightarrow (3)$: It is similar to that of $(12) \Rightarrow (3)$.

 $(12) \Rightarrow (16) \Leftrightarrow (17) \Rightarrow (18) \Leftrightarrow (19)$: It follows from $\beta(W) \subseteq \pi(W)$ and $\pi(W) \subseteq \alpha(W)$.

 $(19) \Rightarrow (3)$: It is similar to that of $(12) \Rightarrow (3)$.

Theorem 2.2 For a function $f: (X, W_X) \to (Y, W_Y)$. Consider the following statements:

(1) f is almost \mathcal{W} -continuous; (2) $f(c_{\mathcal{W}}(V)) \subseteq c_{\mathcal{W}}^{\delta}(f(V))$ for each subset V of X; (3) $c_{\mathcal{W}}(f^{-1}(U)) \subseteq f^{-1}(c_{\mathcal{W}}^{\delta}(U))$ for each subset U of Y; (4) $f^{-1}(i_{\mathcal{W}_{\delta}}(U)) \subseteq i_{\mathcal{W}}(f^{-1}(U))$ for each subset U of Y; (5) $c_{\mathcal{W}}(f^{-1}(F)) \subseteq f^{-1}(F)$ for each $F \in \delta c(\mathcal{W}_{Y})$; (6) $f^{-1}(V) \subseteq i_{\mathcal{W}}(f^{-1}(V))$ for each $V \in \delta(\mathcal{W}_{Y})$.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$.

Proof (1) \Rightarrow (2): Let $x \in c_{\mathcal{W}}(V)$ and U be an \mathcal{W} -open set of Y containing f(x). By (1), there exists an \mathcal{W} -open set W containing x such that $f(W) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(U))$ and hence $W \cap V \neq \emptyset$. Thus $f(W) \cap f(V) \neq \emptyset$ which implies $i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \cap f(V) \neq \emptyset$. Then $f(x) \in c_{\mathcal{W}_{\delta}}(f(V))$ and hence $x \in f^{-1}(c_{\mathcal{W}_{\delta}}f(V))$ which implies $c_{\mathcal{W}}(V) \subseteq f^{-1}(c_{\mathcal{W}}^{\delta}f(V))$. Therefore $f(c_{\mathcal{W}}(V)) \subseteq c_{\mathcal{W}}^{\delta}f(V)$. (2) \Rightarrow (3) \Leftrightarrow (4): It is clear. (3) \Rightarrow (5): Let $H \in \delta c(\mathcal{W}_{Y})$. Then $H = c_{\mathcal{W}}^{\delta}(H)$. By (3), we get $c_{\mathcal{W}}(f^{-1}(H) \subseteq f^{-1}(c_{\mathcal{W}}^{\delta}(H)) = f^{-1}(H)$. (5) \Leftrightarrow (6): It is clear.

Lemma 2.3 Let (X, W) be a space and $i_{W}(V)$ be W-open for each $V \in rc(W)$. Then $rc(W) \subseteq \delta c(W)$.

Proof Let $V \in rc(W)$ and let $x \notin V$. Then $x \notin c_{\mathcal{W}}(i_{\mathcal{W}}(V))$ and hence there exists an W-open set U containing x such that $U \cap i_{\mathcal{W}}(V) = \emptyset$. Since $V \in rc(W)$, then $i_{\mathcal{W}}(V)$ is W-open. Then by Lemma 2.1, we have $c_{\mathcal{W}}(U) \cap i_{\mathcal{W}}(V) = \emptyset$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \cap i_{\mathcal{W}}(V) = \emptyset$. Since U is W-open, then $c_{\mathcal{W}}(U) \in rc(W)$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(U))$ is W-open. By Lemma 2.1, we have $i_{\mathcal{W}}(c_{\mathcal{W}}((U)) \cap c_{\mathcal{W}}(i_{\mathcal{W}}(V)) = \emptyset$. Thus $i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \cap V = \emptyset$ and hence $x \notin c_{\mathcal{W}}^{\delta}(V)$. Therefore $c_{\mathcal{W}}^{\delta}(V) \subseteq V$ and hence $V \in \delta c(W)$.

Theorem 2.3 Let (X, W) be a space and $V \in rc(W)$. If $i_W(V)$ is W-open set, it leads to the equality of the statements in Theorem 2.2.

Proof It is clear from Lemma 2.3 and Theorem 2.1(3).

Theorem 2.4 Let $f: (X, W_X) \to (Y, W_Y)$ be an almost W-continuous function and let V be an W-open set of Y. If $x \in c_W(f^{-1}(V)) - (f^{-1}(V))$, then $f(x) \in c_W(V)$.

Proof Let *x* ∈ *X* and *V* be an *W*-open set of *Y* such that *x* ∈ $c_{\mathcal{W}}(f^{-1}(V)) - f^{-1}(V)$ and $f(x) \notin c_{\mathcal{W}}(V)$. Then there exists an *W*-open set *U* containing f(x) such that $U \cap V = \emptyset$. Since *f* is almost *W*-continuous, then there exists an *W*-open set *W* containing *x* such that $f(W) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(U))$. Since $U \cap V = \emptyset$, then by Lemma 2.1, we have $c_{\mathcal{W}}(U) \cap V = \emptyset$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(U)) \cap V = \emptyset$. Thus $f(W) \cap V = \emptyset$. Since $x \in c_{\mathcal{W}}(f^{-1}(V))$ and *W* is an *W*-open set containing *x*, then $W \cap f^{-1}(V) \neq \emptyset$ and hence $f(W) \cap V \neq \emptyset$. This is a contradiction. Therefore $f(x) \in c_{\mathcal{W}}(V)$.

Definition 2.3 For any WS \mathcal{W} on X and $A \subset X$. A point $x \in X$ is called \mathcal{W} -boundary point of A iff $x \in c_{\mathcal{W}}(A) \bigcap c_{\mathcal{W}}(X - A)$. The family of all \mathcal{W} -boundary points of A is denoted by $Bd_{\mathcal{W}}(A)$.

Theorem 2.5 For any space (X, W) and $A \subseteq X$, we have:

(1) $Bd_{\mathcal{W}}(A) = Bd_{\mathcal{W}}(X - A);$ (2) $Bd_{\mathcal{W}}(A) = c_{\mathcal{W}}(A) - i_{\mathcal{W}}(A);$

- (3) $A \cap Bd_{\mathcal{W}}(A) = \emptyset$ if $A \in \mathcal{W}$;
- (4) $Bd_{\mathcal{W}}(A) \subset A \text{ if } X A \in \mathcal{W}.$

Proof It follows from Theorem 1.1 and Definition 2.3.

Remark 2.2 It is clear that the converse of (3) and (4) in the above theorem are not correct in general as illustrated by the next example.

Example 2.1 Let $X = \{x, y, z\}$ and $\mathcal{W} = \{\emptyset, \{x\}, \{y\}, \{z\}\}$. It is clear that:

(1) $A = \{x, z\}$ achieves $A \cap Bd_{\mathcal{W}}(A) = \emptyset$, but $A \notin \mathcal{W}$; (2) $A = \{z\}$ achieves $Bd_{\mathcal{W}}(A) \subset A$, but A is not \mathcal{W} -closed.

Theorem 2.6 Let $f: (X, W_X) \to (Y, W_Y)$ be a function and let $A = \{x \in X : f \text{ is not almost } W\text{-continuous at } x\}$. Then $A = Bd_W(f^{-1}(i_W(c_W(V))))$ for each W-open set V containing f(x).

Proof Let $x \in A$. Then f is not almost \mathcal{W} -continuous at x and hence there exists an \mathcal{W} -open set V of Y containing f(x) such that $U \cap (X - f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))) \neq \emptyset$ for each \mathcal{W} -open set U of X containing x and hence $x \in c_{\mathcal{W}}(X - f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$. Since $f(x) \in V$, then $x \in f^{-1}(V) \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$ and thus $x \in c_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$. Thus we get $x \in Bd_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$. Therefore

$$A \subseteq Bd_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))) \tag{1}$$

Let $x \notin A$ and V be an W-open set containing f(x). Then f is almost W-continuous at x and V is an W-open set containing f(x) and hence there exists an W-open set Ucontaining x such that $U \subseteq f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Thus $x \in i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$ and hence $x \notin X - i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))) = c_{\mathcal{W}}(X - f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$ which implies $x \notin Bd_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V)))$. Therefore

$$A \supseteq Bd_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$$

$$\tag{2}$$

From (1) and (2) we have $A = Bd_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(V))))$.

Definition 2.4 A map $f: (X, W_X) \to (Y, W_Y)$ is said to be r(W)-continuous iff $f^{-1}(H)$ is an W-open set in X for every $H \in r(W_Y)$.

Remark 2.3 One may notice that each r(W)-continuous function is almost W-continuous, but the converse need not be true in general as shown by the following example.

Example 2.2 Let $X = \{a, b, c\}$, $W_X = \{\emptyset, \{a\}, \{b\}, \{c\}\}$, $Y = \{x, y\}$, $W_Y = \{\emptyset, \{x\}, \{y\}\}$ and $f: (X, W_X) \rightarrow (Y, W_Y)$ be a map defined by f(a) = f(b) = x, f(c) = y. One may notice that:

- (1) $A = \{x\} \in r(W_Y)$ and $f^{-1}(A) = \{a, b\}$ which is not an W-open set in X.
- (2) For \mathcal{W}_{Y} -open set \emptyset , we have $c_{\mathcal{W}}(\emptyset) = \emptyset$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(\emptyset)) = \emptyset$ which implies $f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\emptyset))) = f^{-1}(\emptyset) = \emptyset$. Thus $f^{-1}(\emptyset) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\emptyset))))$. For \mathcal{W}_{Y} -open set $\{x\}$, we have $c_{\mathcal{W}}(\{x\}) = \{x\}$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(\{x\})) = \{x\}$ which implies $f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{x\}))) = f^{-1}(\{x\}) = \{a, b\}$. Thus $i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{x\})))) = i_{\mathcal{W}}(\{a, b\}) = \{a, b\}$ and hence $f^{-1}(\{x\}) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{x\}))))$. For \mathcal{W}_{Y} -open set $\{y\}$, we have $c_{\mathcal{W}}(\{y\}) = \{y\}$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(\{y\}))) = \{y\}$ which implies $f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{y\}))) = f^{-1}(\{y\}) = \{c\}$. Thus $i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{y\})))) = i_{\mathcal{W}}(\{c\})) = \{c\}$ and hence $f^{-1}(\{y\}) \subseteq i_{\mathcal{W}}(f^{-1}(i_{\mathcal{W}}(c_{\mathcal{W}}(\{y\}))))$. Then f satisfy (4) in Theorem 2.1 and hence f is almost \mathcal{W} -continuous. Hence f is almost \mathcal{W} -continuous.

Theorem 2.7 If a function $f : (X, W_X) \to (Y, W_Y)$ is almost W-continuous and $c_W(V)$ is W-closed for each $V \subseteq X$, then f is r(W)-continuous.

Proof Let $H \in rc(W_Y)$. Then by Theorem 2.1(3) we have $c_{\mathcal{W}}(f^{-1}(H) \subseteq f^{-1}(H)$ and hence $c_{\mathcal{W}}(f^{-1}(H) = f^{-1}(H)$. Since $c_{\mathcal{W}}(V)$ is \mathcal{W} -closed for each $V \subseteq X$, then $c_{\mathcal{W}}(f^{-1}(H)$ is \mathcal{W} -closed in X and hence $(f^{-1}(H)$ is \mathcal{W} -closed in X. Therefore f is $r(\mathcal{W})$ continuous.

Theorem 2.8 If a function $f: (X, W_X) \to (Y, W_Y)$ is r(W)-continuous, then for each $V \in r(W_Y)$ such that $f(x) \in V$, there is a W_X -open set U such that $x \in U$ and $f(U) \subseteq V$.

Proof Let $V \in r(W_Y)$ containing f(x). Then $f^{-1}(V)$ is an W_X -open set containing x and hence there exists an W_X -open set U such that $x \in U \subseteq f^{-1}(V)$. Thus there exists an W_X -open set U containing x such that $f(U) \subseteq V$.

Remark 2.4 By the following example, we show that the converse of the above theorem need not be true in general.

Example 2.3 Let $X = \{a, b, c\}$, $W_X = \{\emptyset, \{a\}, \{b\}, \{c\}\}$, $Y = \{x, y\}$, $W_Y = \{\emptyset, \{x\}, \{y\}\}$ and $f: (X, W_X) \rightarrow (Y, W_Y)$ be a function defined by f(a) = f(b) = x, f(z) = c. One may notice that:

(1) $A = \{x\} \in r(\mathcal{W}_Y)$ and $f^{-1}(A) = \{a, b\}$ which is not an \mathcal{W} -open set in X.

(2) For $a \in X$, $f(a) = x \in \{x\} = V$ which is an W_Y -open set, there exists an W_X -open set $U = \{a\}$ containing a such that $f(U) = f(\{a\}) = \{x\} \subseteq \{x\} = i_W(c_W\{x\})) = i_W(c_W(V))$. For $b \in X$, $f(b) = x \in \{x\} = V$ which is an W_Y -open set, there exists an W_X -open set $U = \{b\}$ containing b such that $f(U) = f(\{b\}) = \{x\} \subseteq \{x\} = i_W(c_W\{x\})) = i_W(c_W(V))$. For $c \in X$, $f(c) = y \in \{y\} = V$ which is an W_Y -open set, there exists an W_X -open set $U = \{c\}$ containing c such that $f(U) = f(\{c\}) = \{y\} \subseteq \{y\} = i_W(c_W\{y\})) = i_W(c_W(V))$.

Theorem 2.9 Let $f: (X, W_X) \to (Y, W_Y)$ be a function. If for each $x \in X$ and each $V \in r(W_Y)$ containing f(x), there exists an W_X -open set U containing x such that $f(U) \subseteq V$, then f is almost W-continuous.

Proof Let $x \in X$ and V be an W_Y -open set such that $f(x) \in V$. Then $i_{\mathcal{W}}(c_{\mathcal{W}}(V)) \in r(\mathcal{W})$ containing f(x) and hence there is $U \in \mathcal{W}_X$ such that $x \in U$ and $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V))$. Therefore f is almost \mathcal{W} -continuous.

Theorem 2.10 Let $f: (X, W_X) \to (Y, W_Y)$ be a map. If $i_{\mathcal{W}}(V)$ is an \mathcal{W} -open set for each $V \in r(\mathcal{W})$, then the converse of Theorem 2.9 is true.

Proof Let $x \in X$ and $V \in r(W_Y)$ containing f(x). Then $i_{\mathcal{W}}(c_{\mathcal{W}}(V)) = i_{\mathcal{W}}(V)$ and hence $i_{\mathcal{W}}(c_{\mathcal{W}}(V)$ is an \mathcal{W}_Y -open set containing f(x) and hence there exists an \mathcal{W}_X -open set U containing x such that $f(U) \subseteq i_{\mathcal{W}}(c_{\mathcal{W}}(V)) = V$.

Remark 2.5 If we replaced a space (Y, W_Y) by a topological space (Y, τ) in Theorems 2.7, 2.8, and in r(W)-continuity definition, then the statements in these theorem are equivalents.

Definition 2.5 A family of sets $\xi = \{\lambda_{\alpha} : \alpha \in \Delta\}$ in a space (X, W) is said to be a cover of *X* if $\bigcup_{\lambda_{\alpha} \in \Delta} \lambda_{\alpha} = X$ and a subfamily of ξ having a similar property is called a subcover of ξ .

Definition 2.6 A space (X, W) is called:

(1) W-regular if for every $x \in X$ and W-closed set U such that $x \notin U$, there exist $M, N \in W$ such that $x \in M, U \subseteq N$ and $M \bigcap N = \emptyset$.

- (2) Almost W-regular if for every $x \in X$ and $F \in rc(W)$ with $x \notin F$, there exist $M, N \in W$ such that $x \in M, F \subseteq N$ and $M \bigcap N = \emptyset$.
- (3) \mathcal{W} -normal if for every two \mathcal{W} -closed sets U and V with $U \cap V = \emptyset$, there exist $M, V \in \mathcal{W}$ such that $U \subseteq M, V \subseteq N$ and $M \cap N = \emptyset$.
- (4) Almost \mathcal{W} -normal if for every $U, V \in rc(\mathcal{W}_Y)$ with $U \cap V = \emptyset$, there exist $M, N \in \mathcal{W}$ such that $U \subseteq M, V \subseteq N$ and $M \cap N = \emptyset$.
- (5) W-compact if every W-open cover of X has a finite subcover.
- (6) Nearly \mathcal{W} -compact if every cover $\xi = \{\lambda_{\alpha} : \alpha \in \Delta, \lambda_{\alpha} \in r(\mathcal{W})\}$ of X has a finite subcover.

Theorem 2.11 If $f: (X, W_X) \to (Y, W_Y)$ is an r(W)-continuous, W-open function and (X, W_X) is W-regular, then (Y, W_Y) is almost W-regular.

Proof Let f be r(W)-continuous and W-open function and $F \in rc(W_Y)$ with $x \notin F$. Then $f^{-1}(H)$ are W-closed set in X with $f^{-1}(x) \notin f^{-1}(F)$. Since (X, W_X) is W-regular, then there exist $M, N \in W_X$ such that $f^{-1}(F) \subseteq M$, $f^{-1}(x) \in N$ and $M \bigcap N = \emptyset$ and hence $F \subseteq f(M), x \in f(N)$ and $f(M) \bigcap f(N) = \emptyset$. Since f is W-open, then f(M) and f(N) are W_Y -open sets. Therefore (Y, W_Y) is almost W-regular.

Theorem 2.12 If $f: (X, W_X) \to (Y, W_Y)$ is an r(W)-continuous, W-open function and (X, W_X) is W-normal, then (Y, W_Y) is almost W-normal.

Proof Let f be r(W)-continuous and $F_1, F_2 \in rc(W_Y)$ such that $F_1 \bigcap F_2 = \emptyset$, then $f^{-1}(F_1), f^{-1}(F_2)$ are W-closed sets in X with $f^{-1}(F_1) \bigcap f^{-1}(F_2) = \emptyset$. Since (X, W_X) is W-normal, then there exist two W_X -open sets M and N such that $f^{-1}(F_1) \subseteq M, f^{-1}(F_2) \subseteq N$ and $M \bigcap N = \emptyset$ and then $F_1 \subseteq f(M), F_2 \subseteq f(N)$ and $f(M) \bigcap f(N) = \emptyset$. Since f is W-open, then f(M) and f(N) are W_Y -open sets. Therefore (Y, W_Y) is almost W-normal.

Theorem 2.13 If $f : (X, W_X) \to (Y, W_Y)$ is an r(W)-continuous surjective function and (X, W_X) is W-compact, then (Y, W_Y) is nearly W-compact.

Proof Let *f* be r(W)-continuous, W-open and $\xi = \{\lambda_{\alpha} : \alpha \in \Delta, \lambda_{\alpha} \in r(W)\}$ be a cover of *Y*. Then $f^{-1}(\xi) = \{f^{-1}(\lambda_{\alpha}) : \alpha \in \Delta, \lambda_{\alpha} \in r(W)\}$ is an W-open cover of *X*. Since (X, W_X) is W-compact, then $\{f^{-1}(\lambda_{\alpha}) : \alpha = 1, 2, 3, ..., n\}$ is a finite subcover of $f^{-1}(\xi)$ and hence $X = \bigcup_{\alpha=1}^{n} f^{-1}(\lambda_{\alpha})$. Thus $Y = \bigcup_{\alpha=1}^{n} f(f^{-1}(\lambda_{\alpha})) = \bigcup_{\alpha=1}^{n} \lambda_{\alpha}$. Therefore (Y, W_Y) is nearly W-compact.

References

- 1. Császár, A.: Generalized topology, generalized continuity. Acta Math. Hung. 96, 351-357 (2002)
- 2. Császár, A.: Weak structure. Acta Math. Hung. 131(1–2), 193–195 (2011)
- 3. Ekici, E.: On weak struture due to csaszar. Acta Math. Hung. 134(4), 565–570 (2012)
- Ghareeb, A., Güldürdek, Aslı: On modification of weak structures via hereditary classes. Boletim da Sociedade Paranaense de Matemática 35(1), 229–235 (2017)
- Ghareeb, A., Khalaf, M.M.: On weak structures. Analele Universității Oradea Fasc. Matematica TOM XXII(1), 129–134 (2015)
- Umehara, J., Maki, H., Noiri, T.: Every topological space is pre T₁. Mem. Fac. Sci. Kochi. Univ. Ser. A Math. 17, 53–66 (1996)
- Zahran, A.M., El-Saady, K., Ghareeb, A.: Modification of weak structures via hereditary classes. Appl. Math. Lett. 25(5), 869–872 (2012)

- Zahran, A.M., Mousa, A.K., Ghareeb, A.: Generalized closed sets and some separation axioms on weak structure. Hacet. J. Math. Stat. 44(3), 669–677 (2015)
- Zakari, A.H., Ghareeb, A., Omran, S.: On soft weak structures. Soft Comput. 1–7 (2016). doi:10.1007/ s00500-016-2136-8