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Abstract In this paper, the non-Hermitian positive definite linear systems are solved via pre-
conditioned Krylov subspace methods such as the generalized minimal residual (GMRES)
method. To do so, the two-parameter generalized Hermitian and skew-Hermitian splitting
(TGHSS) iterationmethod is applied to establish anm-step polynomial preconditioner. Some
theoretical results are also given to investigate the convergence properties of the precondi-
tioned method. Three numerical examples are presented to demonstrate the performance of
the new method and to compare it with a recently proposed method.
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1 Introduction

The Hermitian and skew-Hermitian splitting (HSS) iteration method [12] has been firstly
presented by Bai et al. to solve the linear system

Ax = b, (1)

where A ∈ C
q×q is a large and sparse non-Hermitian positive definite (HPD) matrix and

x, b ∈ C
q . The proposed method has been widely used in solving various problems such

as convection-diffusion equation [12], saddle-point problem [10,15], continuous Sylvester
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equation [7], image restoration problem [3]. Many works have also been done to improve the
HSS method such as modified HSS (MHSS) [8], accelerated HSS (AHSS) [9], generalized
HSS (GHSS) [14] and preconditioned HSS (PHSS) [13,26]. Besides the proposed methods,
the Krylov subspace methods are widely used to solve the linear systems in the literature
[24]. Due to the structure of system (1), choosing the most practical and effective method can
be difficult [23]. In this study, we use the generalized minimum residual (GMRES) algorithm
which is arguably the most popular choice [25].

In practice, from the ill-conditioning of system (1), the Krylov subspace methods con-
verge slowly or sometimes diverge. Thus, the Krylov subspace methods are often applied to
solve the proposed linear systems in conjunction with a suitable preconditioner. The effect
of the preconditioned method is to increase the rate of convergence of the Krylov subspace
methods such asGMRESmethod. Several preconditioning techniques have been presented to
improve the performance and reliability of Krylov subspace methods [20]. In the last decade,
several extensions of the HSS iteration method have been widely applied as preconditioners
to accelerate a Krylov subspace method. Convergence and the preconditioning properties
of the HSS method have been investigated by Benzi and Golub [16]. Convergence proper-
ties of the PHSS methods for non-Hermitian positive semidefinite matrices have also been
investigated in [11]. Applications of the HSS iteration method as a preconditioner for Krylov
subspace method in solving singular, non-Hermitian and positive semidefinite systems have
been presented in [6]. The MHSS-preconditioned GMRES [8] has been applied to solve a
class of complex symmetric linear systems. Cao et al. presented the relaxed HSS (RGHSS)
to accelerate the convergence of GMRES method for solving saddle point problems [18].

The polynomial preconditioners have been successfully presented for solving linear
systems and performing parallel computing, see [1,2,17]. To design the proposed procon-
ditioners, similar to the usual techniques, the coefficient matrix A is split as A = M − N ,
where M is a nonsingular matrix. Suppose that G = M−1N and ρ(G) is the spectral radius
of G. If ρ(G) < 1, from Neumann series, then a preconditioner based on approximating
inverse can be given as follows [17],

P(m) = M
(
I + G + G2 + · · · + Gm−1)−1

, (2)

which also called polynomial preconditioner. From Eq. (2), the proconditioned matrix can
be given as:

P(m)−1A = (
I + G + G2 + · · · + Gm−1) M−1A = I − Gm . (3)

Furthermore, since the coefficient matrix A can be split by iterative matrix Gm as follows,

A = P(m) − P(m)Gm = P(m) − N (m), (4)

the matrix P(m) is also called them-step preconditioner. Indeed, the linear system P(m)v =
r , which is mainly encountered in the preconditioned Krylov subspace iteration methods, can
be effectively solved by the following m-step iteration method with v(0) = 0 as the initial
guess,

Mv( j) = Nv( j−1) + r, j = 1, . . . ,m. (5)

Huang in [22] presented an m-step HSS (HSS(m)) polynomial preconditioner for the
Krylov subspace iteration methods to solve linear system (1). To do so, the matrices M and
G in (2) have been extracted from theHSS iterationmethod to construct anm-step polynomial
preconditioner.
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Recently, the two-parameter GHSS (TGHSS) iteration method has been presented to
solve the non-Hermitian positive definite linear systems [4]. In this study, we use the idea
of polynomial preconditioning technique and the TGHSS method to present a new m-step
preconditioningmatrix. Convergence ofmethod and spectral properties of the preconditioned
matrix are also investigated. Throughout the paper, for a matrix A ∈ C

q×q , the symbols
ρ(A) and σ(A) stand for the spectral radius and the spectrum of A, respectively. For a matrix
X ∈ R

q×q whose eigenvalues are real, its smallest eigenvalues is denoted by λq(X).
This paper is organized as follows. A brief description of the m-step HSS preconditioner

is given in Sect. 2. In Sect. 3, the TGHSS method is introduced and the m-step TGHSS
preconditioner is presented to use in Krylov subspace methods such as GMRES. Section
4 is devoted to the implementation issues of the proposed preconditioner. Three numerical
examples are given in Sect. 5. Finally, in Sect. 6 we present some concluding remarks.

2 A brief description of the m-step HSS preconditioning technique

The HSS iteration method has been presented based on the splitting of the coefficient matrix
A into Hermitian part H = (A + A∗)/2 and skew-Hermitian part S = (A − A∗)/2. Indeed,
the proposed method has been introduced using the shifted matrices α I + H and α I + S to
solve non-Hermitian positive definite linear systems as follows:

{
(H + α I )x (k+ 1

2 ) = (α I − S)x (k) + b,

(S + α I )x (k+1) = (α I − H)x (k+ 1
2 ) + b,

k = 0, 1, . . . , (6)

where α is positive parameter and I is the identity matrix of order q . It is shown that the HSS
iteration (6) is convergent for all α > 0 [12]. It is easy to see that the iteration (6) can be
written as:

x (k+1) = Gαx
(k) + M−1

α b, k = 0, 1, . . . ,

where

Mα = 1
2α (α I + H)(α I + S),

Gα = (α I + S)−1(α I − H)(α I + H)−1(α I − S).
(7)

In them-stepHSSpreconditioningmethod, the preconditionermatrix (2) has been constructed
with the matrices Gα and Mα which have been extracted from the HSS iteration method.
Huang has shown that the spectral distribution of preconditionedmatrix becomes increasingly
clustered as m gets larger [22].

3 The m-step TGHSS preconditioning method

In this section, the TGHSS iteration method is briefly introduced, then the m-step TGHSS
preconditioner is constructed to accelerate the Krylov subspace methods such as GMRES.

It has been mentioned that the matrix A naturally possesses a Hermitian/skew-Hermitian
splitting as A = H + S. In the TGHSS iteration method, the Hermitian part is also split as
H = T + K where T and K are positive semidefinite matrices. To implement the proposed
method, two following splittings of A are given

A = (α I + T ) − (α I − S − K ) and A = (β I + S + K ) − (β I − T ), (8)
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where α and β are positive parameters. These shifted matrices lead to the following TGHSS
iteration method [4]:

{
(α I + T )x (k+ 1

2 ) = (α I − S − K )x (k) + b,

(β I + S + K )x (k+1) = (β I − T )x (k+ 1
2 ) + b,

k = 0, 1, . . . , (9)

After eliminating x (k+ 1
2 ) from Eq. (9), the following stationary method is obtained:

x (k+1) = Gα,βx
(k) + M−1

α,βb, k = 0, 1, . . . ,

where

Mα,β = 1
α+β

(α I + T )(β I + S + K ),

Gα,β = I − M−1
α,β A = (β I + S + K )−1(β I − T )(α I + T )−1(α I − S − K ).

(10)

The convergence properties of the TGHSS method is briefly introduced in the following
theorem which has been completely investigated in [4].

Theorem 1 Let A = (T + K ) + S = H + S, where T and K are Hermitian positive
semidefinite matrices and S is a skew-Hermitian matrix. Let α and β be two nonnegative
numbers with (α, β) �= 0. Alternating iteration (9) converges to the unique solution of (1) if
one of the following conditions holds:

(i) T is positive definite, K is positive semidefinite matrix and

α < β ≤ α + 2λq(T ) or α ≤ β < α + 2λq(T ).

(ii) T is positive semidefinite, K is positive definite matrix and

β ≤ α < β + 1

2
λq(K ) or β < α ≤ β + 1

2
λq(K ).

(iii) T is positive definite, K is positive definite matrix and

α < β + 1

2
λq(K ) ≤ α + 2λq(T ) + 1

2
λq(K )

or α ≤ β + 1

2
λq(K ) < α + 2λq(T ) + 1

2
λq(K ).

Furthermore, the spectral radius ρ(Gα,β) of the iteration matrix is bounded by

σ(α, β) = max
λ∈σ(T )

|β − λ|
α + λ

.

From Theorem 1, if all assumptions are fulfilled, small values of the σ(α, β) lead to small
values of the spectral radius of the iteration matrix.

Now, we use the presented matricesGα,β and Mα,β in (10) to construct the preconditioner
matrix inEq. (2). Indeed, substitution of the proposedmatrices inEq. (2) leads to the following
m-step TGHSS preconditioning matrix

Pα,β(m) = Mα,β

(
I + Gα,β + G2

α,β + · · · + Gm−1
α,β

)−1
, (11)

where

Gk
α,β = [

(β I + S + K )−1(β I − T )(α I + T )−1(α I − S − K )
]k

.
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The preconditioning matrix Pα,β(m) in (11) can be applied to solve the linear system (1)
using preconditioned Krylov subspace iteration methods such as GMRES. From (3), the
preconditioned matrix is also given by

Pα,β(m)−1A = I − Gm
α,β .

Now, since spectral radius of Gα,β can be less than one, the following theorem is stated to
summarize the properties of preconditioned matrix.

Theorem 2 Let the assumptions of Theorem 1 be fulfilled. Moreover, let Pα,β(m) be the
matrix defined as in (11). Then,

(i) ρ(Gm
α,β) ≤ σ(α, β)m < 1;

(ii) the eigenvalues of the preconditioned matrix Pα,β(m)−1A are enclosed in a circle cen-
tered at (1, 0) with radius ρ(Gm

α,β).

From Theorem 2, it can be easily seen that the eigenvalues of the preconditioned matrix
Pα,β(m)−1A are more clustered by increasing m. Note that larger values of m increase the
computational costs and hence choosing the best value of m is a key issue. However, finding
the proposed value is a critical task and hence we experimentally determine the optimal
values of m which preserve the efficiency of the method. In the sequel, to make the notation
more concise, the m-step TGHSS preconditioning matrix and the preconditioned GMRES
method are denoted as TGHSS(m) and TGHSS(m)-GMRES, respectively.

4 Implementation issues

In applying the preconditioner Pα,β(m) within a Krylov subspace method like GMRES, we
need to compute a vector of the form z = Pα,β(m)−1y for a given vector y. To compute the
vector z we may solve the system Pα,β(m)z = y for z. To do so, we first solve the system
Mα,βw = y for w and then compute z = (I + Gα,β + G2

α,β + · · · + Gm−1
α,β )w. It is worth

noting that the computation of z can be done by the using the Horner’s well-known rule.
Summarising the above discussion yields the following scheme for computing the vector z.

1. Solve Mα,βw = y for w

2. z := w + Gw

3. For k = 1, 2, . . . ,m − 2
4. z := w + Gz
5. End For

In step (1) to solve the system and in step (4) to compute the vector Gz we need to solve two
systems with the coefficient matrices α I + T and β I + S + K . The first one can be solve
exactly by the Cholesky method or inexactly by the conjugate gradient (CG) method, and
the second one may be solved exactly by the LU factorization or inexactly by the GMRES
method.

5 Numerical examples

In this section, the TGHSS(m)-GMRES method is applied to solve non-Hermitian positive
definite linear systems presented in three examples. Furthermore, the numerical results of the
proposed method are compared with HSS(m)-GMRES method. In all examples, the vector
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of all ones is the right-hand side vector b. In addition, the initial guess is set to be the zero
vector and the iteration is terminated whenever

‖r (k)‖2
‖r (0)‖2 ≤ 10−6,

where r (k) = b − Ax (k). We consider the following splitting for the matrices T and K to
implement the TGHSS(m)-GMRES method

T = H − λmin(H)I, K = λmin(H),

where λmin(H) is the minimum eigenvalue of Hermitian matrix H . In general it is difficult
to compute the optimal parameter in the HSS method and it is problem-based. Bai et al. have
presented the optimal parameters in the HSS method for certain two-by-two block matri-
ces [10]. The quasi-optimal parameters in the HSS-like methods for saddle-point problems
has been given in [5]. Haung has presented a practical formula to approximate the optimal
parameters in the HSS iteration methods [21]. In all examples, the optimal value of unknown
parameter for the HSS(m) preconditioner is approximated by the proposed method in [21].
Note that TGHSS(m) preconditioner contains two parameters and computing the optimal
parameters is a very complicated task. Hence, the unknown values in the TGHSS(m) pre-
conditioner are approximated experimentally. All the computations have been implemented
in Matlab 8.1 software on a PC with Core i7, 2.67GHz CPU and 4.00GB RAM.

Example 1 In this example, we consider the linear system (1) with the coefficient matrix

A =
(

B E
−ET C

)
,

where B and C are arbitrary symmetric positive definite matrices of size n2 × n2 and n × n,
respectively, and E is any matrix of size n2 × n. Note that the matrices B, E and C are
randomly generated to implement the HSS(m)-GMRES and TGHSS(m)-GMRES methods.
The experimental results show that iteration counts are very stable for any random matrices,
and hence we present the numerical results for fixed matrices B, C , and E . The iteration
numbers (Its.), CPU time (in seconds), upper bound of the iteration matrix and the spectral
radius of the GMRES method with the m-step HSS preconditioners, GMRES method with
the m-step HSS preconditioners, and GMRES without using a preconditioner are given in
Tables 1, 2, 3 for n = 8, 16, 32. As the numerical results show, the new preconditioner is
reliable and more effective than the m-step HSS preconditioner. For more investigation the
eigenvalues distribution of the matrices A and Pα,β(m)−1A with (α, β) = (6.2, 5.3) are
shown for n = 32 and m = 1, . . . , 5 in Fig. 1. As we see the eigenvalues of Pα,β(m)−1A are
more clustered than the matrix A.

Example 2 The coefficient matrix A used for this example is obtained from discretization of
the two-dimensional convection-diffusion equation [12]

− (
uxx + uyy

) + δ
(
ux + uy

) = f (x, y), (x, y) ∈ �,

with the homogeneous Dirichlet boundary conditions, where δ is a constant and � =
[0, 1]×[0, 1]. The proposed equation is descritized with five-point stencil and centered finite
differences on a uniform grid with n × n interior nodes which leading to a non-Hermitian
positive definite linear system. The coefficient matrix A of the proposed linear system is
given by
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Table 1 Numerical results for n = 8 in Example 1

m TGHSS(m)-GMRES with (α, β) = (3.0, 2.0) HSS(m)-GMRES with α = 11.8624 GMRES

Its. Time σ(α, β)m ρ(G(α, β)m ) Its. Time σ(α)m ρ(G(α)m ) Its. Time

1 19 0.0104 0.9702 0.6491 26 0.0361 0.8666 0.8604

2 12 0.0065 0.9414 0.4214 17 0.0334 0.7510 0.7403

3 8 0.0056 0.9133 0.2735 13 0.0290 0.6509 0.6369 57 0.0782

4 7 0.0057 0.8862 0.1776 10 0.0289 0.5641 0.5480

5 5 0.0051 0.8598 0.1153 9 0.0372 0.4888 0.4715

Table 2 Numerical results for n = 16 in Example 1

m TGHSS(m)-GMRES with (α, β) = (4.4, 3.4) HSS(m)-GMRES with α = 20.5710 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 26 0.0211 0.9870 0.7592 35 0.0502 0.9332 0.9297

2 17 0.0141 0.9741 0.5765 25 0.0489 0.8709 0.8643

3 12 0.0120 0.9615 0.4390 18 0.0401 0.8128 0.8035 135 0.2170

4 10 0.0161 0.9489 0.3337 15 0.0435 0.7586 0.7470

5 8 0.0113 0.9366 0.2537 13 0.0403 0.7079 0.6945

Table 3 Numerical results for n = 32 in Example 1

m TGHSS(m)-GMRES with (α, β) = (6.2, 5.3) HSS(m)-GMRES with α = 34.9678 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 33 0.2363 0.9952 0.8210 46 0.3550 0.9714 0.9707

2 22 0.2639 0.9905 0.6743 40 0.5003 0.9437 0.9422

3 16 0.2722 0.9858 0.5548 23 0.4289 0.9167 0.9146 249 1.0131

4 14 0.2909 0.9811 0.4558 25 0.5881 0.8906 0.8878

5 10 0.2828 0.9765 0.3743 16 0.4612 0.8651 0.8617

A = T ⊗ I + I ⊗ T,

where

T = tridiag(−1 − r, 2,−1 + r), r = (δh)/2,

with r as the mesh Reynolds number and h = 1/(n + 1) as the step size. The value of δ

is set to be 1000 and the HSS(m) and TGHSS(m) preconditioners are used in GMRES for
n = 16, 32. The computational results are reported in Tables 4, 5. As the numerical results
show the spectral radius of the iteration matrices and iteration numbers of various methods
are decreased by increasing m. Furthermore, the running time of TGHSS(m) preconditioner
is smaller than the HSS(m) and original method even for larger values of m which shows
the effectiveness of the new method. Similar to the previous example, spectral distributions
of coefficient matrix A and preconditioned matrices Pα,β(m)−1A, m = 1, 2, 3, 5, 10, are
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Fig. 1 Spectral distributions of coefficient matrix A and TGHSS(m)-preconditioned matrices Pα,β (m)−1A
for (α, β) = (6.2, 5.3) and n = 32 in Example 1

shown in Fig. 2. It can be seen that the spectra of the preconditioned matrices becomes more
clustered with increasing m.

Example 3 In this example, we consider the linear system (1) with the following coefficient
matrix which has been used in [19]

A =
(

D T
−T T μI

)
,
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Table 4 Numerical results for n = 16 in Example 2

m TGHSS(m)-GMRES with (α, β) = (7.3, 3.7) HSS(m)-GMRES with α = 3.9954 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 11 0.0236 0.5068 0.4635 13 0.0582 0.9665 0.8439

2 7 0.0237 0.2569 0.2149 14 0.0845 0.9341 0.7122

3 5 0.0177 0.1302 0.0996 9 0.0595 0.9028 0.6011 147 0.1788

5 3 0.0190 0.0334 0.0214 8 0.0621 0.8433 0.4281

10 2 0.0206 0.0011 0.0045 5 0.0699 0.7111 0.1833

Table 5 Numerical results for n = 32 in Example2

m TGHSS(m)-GMRES with (α, β) = (7.1, 4.6) HSS(m)-GMRES with α = 3.9830 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 14 0.0992 0.6479 0.5593 16 0.1572 0.9909 0.8120

2 10 0.1331 0.4198 0.3128 17 0.2550 0.9820 0.6710

3 7 0.1464 0.2720 0.1750 13 0.3024 0.9731 0.5497 178 0.3384

5 5 0.1622 0.1142 0.0547 10 0.3669 0.9555 0.3687

10 3 0.2125 0.0130 0.0030 6 0.4101 0.9131 0.1360

Table 6 Numerical results for n = 16 in Example 3

m TGHSS(m)-GMRES with (α, β) = (0.1, 0.09) HSS(m)-GMRES with α = 0.2349 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 30 0.0713 0.9000 0.8570 35 0.1176 0.9183 0.9183

2 19 0.0695 0.8100 0.7344 23 0.1126 0.8433 0.8433 203 0.5067

3 15 0.0727 0.7290 0.6293 19 0.1190 0.7744 0.7744

where D is an n × n real positive diagonal matrix and T is an n × n real Toeplitz matrix
which is defined as follows:

Ti, j = 1√
2π

σe−|i− j |2/(2σ 2), i, j = 1, . . . , n.

The HSS(m) preconditioner and TGHSS(m) preconditioner have been applied to solve the
proposed linear system with μ = 0.01 and σ = 2. A comparison of the proposed precon-
ditioners has been done for n = 16, 32 and the results are reported in Tables 6, 7. As the
numerical results show, our new preconditioner is more effective than the HSS(m) precondi-
tioner. However, the numerical experiments showed that the computational time (CPU time)
is increasing with increasing the value of m. Hence, m = 2 can be considered as an optimal
selection for this example.
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Fig. 2 Spectral distributions of coefficient matrix A and TGHSS(m)-preconditioned matrices Pα,β (m)−1A
for (α, β) = (7.1, 4.6) and n = 32 in Example 2

Table 7 Numerical results for n = 32 in Example 3

m TGHSS(m)-GMRES with (α, β) = (0.1, 0.09) HSS(m)-GMRES with α = 0.2436 GMRES

Its. Time σ(α, β)m ρ(Gm
α,β ) Its. Time σ(α)m ρ(Gm

α ) Its. Time

1 32 0.8811 0.9000 0.8570 39 1.1161 0.9211 0.9211

2 20 0.8016 0.8100 0.7344 25 1.1140 0.8485 0.8485 330 3.8556

3 16 0.9722 0.7290 0.6293 20 1.4215 0.7815 0.7815
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6 Conclusion

In this paper, a new m-step preconditioner is presented based on the two-parameter
generalized Hermitian and skew-Hermitian splitting (TGHSS) iteration method to solve non-
Hermitian positive definite linear systems. The proposed preconditioner is used for Krylov
subspace iteration methods such as GMRES to solve three known numerical examples. The
computational results show that the new preconditioner is more effective than the recently
proposed HSS(m) preconditioner.
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