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Abstract In this work, we use the concept of p-square-mean pseudo almost periodic and
automorphic processes introduced by Diop et al. (Afr Mat 26(5):779-812, 2015) to discuss
the existence and uniqueness of solutions for some semilinear integro-differential stochastic
evolution equations. We provide an example to illustrate ours results.
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1 Introduction

Integro-differential equations arose naturally in mechanics, electromagnetic theory, heat flow,
nuclear reactor dynamics and population dynamics. Ding et al. [ 14] investigated the existence
of pseudo almost periodic solutions for an equation arising in the study of heat conduction
in materials with memory, which could be transformed into the following abstract integro-
differential equation

1
xX'(t) = Ax(t) +/ B(t —s)x(s)ds + h(t,x(¢t)) forall 7>0. (1.1)
0

Furthermore, noise or stochastic perturbation is unavoidable and omnipresent in nature as
well as in man-made systems. This paper is mainly focused on the existence and uniqueness
of p-pseudo almost periodic and automorphic solutions to the semilinear integro-differential
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stochastic evolution equations in a Hilbert space H

t

ﬂm=AWHw&ﬂm+/ Byt — 5) f (5. x(s))ds

—0o0

1
+ / Br(t — s)h(s, x(s))dW(s) forall e R, (1.2)
—00

where A : D(A) C H — H is densely defined closed operator (possibly unbounded). B
and B; are convolution-type kernels in L'(0, 00) and L%(0, 00) respectively. f, g, h : R x
L3(Q, H) — L2%(2, H) are two stochastic processes and W (¢) is a two-sided and standard
one-dimensional Brownian motion defined on the filtered probability space (2, F, P, F;)
with 7y = o {W(u) — W)|u, v < t}.

We assume (H, || - ||) is real separable Hilbert space and L3(Q, H) represents the space
of all H-valued random variables x such that

EMV=/HN%P<+m
Q

The concept of almost automorphic is a natural generalization of the almost periodicity that
was introduced by Bochner [8]. For more details about the almost automorphic functions
we refer the reader to the book [27] where the author gave an important overview about
the theory of almost automorphic functions and their applications to differential equations.
In the last decade, many authors have produced extensive literature on the theory of almost
automorphy and its applications to differential equations, more details can be found in [9, 17—
19,22-24,26,31,32] and the references therein. Then a generalization of almost automorphic
functions gives pseudo almost automorphic functions. Also weighted pseudo almost auto-
morphic functions which are more general than weighted pseudo almost periodic functions
in [2,12,13] and the references therein.

In recent years, the study of almost periodic and almost automorphic solutions to some
stochastic differential equations have been considerably investigated in lots of publications [4,
6,7,10,20,21,28,30] because of its significance and applications in physics, mechanics and
mathematical biology. The concept of square-mean almost pseudo automorphic stochastic
processes was introduced by Chen and Lin in [11]. One say that a continuous stochastic
process (see Definition 2.1) x is p-pseudo almost periodic (resp. automorphic) in the square-
mean sense if

X = X1+ x2,

where x| is almost periodic (resp. automorphic) and x; is p-ergodic in the sense that

-
lim ———— | Elxn@)’du@ =0,
r=>o0 pu([=r.rl]) J-,
where w is a positive measure on R, w([—r, r]) is the measure of the set [—r, r]. One can
observe that a square-mean pseudo almost periodic (resp. automorphic) process is a square-
mean p-pseudo almost periodic (resp. automorphic) process in the particular case where
the measure p is the Lebesgue measure on R. For more details about the p-pseudo almost
periodic (resp. automorphic) processes, one can refer to [15,16]. Note that in [3,25], a new
concept of almost periodic (resp. automorphic) process in a distribution sense was introduced
in the literature. The authors use this concept to study some stochastic differential equations.
Recently, Bezandry in [5] investigate the existence and uniqueness of the square-mean
almost periodic solution of the Eq. (1.2). However, to the best of the author knowledge, the
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existence of p-square-mean pseudo almost periodic and automorphic solutions of the Eq.
(1.2) remains an untreated question, which is the mean motivation of this paper.

The organization of this work is as follows. In Sect. 2, we make a recalling on p-pseudo
almost periodic and automorphic processes. In Sect. 3, using the results obtain in Sect. 2
and some suitable conditions, we prove the existence and the uniqueness of the square-mean
pn-pseudo almost periodic and automorphic mild solution of the Eq. (1.2). In Sect. 4, we
provided an example to illustrate our results.

2 Preliminaries
2.1 Square-mean p-ergodic process

Denote by B the Lebesgue o-field R of and by M the set of all positive measures (1 on B
satisfying u(R) = 400 and i ([a, b]) < +oo foralla, b € R (a < b).
L?(2, H) is Hilbert space equipped with the following norm

,\?
lxllz2 = (/ llxl dP) .
Q

Definition 2.1 Letx : R — LZ(Q, H) be a stochastic process.
(1) x is said to be stochastically bounded if there exists M > 0 such that
Elx()||> <M forall feR.
(2) x is said to be stochastically continuous if
lim E[lx (1) - x()|>=0 forall seR.
We denote by SBC (R, L>($2, H)) the space of all the stochastically bounded and con-

tinuous process. Clearly, the space SBC (R, L*($2, H)) is a Banach space equipped with the
following norm

1
¢ |00 = sup(Elx(1)]|*)2.
teR

Definition 2.2 [15] Let ;© € M. A stochastic process x is said to be square-mean p-ergodic
if x € SBC(R, L2(X2, H)) and satisfied

. " 2 _
Jim ) 7r]EIIX(t)|I du(r) = 0.

We denote the space of all such process by (R, L2(Q, H), ).

For u € M, we denote
EMR x L2(2,H), L2(2, H), u) = {¢(-, x) € ER, L*(, H), u) forany x € L*(Q, H)}.
Proposition 2.1 [15] Let u € M. Then E(R, L2(2, H), p) is a Banach space with the norm

I lloo-

Example 2.1 Let p be a nonnegative 5-measure function. Denote by u the positive measure
defined by

u(A):/,o(t)dt for A e B, 2.1)
A
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where dt denotes the Lebesgue measure on R. the function p which occurs in (2.1) is called
the Radon—Nikodym derivative of  with respect to the Lebesgue measure on R [29, p. 130].
In this case, © € M if and only if its Radon—Nikodym derivative p is locally Lebesgue-
integrable on R and it satisfies

+00
/ p(t)dt = +oo.

—00

Definition 2.3 [1] Let 1 and o € M. g is said to be equivalent to o (01 ~ o) if there
exist constants « and 8 > 0 and a bounded interval I (eventually I = ) such that

api(A) < u2(A) = pri(A)
for A e B satisfying ANI=0.

Theorem 2.1 [15] Let 1 and py € M. If u1 and py are equivalent, then £(R, L3(Q, H),
p) = ER, L*(Q, H), 12).

For u € M and T € R, we denote by 1, the positive measure on (R, 53) defined by
U (A) =p(a@a+rt:a € AforA € B.

From u € M, we formulate the following hypothesis.
(H) For all T € R, there exist 8 > 0 and a bounded interval I such that

nr(A) < Bu(A) when A € BsatisfiesANI = @.

Lemma 2.1 [1] Let u € M. Then  satisfies (H) if and only if u and . are equivalent for
allt e R.

Lemma 2.2 [1] Hypothesis (H) implies that for all o > 0,
: u(l=r —o,r+o)
lim sup < +00.
r—>+00 u(l=r,rD

Remark 2.1 [1] For Example 2.1, Hypothesis (H) holds if and only if for all t € R, there
exist a constant 8 > 0 and a bounded interval I such that

pt+1) < Bo@) ae R\IL

When p is given by a density as follows

() = p(n)dt,

where p satisfies the condition of Example 2.1, then Hypothesis (H) is equivalent to say

t
for all T eR, lim sup M <
|t|—+o00 ,O(I)
Example 2.2
_Jexp@®) if t=<0
p(”—{l it 1> 0.
In fact
1 t
M =1 and lim M =exp(r) for 7 eR.
t=+oo  p(t) t——co  p(t)
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Let f € SBC(R, L*(Q,H)) and t € R. We denote by f; the function defined by
fr(t) = f(t+71)fort e R.

A subset § of SBC(R, L2(€2, H) is said to translation invariant if for all f € § we have
fregforalt eR.

Theorem 2.2 [15] Let u € M satisfy (H). Then E(R, L2(Q2, H), p) is translation invariant.

2.2 u-Pseudo almost periodic process

Definition 2.4 [6] Let x : R — L2(€2, H) be a continuous stochastic process. x is said be
square-mean almost periodic process if for each € > 0 there exists / > 0 such that for all
a € R, there exists T € [«, o + [] satisfying

supEllx(t +1) —x(0)|> <€
teR

We denote the space of all such stochastic processes by SAP (R, L*($2, H)).
Theorem 2.3 [6] SAP(R, L%(2, H)) equipped with the norm || - || is a Banach space.

Definition 2.5 [15]Letu € Mand f : R — L2($2, H) be a continuous stochastic process.
f is said be p-square-mean pseudo almost periodic process if it can be decomposed as
follows

f=g+o,
where g € SAP(R, L*(2, H)) and ¢ € ER, L2(Q, H), ).

We denote the space of all such stochastic processes by SPAP (R, L2(Q, H), w). Then we
have

SPAP(R, L*(Q, H), n) C SBC(R, L*(2, H)).

Theorem 2.4 [15] Let n € M satisfy (H). Then SPAP (R, L2(Q, H), ) is translation
invariant.

Theorem 2.5 [15] Let p € Mand f € SPAP(R, L2(Q2, H), ) be such that

f=g+o.
where g € SAP(R, L2(Q2, H)) and ¢ € ER, L2(Q, H), n). If SPAP(R, L2(2, H), u) is
translation invariant, then

{fOlr e R} D {g®)|r € R}.

Theorem 2.6 [15] Let u € M. Assume that SPAP (R, L2(2, H), p) is translation invari-
ant. Then SPAP (R, L*(2, H), ) is a Banach space with the norm || - || co-

Definition 2.6 [6] Let f : R x L3(Q,H) —> LX(Q,H), (t, x) —~ f (¢, x) be continuous.
f is said be square-mean almost periodic in r € R uniformly in x € K where K C L?(2, H)
is a compact if for any € > 0, there exists I(e, K) > 0 such that for all @ € R, there exists
T € [a, o + I(€, K)] satisfying

SupE|| f(t 4+ 7, x) — f(t,0)]* <€
teR

for each stochastic process x : R — K.
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648 M. M. Mbaye

We denote the space of such stochastic processes by
SAP(R x L*(, H), L>(Q, H)) = {g(-, x) € SAP(R, L>(Q, H)) forany x € L*(Q, H)}.

Definition 2.7 [15] Let © € M. A continuous function f(z,x) : R x LY(Q,H) —
L*($2, H) is said to be square-mean ;1 —pseudo almost periodicinz € Rforanyx € L>(2, H)
if it can be decomposed as f = g + ¢, where g € SAP(R x L2(Q, H), L2(Q, H)) and
¢ € ER x L*(Q, H), L?(2, H), u). Denote the set of all such stochastically continuous
processes by SPAP(R x L2(Q, H), L2(2, H), ).

Theorem 2.7 [15] Let © € M satisfy (H). Suppose that f € SPAP(R x L3(Q, H),
LZ(Q, H), ) and that there exists a positive number L such that, for any x, y € LZ(Q, H),

Ell f(t,x) — f(t, )I* < L-E|lx — y|?

fort € R. Thent — f(t,x(1)) € SPAP(R, L*(2, H), w) for any x € SPAP(R, L?
(€2, H), w).

2.3 p-Pseudo almost automorphic process

Definition 2.8 [21] Let x : R — L?(X2, H) be a continuous stochastic process. x is said be
square-mean almost automorphic process if for every sequence of real numbers (z,,),, we can
extract a subsequence (7,), such that, for some stochastic process y : R — LZ(Q, H), we
have

lim Elx(t +1,) — y(®)||> =0 forall reR
n— 400
and

lim E|y(r —t,) —x@)|*>=0 forall ¢eR.
n——4o00

We denote the space of all such stochastic processes by SAA(R, L2(Q2, H)).
Theorem 2.8 [21] SAA(R, L%($2, H)) equipped with the norm || - ||« is a Banach space.

Definition 2.9 Let x € M and f : R — L2(€2, H) be a continuous stochastic process. f
is said be pu-square-mean pseudo almost automorphic process if it can be decomposed as
follows

f=g+o
where g € SAA(R, L2(2, H)) and ¢ € E(R, L2(2, H), w).

We denote the space of all such stochastic processes by SPAA(R, L3(2, H), ). Then we
have

SPAAR, L*(2,H), u) € SBC(R, L*(2, H)).
Hence, together with Theorem 2.2 and Definition 2.9, we arrive at the following conclusion.
Theorem 2.9 Let ju € M satisfy (H). Then SPAA(R, L*(2, H), p) is translation invariant.
Theorem 2.10 Let i € Mand f € SPAA(R, L*(2, H), ) be such that

f=¢g+o,
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where g € SAAR, L*(Q2,H)) and ¢ € ER, L*(2, H), ). If SPAAR, L2(Q, H), p) is
translation invariant, then

{f®O]t e R} D {g(®)|r € R}.
The proof of Theorem 2.10 is similar to the proof of Theorem 4.1 in [1].

Theorem 2.11 Let 1 € M. Assume that SPAAR, L2(2, H), p) is translation invariant.
Then SPAA(R, L>(2, H), 1) is a Banach space with the norm | - || o

The proof of the theorem above is similar to the proof of Theorem 4.9 in [1].
For n € M, we denote

SAARR x L*(Q, H), L*(2,H)) = {g(-, x) € SAAR, L>(Q, H)) forany x € L>(Q, H)}.

Definition 2.10 Let u € M. A continuous function f(z, x) : R x L2(Q, H) — L2($2, H)
is said to be square-mean pu—pseudo almost automorphic in ¢ € R for any x € L?($2, H)
if it can be decomposed as f = g + ¢, where g € SAAR x L*(Q, H), L>($2, H) and
0 € ER x LE(Q, H), L2(22, H), w).

Denote the set of all such stochastically continuous processes by SPAA(R x L2($2, H),
LX(Q, H), p).

Theorem 2.12 Let & € M satisfy (H). Suppose that f € SPAAR x L2(Q, H),
L3(2, H), ) and that there exists a positive number L such that, for any x, y € L*(2, H),

Elf@,x) = f&, MI* < L-Elx =yl

fort € R Thent — f(t,x(t)) € SPAAR, L>(Q, H), u) for any x € SPAAR, L?
(€2, H), ).

Proof Let f = g+ ¢ with g € SAAR x L*(Q,H), L>(Q,H)) and ¢ € ER x
L*(2, H), L>(Q2, H), w). Similarly, let x = x; + xo with x; € SAA(R, L?(Q, H)) and
x2 € ER, LH(Q, H), ).

The function f can be decomposed as follows
F,x@) =gk, x1(0) +[f @, x@) — f@&, 10D+ [f @, x1(2)) — g, x1(1))]
=g, x1(1) + [f(t, x(@) — f(t, x1(1)] + @(z, x1(1)).

From Theorem 2.10, we deduce that g is Lipschitz. Then using the theorem of compo-
sition of almost automorphic process (Theorem 2.6 in [21]), we obtain that g(-, x1(-)) €
SAA(R, L*(2, H)). With the same argument used in the steps 2 and 3 of the proof of The-

orem 5.7 in [15], gives as that [ f(-, x(-)) — f(C,x1( D], (G, x1(:)) € ER, Lz(Q, H), w).
O

3 Main results

To discuss the existence and uniqueness of the mild solution of the Eq. (1.2), we suppose
that the following assumptions hold:

(Hy) The operator A : D(A) C H — H is the infinitesimal generator of a uniformly
exponentially stable semigroup (7' (¢));>0 such that there exist constants M > 1 and
8 > 0 with

IT@)| < Me™® forall > 0.
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650 M. M. Mbaye

(H3) Bp and B; are convolution-type kernels in L1(0, 00) and L%(0, c0) respectively.
(H3) Let f,g,h : R x L%(Q,H) — L%($2, H) be stochastic processes such that there
existsonstant L > 0 such that

Ell f(t,x)— ft, ) IP<L-E|x—yl>
E |l g(t,x) —gt,y) I’< L-E|x—yl?
E || A(t,x) —h(t,y) I’< L-E |l x—y |?

forallr € R and forany x, y € LZ(Q,H).

Definition 3.1 [5] An F;-progressively measurable process {x(¢)};cr is called a mild solu-
tion on R of the Eq. (1.2) provided that it satisfies the corresponding stochastic integral
equation

1

t o
x(t) =T(t —a)x(a) +/ Tt —s)g(s, x(s))ds—‘f-/ T(t— U)/ Bi(o —s)f(s,x(s))dsdo
t o
+/ T(t —O’)/ By (o — s)h(s, x(s))dW (s)do 3.1
forall > a and each a € R.

Remark 3.1 1f we let a — —oo in the stochastic integral equation (3.1), by the exponential
dissipation condition of (7' (¢));>0, then we obtain the stochastic process x : R — L2(Q, H)
is a mild solution of the Eq. (1.2) if and only if x satisfies the stochastic integral equation

t t o
x(t) = f Tt —s)g(s, x(s))ds + / T(t— o)/ Bi(o —5) f(s,x(s))dsdo

t o
+/ T(t— a)/ Br(o — s)h(s, x(s))dW (s)do. 3.2)

—00 —00
Theorem 3.1 Let u € M satisfy (H) and (H)-(H>)—(H3) hold. If f, g and h are square-
mean p-pseudo almost periodic, then the Eq. (1.2) has a unique square-mean [L-pseudo
almost periodic mild solution on R, whenever

M2 2 2
0= 387214(1 + ”BIHLI(O,OO) + ”BzHLz(O,oo)) < L

Proof We define the nonlinear operator A by

t

t o
(Ax)(t) = / T(t—s)g(s,x(s))ds +/ T(t— a)/ Bi(o —s) f(s,x(s))dsdo

—00 —

t o
+/ T(t — a)/ Bs(o — s)h(s, x(s))dW (s)do.
—00 —00

forany x € SPAP(R, L*(, H), ).

We claim to prove that A is a strict contraction mapping from SPAP (R, L?(2, H), )
to itself.
Step 1 Firstly, we have to show that A is well defined. Let x € SPAP(R, L3(Q, H), p), we
have
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t

t o
E|l(Ax)(1) ||2 = ]EH / T(t—s)g(s,x(s))ds + / T(t— (r)/ Bi(o — ) f(s,x(s))dsdo

t o 2
+/ T(t— O’)/ By(o — s)h(s, x(s))dW (s)do

2

t 2 t I
< 3IEH / T —s)g(s,x(s))ds| + 3EH / T(t— a)/ Bi(o — ) f(s,x(s))dsdo

t P )
+3EH/ T(t‘“)/ By(o — $)h(s, x(s)dW (s)do

Since (H) and (H3) hold. Then by Theorem 2.7, we deduce that g(+, x(+)), f (-, x(:)), h(-, x ()
€ SPAP(R, L*>(Q, H), ). Using Cauchy-Schwartz’s inequality and Ito’s isometry prop-
erty, we obtain that

t t
El(A)OI < 3> f 09 g f IR g5, x(s)) 2ds
—o0 —o0

t ‘ - )
+ 3M2</ e—S(t—(T)dU) (/ e“‘("‘ﬁEH / Bi(o —s)f(s, x(s))ds do)
! 1 . )
+3M2</ g’a(tfd)dg> (/ e*é(mﬁEH / By(o — s)h(s, x(s))dW(s) dg)

2

3M
< 5 supEflg(s, x(<))|°
3 seR

2 o

+3%</’ efama)(/ B (o fS)IIdS)
2
ds)dG)

X (/ I Bi(o —s)HEHJ"(S,X(S))

3IM? (1 o )
T ( / e"“””)EH / I\Bz(o—s)an’h(s,x(s» dsda)
oo .
73M2 2 3m? 2 3 2
=5 fg}gEllg(s,x(s))ll t 5 HB]”LI(O,oc)f:}gEHf(S’x(S))ll
3m?

+ = 1B2071 0,000 sup EllAs, X))
< OQ.
Step 2 Now, we verify that A is a self-mapping. Let x € SPAP (R, L>(2, H), ). Then
X =Xx1+x2

where x| € AP(R, L?(2, H)) and x» € £(R, L*(2, H), ). Since

- f € SPAP(R x L%, H), L2(2, H), w) then there exist f; € AP(R x L2($2, H),
L*(Q,H)) and f> € ER x L>(2, H), L>(Q, H), ) such that f = fi + f.

- g€ SPAPR x L%, H), L?(2, H), ) then there exist g; € AP(R x L3(2, H),
L%*(Q2,H)) and g» € ER x L*(Q, H), L>(2, H), ) such that g = g1 + g».

— h € PAP(R x L3(Q,H), L2(2, H), n) then there exist h; € AP(R x L2(2, H),
L2(Q2, H) and hy € E(R x L*(2, H), L2(Q2, H), ) such that h = h; + h».

Hence the functions f, g and & are decomposed as follows:

f@,x@®) = fitt, x1(®) +Lf . x@) — f@& x1()] + [f ¢, x1(2) — f1(t, x1(1))]
= filt,x1(®) + [f @, x(@) — f{t, x1()] + fo(t, x1(2)),
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652 M. M. Mbaye

g, x(1)) = g1(t, x1(1)) + [g(z, x(1)) — g, x1(1)] + [g (1, x1 (1)) — g1 (¢, x1(1))]
= g1, x1(1) + [g(r, x (1)) — g(z, x1(1))] + g2(z, x1(2)),

and

h(t, x(1)) = hi(t, x1 (1) + [h(t, x (@) — h(t, x1(1))] + [A(z, x1 () — h1 (2, x1(1))]
= hi(t, x1(0)) + [h(t, x (@) — h(t, x1(1))] + ha (1, x1(1)).

It follows that
(Ax)(1) = (A1x) () + Y (@),

where

t
(Ax1)(@) =/ Tt —s5)g1(s, x1(s))ds +/

t o
T(t— O')/ Bi(o —s) f1(s, x1(s))dsdo

t o
—l—/ T(t — O’)f Br(o — s)h1(s, x1(s))dW (s)do
—00 —00
and
t
v(t) = / T (1t —s)llgls, x(s)) — g(s, x1(s)]+ g2(s, x1(5))]ds
—00

t o
+/ T(t— 0)/ Bi(o —9)ILf (s, x(s)) — f(s, x1())]+ fals, x1(s)]dsdo
—00 —00

t o
+ / T(t— 0)/ By(o — )[lA(s, x(s)) — h(s, x1 (s)] + ho(s, x1 (s)]d W (s)do.
—00 —00

Using Theorem 2.5 and (H3), we obtain that
fi. g1, h1 € AP(R x L*(2, H), L?(2, H)) are Lipschitzian in the following sense

E|l fi(t,x)— fitt, ) IP<L-Ex—y|? (3.3)

Ellgi(t,x)—git,y) I’<L-E|x—y]|? (3.4)
and

E [l hi(t,x) —hi(t, ) I’<S L-E|x—yl|?. (3.5

Hence, using (3.3), (3.4) and (3.5), it follows from Theorem 3.2 in [5] that Ajx; is almost
periodic in the square-mean sense.
Next, we have to check that

1 r

lim —— [ E|w(®)|*du) = 0.

Jim s | BN P
Let

t t o
V() = f T(t —s)G(s)ds +/ T(t— a)f Bi(oc —s)F(s)dsdo
t o
+/ T(t— 0)/ Br(o —s)H(s)dW (s)do,

where

G(s) = [[g(s, x(s)) — g(s, x1(s)] + g2(s, x1(s))],
F(s) =[[f(s,x(s)) — f(s, x1(s)] + f2(s, x1(5))]
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and
H(s) = [[h(s, x(s)) — h(s, x1(s)] + ha(s, x1(s))].

Using the similar arguments performs in the steps 2 and 3 of the proof of Theorem 5.7 in
[15], we obtain that G, F, H € £(R, L%(Q2, H), ). Then, we have

t 2 t o 2
EWw(@))? < 3EH / T(t —$)G(s)ds| + 3]E‘ / Tt — a)/ By (o — $)F(s)dsdo
—00 —00 —00
! o 2
+ 3IEH / T(t— 0)/ Br(o —s)H(s)dW (s)do
—00 —00
That implies for r > 0, that
1 r
— | E|vo|Pdu
i | () 17dp(2)
3 r t 2
< 7{ / EH / Tt —s5)G(s)ds| du(t)
w(l=r,rD LJ= —0
2

t I
/ T(t—o0) / Bi(oc — $)F(s)dsdo

+[ g
+[®

ol
< -
~ pll=rr]

Firstly, using Cauchy—Schwartz’s inequality and Fubini’s theorem, we obtain the following
estimation of [}

r t t
I <M / ) / ) g / IEIG(s) | ds
_r —00 —00

dp(r)

2

t o
H/ T(t—a)/ Br(o — s)H (s)dW (s)do d,u(t)}

| +12+13}-

2 r

M- % gt — WP e w—1—
< 5 du(t) e "E|G({t —u)||“du (setting u =1t —s)
—r 0

2 %) r
sMT/ {e*‘“‘f IEIIG(t—u)Ilzdu(t)}du.
0

—r

It follows that
Ly M /m{ e ' E|G(t —w)|*d (t)}d
— L < — _ —u % u.
w=r,) ' = Jo ln=rm /.,

Since

E|G(s)I* du(r)

—du r s 5
‘ < e MF|5%-

pul=r,r]) J-r

Then, using the Lebesgue dominated convergence theorem and the fact that
E(R, L*(2, H), ) is translation invariant, we get that

M2
lim —

* —du q; 1 " _ 2 _
Hooiﬂ([_r,r])hf 5/0 {e lim ——— | E|G¢ —u)| du(z)}du_o.

r=oo u([=r,r]) J-,
(3.6)
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Next, we have to estimate />. We have

r t o 2
L = / E / Tt — 0)/ Bi(oc —s)F(s)dsdo || du(t)
r 1 o 2
< MQ/ ]E(/ e 0= / Bi(o — s)F(s)ds da> du(r).

Using Cauchy—Schwartz’s inequality and Fubini’s theorem, we obtain that

r t t o
I < MZ/ (/ eia(r*g)da>(/ eia(r*J)EH/ Bi(o —s)F(s)ds
—r \J—o0 —0c0 —o0
2 prr t o 2
< MT/ (/ e*‘s“*“)JEH/ B\ (o — 5)F(s)ds
o\ _
< /‘Lz/ L) f f"
5 o
M2
<M ymy f (/ e*“’*")/ B —s)
ISy A |
MZ r 9] —su o]
< THBI I.10,00) f_r (/0 e /(; HBI(U)
M2 o] o) r
<M ymy [T | (/ E
5 L) J 0 —r

It follows that

1
P |Bl||L1<o o) f e / I1B1 )|

x (L E|F(t —u — v)||2du(t)>dvdu.
u(l=r,rD J-,

2

da)dn(t)

do)du(l)

2
Bi(o —s)|d Bi(o — ) ds]da)dp,(r)

IEHF(S)

2
dsd(r)du.(t)

]EHF(S)

2
dvdu)du(t) (setting u=t—o0, v=0—3)

]EHF(tfu —v)

2

By (v)

‘F(l—u—v)

dp.(t))dvdu.

Since

-5 2
< e IBill 110,00 I Fll5%

o0 1 r
e f ||Bl(v>||<7 E||F<r—u—v>||2du(r>)dv
0 w(—=r,r]) J_,

and
.

EllF @ —u— v)IIQdM(t)> < B FI3.

1
B -
’” 1l (M([—r, r])

Then, using the Lebesgue dominated convergence theorem and the fact that
E(R, L%(2, H), w) is translation invariant, we get that

1
llggoﬂ([ - ]) ||Bl||L1(ooo)/ / | B1 ()l
( fim IE||F(1 —u— v)||2du(t)>dvdu =0. (3.7)
r—oo u([—r,r]) J_,

Next, we need to estimate /3. In fact using Cauchy—Schwartz’s inequality and Ito’s isometry
property, we obtain that
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2

r t -
I3 :/ E / T(t— 0)/ Br(o — s)H(s)dW (s)do d/,L(t)}
r t P - )
=< Mz/ (/ efﬁ(ffo)do’)</ e*B(tfo')]EH/ Bz(O‘ *S)H(S)dW(s) do‘)du([)

M2 [ t s(t—o) o , )
: 7/ (/ e / I1B2(o — )I"EIH ()l dsda)du(;)_

5 Jor —o0

Using Fubini’s theorem, Lebesgue dominated convergence theorem and the same calculus
techniques used above, one can obtain that
) 1
lim ——1 =0 (3.8)
r=>00 pu([=r,r])
Consequently, combining (3.6)—(3.8), we obtain that

1 r
lim ——— | E|W()|?du@) = 0.
oo u([—r,rD) J_,
Hence A is a self-mapping from SPAP (R, LZ(Q, H), w) to itself. Next, we have to check
that A is a strict contraction. For x1, x € SPAP(R, L*(Q, H), ) and each t € R, we have

Ell(Ax1) (1) = (Ax2) (@)

t
—E f Tt — 9)lg(s. x1(5)) — (s, x2(s)]ds

—0o0

t o
+/ T(I—O)/ Bi(o —s)[f(s,x1(s)) — f(s, x2(5))]dsdo

t o 2
+ / T(t— a)/ By(o — s)[h(s, x1(s)) — h(s, x2(s))1dW (s)do

—00

t 2
SSIEH/ Tt —s)[g(s, x1(s)) — g(s, x2(s))1ds

2

t o
+ 3EH / Tt — cr)/ Bi(o — $)[f(s,x1(s)) — f(s, x2(s)))dsdo

t o 5
+3EH/ T(t_(’)/ Ba(o — $)[h(s, x1(s)) — h(s, x2(s)1dW (s)do

Using Cauchy—Schwartz’s inequality and Ito’s isometry property, we obtain that

Ell(Ax1) (1) — (Ax2) ()]

3M2 t e
== / e IR g (s, x1(5)) — g(s, x2(5))[|1*ds
—0Q

2

+3£\|B I e ([ IBi(c —s)|E - 2ds |d
5 1B1lLo0 | _IBi@ = 9IEIf 5. x1(5)) = f (5. 525D *ds )do

3M? [ 3 7 2 2
+ T/ e <’*°></ 1B2( = )IPEllA(s. x1()) = h(s, x2(5) | ds)da

—0o0

3MAL (!
<= / e IExy (5) — xa(s)|12ds

—0o0
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3M2L t v o
+ == 1Bil 00 / et ‘”( f ||Bl(U—S)||EHx1(S)—Xz(S)llzdS>dU
—00 —00

2 t o
4 3L / e—5<f—0>< / ||Bz<a—s>||2E||xl<s>—x2<s>||2ds)da

) —00 —00

3M2L ) Lo, )
=5 fzﬂgEllxl(S)—xz(S)H + TllBl I710.00) ?IEJHEEHXI(S)—M(S)II

MZL 2 2
82 I|B2||L2(0,OO) f:]gE”xl(s) —)CQ(S)”
< OsupEl|x(s) — x2(s) 1%
seR

Thus, it follows that for each r € R

[(AxD)(@) — (Ax) D)7, < @suﬂg lx1(s) = x2()17 < @(suﬂg 1 (s) — x2(5) 1l 12)*.

Hence

[(AxD)(@) = (Ax2) () ]loc = Suﬂg I(AxD @) = (Ax) Ol z2 < VOllx1 — X2l oo
te

Since ® < 1, it follows A is a strict contraction mapping on SPAP (R, L3(Q2, H), ). We
deduce that A has a unique fixed point, which gives a unique ;£ —pseudo almost periodic mild
solution on R of Eq. (1.2). The proof is complete. O

Theorem 3.2 Let u € M satisfy (H) and (H)-(H>)—(H3) hold. If f, g and h are square-
mean —pseudo almost automorphic, then the Eq. (1.2) has a unique square-mean (L —pseudo
almost automorphic mild solution on R, whenever

M2
355 LA 1B g 00y + 1B207200, ) < 1

Proof We reproduce the proof of Theorem 3.1 in what we take xi, f1,g81,h1 €
SAA(R, L%(2, H)). Then, we only need to verify that Ajx; € SAA(R, L2(Q2, H)). We
have

t
(A1x)(@) =/ T(t —S)gl(8,X1(S))dS+/

t o
T(t— a)/ Bi(o —s) f1(s, x1(s))dsdo
t o
—l—/ T(t— O')f Br(o — s)h1(s, x1(s)dW (s)do

= Tx) @) + Tax) @) + (T3x1) ().

Similarly as the proof of Theorem 4.2 in [21], I'1x; € SAA(R, LQ(Q, H)). Next, we have
to check that Toxy, [3x; € SAA(R, L2(2, H)). Since fi(-, x1(-)) € SAA(R, L*(Q2, H)),
then for every sequence of real numbers (t,’l)n we can extract a subsequence (#,), such that,
for some stochastic process fl e L%(Q, H), we have

lim E| fi(s — tw, x1(s — 1)) — fi(s)|> =0 forall seR
n—+00

and

lim E|fi(s — 1) — fis,x1()> =0 forall seR.
n——+o00

For t € R, we define Tox|(f) = fioo T(t—o0) [’ Bi(o— $) f1(s)dsdo . Using Cauchy—
Schwartz’s inequality, we have
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E||Tax1 (7 4 1) — Taxi (1))
2

t g
:IEH/ T(t—o)/ Bi(o — $)(fi(s — tn, x1(s — 1)) — f1(s))dsdo

M2

=

2
da)

M2 t v o »
=~ IBilLios) / e ?=0) / 1B (o — )HIEIfi(s — tn, x1(s — 1)) — f1(s) 2 dsdo.
—00 o0

t o
( / e*‘“’*")EH / Bio — )(fi(s — tnax1(s — 1)) — J1(s))ds

8 \Jwo

Using the Lebesgue dominated convergence theorem, one has

lim E|Tax; (¢ + t,) — Dox1 (0)]|> = 0.
n—-+00

Similarly, limy,— 4o El|T2x1 (f — 1,) — Tax1(£)||2 = 0. Hence T'yx; € SAA(R, L2(2, H)).

To end the proof, we need check that I'3x; € SAA(R, LZ(Q, H)). Since A1 (-, x1(-)) €
SAA(R, L%(Q, H)), then for every sequence of real numbers (t,/,),, we can extract a subse-
quence (#,), such that, for some stochastic process h e L2(2, H), we have

lim E|hi(s — ty, x1(s — 1)) —h1(s)]|> =0 forall s eR
n—-4o00
and

lim E|h(s —t,) — hi(s, x1(s)]|> =0 forall seR.
n—+o00

For t € R, we define [3x1(t) = 1 T(t — o) [ Ba(o — $)h1(s)dW (s)do. Let W(s) =
W(s +t,) — W(t,) for each s € R. Then W is also a Wiener process having the same
distribution as W. Using Cauchy—Schwartz’s inequality and the Ito’s isometry, we obtain the
following estimation

E[3x1(t + 1,) — Caxi (0]
t o )
- EH / Te- (’)f By(0 — )(h1(s — t. X1(s — 1)) — h1(5))dW (s)do

M2 t o 5 2

< 7(/ e—‘“’—")EH/ By(0 — $)(hi(s — ty, X1 (s — 1)) — h1())dW (s) do)
M2 t o -

< —( / ¢80 f IIB2(6 — ) IPENhi (s — t, x1 (5 — 1)) —hl(s>||2dsdo)

s —00 —00

By the Lebesgue dominated convergence theorem, one can obtain that

lim E|Tax1(t + 1) — [3x1 (0)]* = 0.
n——+o00

Similarly, lim,—, 100 E[|F3x1(f — £,) — T3x1(£)[|2 = 0. Hence I'sx; € SAA(R, L2(Q, H)).
This completes the proof. O
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4 Example

Consider the following stochastic integro-differential equations:

Bui()tt,x) — azgitz,x) + g(t, u(t, x)) + fioo efw(tfx)f(s, u(s,x))ds
+ 1 e (s, uls, x)dW (s), @10
(t,x) e R x (0, 1),

u(,0) =u(,1) =0, telR,

where W(t) is a two-sided and standard one-dimensional Brownian motion defined on the
filtered probability space (2, F, P, F;) with 7y = o{W(w) — W(v)|w,v <t}and w > 0.
To apply our theoretical results, we consider the measure p where its Radon—Nikodym

derivative is
_Jexp(s) if s <0
p(s)_{l if 5> 0.

Then p satisfies (H) (cf. Example 2.2). The forcing terms as follows:

1

—Is|
+ e "lcosu,
2 + cos s + cos/2s

o= L
s,u) = —usin
& 2

1

§ —mm————— + e lgin u,
24 sins + sinws

Flsouy =&
S,U) = —UCO
2
1

—3|s| o
+e sinu.
2+ cos s + cos v/3s

L .
h(s,u) = Eu sin

In order to write the system (4.1) on the abstract form (1.2), we consider the linear operator
A : D(A) C L%(0, 1) — L?(0, 1), given by

D(A) = H*(0, 1) N H} (0, 1),

Ax (&) =x"() for £e€(0,1) and x € D(A).

It is well-known that A generates a Co-semigroup (7 (¢));>0 on L2(0, 1) defined by
ad 2.2
(TOX)r) =Y e 7 (x, en) 20 (r),
n=1

where e, (r) = ~/2sin(nzr) forn = 1,2, ...., and | T (1)|| < e~ forall ¢ > 0. Hence (Hy)
hold.
Then the system (4.1) takes the following abstract form

t
u' (1) = Au(t) + g(t, u(r)) +f U9 £ (s, u(s))ds

—00
1
+ / e (s, u(s))dW(s) forall teR. 4.2)
—00
usin m +e 5l cosu belongs to SPAA(R x L2(2, L?[0, 1]), L2(R2, L?[0, 1)),
) where u sin Treossteon o is the almost automorphic component and ¢! cos u is the

p-ergodic perturbation, since
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0 1 0 1 0
———— [ Elle " cosulPdp(s) < ——— / P P — / eHds
w(=r,rD) J-, l—e7"4r /), l—e7"4r ),
1 1—e ¥
= E e — 0 as r - +o00
and
! " Ele—ls! 2 1 " o) 1 o
———— [ Elle"cosul“du(s) < ———— | e Pdt = ———— | e “ds
u([=r,rD) Jo Il—e"+71rJo l—e " +rJo
1 1—e 2
:Eil—e—’—f—r_)o as r — +oo.

By
L(

analogous argument performed above, we have also that f,h € SPAA(R x
Q. L2[0, 11), L*(2, L*[0, 1]), p).

Clearly, g, f and & satisfy the Lipschitz conditions (Hj3). Moreover, it is easy to see that

(H

) hold. Therefore, by Theorem 3.2, the Eq. (4.2) has a unique square-mean p-pseudo

almost automorphic mild solution on R whenever L is small enough.
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