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Abstract In this paper, theBurgers’ equationwhich is two-dimensional in space, time depen-
dent parabolic differential equation was solved by b-spline collocation algorithms for solving
two-dimensional parabolic partial differential equation. At first b-spline interpolation is intro-
duced moreover, the numerical solution is represented as a bi-variate piecewise polynomial
with unknown time-dependent coefficients are determined by requiring the numerical solu-
tion to satisfy the PDE at a number of points within the spatial domain i.e. we collocate
simultaneously in both spatial dimensions. The accuracy of the proposed method is demon-
strates by some test problems. The numerical results are found good agreement with exact
solution.
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1 Introduction

Consider the two-dimensional Burgers equation
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(x, y, t) ∈ � × (t0, tout ] (1)

where � = {(x, y) |a ≺ x ≺ b, c ≺ y ≺ d }
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With exact solution

u(x, y, t) = 1

1 + e
x+y−t
2ξ

, (2)

Subject to the initial condition

u(x, y, t0) = u0(x, y),

(x, y, t) ∈ � × (t0, tout ] (3)

The Burgers equation is a fundamental pde from fluid mechanics. It occurs in various areas
of applied mathematics such as modeling of gas dynamics and traffic flow.
In 1915, Bateman [1] introduced the one-dimensional Burgers equation and metioned. The
steady solution isworth of the study. Itwas later treated byBurger [2] as amathematicalmodel
for turbulence and after whom such an equation is widely referred to as Burgers’ equation
many researchers have used various numerical methods to solve the Burgers equation [3–6].
In these methods fall into the following classes: finite difference method [7,8], finite volume
method [9], finite element method [10], boundary element method [11], and etc.
In this paper, we discuss the development of two numerical algorithms based on B-spline
collocation for solving the Burgers’ equation. We consider B-spline collocation in a tensor
product framework to discretize both spatial domains. We presented an algorithm that uses
a fast block LU scheme with modified alternate row and column elimination.
R. D. Russell and his colleagues [13] suggested a fast algorithm upon a matrix block eigen-
value decomposition to solve spline collocation matrices. In this research, the matrices that
arise with this method have two important advantages:
A similar fast algorithm based upon LU decomposition with amendment.
Alternate row and column elimination with partial pivoting to take advantage of the structure
of matrices that arise and also it was used just one collocation point per subinterval, the linear
system that arise are the smallest among all type of piecewise polynomial collocation method
for this problem.

2 Collocation method

We consider a 2D rectangular grid based on a mesh of N + 1 points
(N> 1) in [a, b] and a mesh of M+ 1 points (M > 1) in [c, d] such that

a = x0 ≺ x1 ≺ · · · ≺ xN = b, c = y0 ≺ y1 ≺ · · · ≺ yM = d (4)

We associate with the mesh on the xdomain,C1-continuous piecewise polynomials of degree
p, i.e., we have a polynomial of degree p for the i th subinterval, [xi−1, xi ], i = 1, . . . , N ,with
C1- continuity imposed at the internal mesh points. Consequently the dimension of this
piecewise polynomial subspace is K F = K (p − 1) + 2. Similarly, in the ydomain, we
have a polynomial of degree q for the i th subinterval, [yi−1, yi ], i = 1, . . . , N , with C1-
continuity imposed at the internal mesh points. Consequently the dimension of this piecewise
polynomial subspace is LF = L(q − 1) + 2.

To represent the piecewise polynomials, we employ B-spline bases. Let {ρi }Ni=1 ,
{
η j

}M
j=1

be the B-splines bases associated with the above meshes. Thus an approximationUN (x, y, t)
to the exact solutionU (x, y, t) can be expressed as a linear combination of the tensor product
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of the B-spline bases functions in xand ywith time-dependent coefficients, δi j (t) as follows:

UN (x, y, t) =
M∑

i=1

N∑

j=1

δi j (t)ρi (x)η j (y) (5)

We define {αi }p−1
i=1 and

{
β j

}q−1
j=1 to be the canonical Gaussian points on [0,1] with 0 ≺ α1 ≺

· · · ≺ αp−1 ≺ 1, and 0 ≺ β1 ≺ · · · ≺ βq−1 ≺ 1. The collocation points in the x domain are
then defined by

λ1 = a
λt = xi−1 + hiα j , t = 1 + (i − 1).(p − 1) + j, i = 1, . . . , N , j = 1, . . . , p − 1
λNC = b

(6)

where hi = xi − xi−1, i = 1, . . . , N
The collocation points in the y domain are defined to be

ω1 = c
ωt = xi−1 + kiβ j , t = 1 + (i − 1).(q − 1) + j, i = 1, . . . , M, j = 1, . . . , q − 1
ωMC = d

(7)

where ki = yi − yi−1, i = 1, . . . , M
The Burgers’ equation is discretized over the spatial domain by simultaneously collocating
at the points {λi }K F−1

i=1 in x and the points
{
ω j

}LF−1
j=1 in y. The collocation conditions yield

the following ODEs in time:

ut (λi , ω j , t) + μux (λi , ω j , t) + μ
∂u

∂y
(λi , ω j , t) = ξuxx (λi , ω j , t) + ξuyy(λi , ω j , t) (8)

where i = 2, . . . , K F − 1, and j = 2, . . . , LF − 1.
The boundary conditions are

u(a, y, t) − 1

1 + e
a+y−t
2ξ

= 0, t ∈ (t0, tout ), y ∈ (c, d), (λ1 = a) (9)

u(b, y, t) − 1

1 + e
b+y−t
2ξ

= 0, t ∈ (t0, tout ), y ∈ (c, d), (λK F = b) (10)

u(x, c, t) − 1

1 + e
x+c−t
2ξ

= 0, t ∈ (t0, tout ), x ∈ (a, b), (ω1 = c) (11)

u(x, d, t) − 1

1 + e
d+x−t

2ξ

= 0, t ∈ (t0, tout ), x ∈ (a, b). (ωLF = c) (12)

By substituting (5) into (8)–(11), we get equations in the terms of the unknowns pi j (t). We
can then rewrite these equations in matrix Form:

G( P̄(t)) = F̄(t, p̄(t)) (13)

In (13), p̄(t) is the B-spline coefficient vector, it has the form,

P(t) =

⎡

⎢
⎢
⎢
⎣

p̄1(t)
p̄2(t)

...

p̄K F (t)

⎤

⎥
⎥
⎥
⎦

, where P̄i (t) =

⎡

⎢
⎢
⎢
⎣

pi1(t)
pi2(t)

...

piK F (t)

⎤

⎥
⎥
⎥
⎦

(14)
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The right hand side vector

F̄(t, P̄(t)) =

⎡

⎢
⎢
⎢
⎣

F1(t, P̄(t))
F2(t, P̄(t))

...

FK F (t, P̄(t))

⎤

⎥
⎥
⎥
⎦

(15)

where each Fi (t, P̄(t))has LF components. The expressions for Fi (t, P̄(t)), i = 1, . . . , K F,

The matrix G in, can be written as

G = Gx ⊗ Gy (16)

3 2D B-spline

The B-spline coefficients characterize the projection of the approximate solution onto the
B-spline tensor product basis. We can rewrite this 2D
B-spline projection in matrix form as:

Ū (λ̄, ω̄, t) = (Nx ⊗ Ny)P̄(t) = QP̄(t) (17)

where Ū (λ̄, ω̄, t) is the evaluation of U(x, y, t) and

λ =

⎡

⎢
⎢
⎢
⎣

λ1
λ2
...

λK F

⎤

⎥
⎥
⎥
⎦

⊗ eLF , ω = eK F ⊗

⎡

⎢
⎢
⎢
⎣

ω1

ω2
...

ωLF

⎤

⎥
⎥
⎥
⎦

(18)

where eLF is the vector of Is of length LF, eK F is the vector of Is of length KF.

A fast block matrix system solution algorithm

The algorithm we use is as follows. We assume that Nx and Ny are :

Nx = LxUx

Ny = LyUy
(19)

where Lx , Ly are lower triangular matrices, and Ux ,Uy are upper triangular matrices.
Let us simplify the notation by writing (4.12) as

(Nx ⊗ Ny)p = c (20)

where p = P(t) and c = Ū (λ, ω, t).The above system can then be rewritten as

((LxUx ) ⊗ (LyUy))p = c (21)

Based on a property of the Kronecker product, we can rewrite the above system as

((Lx ⊗ Ly)(Ux ⊗Uy))p = c (22)

This system can then be solved in 4 steps:

Step 1: Solve (Lx ⊗ ILF )ṽ = c for ṽ

Step 2: Then solve (IK F ⊗ Ly)v = ṽ for v
Step 3: Then solve (Ux ⊗ ILF )w̃ = v for w̃
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Step 4: Then solve (IK F ⊗Uy)w = w̃ for w

where I LF is the LF × LF identity matrix and IK F is the K F × K F identity matrix.
Based on the analysis given in [12]. The cost for step 1 is O(N 2 p3), the cost of step 2 is
O(N 2 p3), the cost of step 3 O(N 2 p3) is and the cost of step 4 is O(N 2 p3). Thus the total
cost of for the algorithm is O(N 2 p3).
If we were to solve (16) simply by the coefficient matrix as a blocks of size O(p(LF ×
LF)) = O(NP2 × NP2), the cost of this almost block diagonal with block of this size is
O(N(NP2)3) = O(N4P6) thus by using this algorithm, we have substantial saving.
steps (1) and (2) solve the system

(Lx ⊗ Ly)v = c (23)

for v.

substitute from step (2) into step (1); we have

(Lx ⊗ ILF )(IK F ⊗ Ly)v = c (24)

Then we can rewrite this equation by using the property of the Kronker product as

(Lx ⊗ Ly)v = c (25)

A similar argument can be used to show that steps (3) and (4) solve the linear System

(Ux ⊗Uy)w = v (26)

At certain points in the algorithm, we know the B-spline coefficients, P̄(t) and We
should evaluate the approximate solution at the collocation points Ū (λ, ω, t).That is, we
compute(Nx ⊗ Ny)p = c, where we know Nx , Nyand p . We compute cwith using a matrix
multiplication.

4 Numerical implementation of algorithm

Weconsider the 2DBurgers’ equation (1) the problemdomain is (x, y) ∈ (0, 1)×(0, 1), t � 0
The exact solution is

u(x, y, t) = 1

1 + e
x+y−t
2ξ

We set ξ = 0.01, and the boundary conditions is

u(0, y, t) − 1

1 + e
y−t
2ξ

= 0, t ∈ (0, 1), y ∈ (0, 1)

u(1, y, t) − 1

1 + e
1+y−t
2ξ

= 0, t ∈ (0, 1), y ∈ (0, 1)

u(x, 0, t) − 1

1 + e
x−t
2ξ

= 0, t ∈ (0, 1), x ∈ (0, 1)

u(x, 1, t) − 1

1 + e
x+1−t
2ξ

= 0, t ∈ (0, 1), x ∈ (0, 1)

and initial condition is

u(x, 0) = 1

1 + e
x+y
2ξ

, (x, y) ∈ [0, 1] × [0, 1]
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Table 1 The numerical result for
(1) equation and corresponding
approximate convergence rate

NCOLL = 3

NUM TERR RERR RATE

4 10.01 × 10−2 – –

8 3.66 × 10−3 27.02 4.81

16 1.06 × 10−4 31.32 4.89

32 4.29 × 10−6 26.78 4.65

64 6.69 × 10−7 32.41 4.96

Table 2 The numerical result for
(1) equation and corresponding
approximate convergence rate

NCOLL = 4

NUM TERR RERR RATE

4 4.06 × 10−3 – –

8 5.74 × 10−4 50.43 5.36

16 1.09 × 10−5 52.56 5.81

32 1.89 × 10−7 54.98 5.78

64 2.05 × 10−8 55.53 5.86

The following notation will be used in numerical result.

NCOLL : The number of collocation points per subinterval
NUM : The number of subintervals
AERR : The absolute error
RERR : The relative error
TERR : The true error
RATE: The rate of convergence

Conclusion

A new numerical method, which is based on 2D B-spline collocation algorithm. This leads
to an approximation of Burgers’ equation by a large system of time-dependent differential
algebraic equation, we then solve using a high quality differential algebraic equation solver.
The amount of computation and memory is substantially reduced. In Tables 1, 2, for the
collocation solutions we compute at t = 1, the observed AERR, RERR, TERR, and corre-
sponding approximate convergence rates. From the two tables we observe that the expected
rates of convergence are indeed observed in the 2D case.
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