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Abstract In this paper, we introduce the notion of «-integral type G-contraction mappings
to generalize the notions of Banach G-contraction and integral G-contraction mappings.
We also prove some fixed point theorems for a-integral type G-contraction mappings. By
providing some example, we show that our results are real generalization of several results
in literature.
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1 Introduction and preliminaries

Development of fixed point theory on a metric space endowed with graph has a lot of activ-
ities in last few year. Jachymski [1] introduced the notion of Banach G-contraction. Later
on various authors proved many fixed point theorems for single-valued and multi-valued
mappings on a metric space endowed with a graph, see, for example [2-10]. Recently, Asl
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et al. [3] defined a graph-metric space and proved fixed point theorems on it. In this paper
we introduce the notion of «-integral type G-contraction to generalize the notions of Banach
G-contraction and integral G-contraction. We also prove the fixed point theorems for such
mappings and state some illustrative examples to claim that our results properly generalizes
some results in literature.

Let (X, d) be a metric space and G be an undirected graph such that the set V(G) of its
vertices coincides with X and the set E (G) of its edges contains all loops in V (G ). Throughout
this paper, we assume that G has no parallel edges. We also denote this space by G4 and call
it a graph-metric space [3]. A mapping T : G4 — G is said to be G-continuous if for given
sequence {x,} such that x, — x as n — oo, where x € G4 and (x,, x,+1) € E(G) for all
n € N, we have Tx,, > Tx asn — o0.

In 2008, Jachymski [1] introduced the notion of Banach G-contraction mappings as fol-
lows:

Definition 1.1 [1]Let (X, d) be a metric space endowed with graph G. A mapping 7" : X —
X is called a Banach G-contraction if T preserves the edges of G, i.e.,

Vx,yeX ((x,y) € E(G)= (Tx,Ty) € E(G)) (1)
and
dce (0, ) Vx,ye X ((x,y) € E(G)=d(Tx,Ty) <cd(x,y)).
We denote by @ the set of all Lebesgue integrable mappings ¢ : [0, co) — [0, oo) which

are summable on each compact subset of [0, co) and for each € > 0, we have

€
/ ¢(t) dt > 0. 2)
0
In 2013, Samreen and Kamran [9] extended the notion of Banach G-contraction in the
following way:

Definition 1.2 [9] Let (X, d) be a metric space endowed with graph G. Amapping 7" : X —
X is called an integral G-contraction if 7' preserves the edges of G, i.e.,

Vx,yeX ((x,y) € E(G)= (Tx,Ty) € E(G)) 3)

and

d(Tx,Ty) d(x,y)
Vx,ye X ((x, y) € E(G) :>/ ¢(t) dt < c/ o (1) dt),
0 0

where ¢ € (0, 1) and ¢ € .

Recently, Kamran and Ali [11] introduced the notion of «-subadmissible mappings in the
following way:

Definition 1.3 Leta : G4 x G4 — [0, 00) be a mapping. A mapping T : G4 — G is said
to be a-subadmissible if
() forx,y € Gg,a(x,y) > 1= a(Tx,Ty) > 1;
(i) forx € Gy, a(T"x, T"tx) > 1 for all integers n > 0 implies (T x, T"x) > 1 for
all integers m > n > 0.

By E, we mean the family of functions & : [0, co) — [0, co) such that £ is nondecreasing,
upper semicontinuous and lim,,_, o, £" (#) = Oforeachr > 0. Notethatif¢ € E,then&(¢) < ¢
foreach r > 0, and £(0) = 0.
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2 Main results

We begin this section with the following definition.

Definition 2.1 A mapping T : G4 — Gy is said to be an a-integral type G-contraction
mapping if there exist three functions @ : G4 x G4 — [0, 00), ¢ € ® and & € E such that

d(Tx,Ty) d(x,y)
a(x,y)/o p@)dr <§& /0 o) dr ), 4

for each (x, y) € E(G).

Remark 2.2 Let (X, d) be ametric space. Define graph G by V(G) = X and E(G) = X x X,
a(x,y) = 1foreachx,y € X and&(¢) = ct forallt > 0, where ¢ € [0, 1). Then (4) reduces

to
d(Tx,Ty) d(x,y)
/ o) dt < C/ (1) dt,
0 0

for each x, y € X, where ¢ € ®, which is the contractive condition considered by Branciari
[12].

Note that every integral G-contraction mapping is an «-integral type G-contraction map-
ping. The following example shows that the converse is not true in general.

Example 2.3 Let X = [0, oco) with the usual metric d and X endowed with graph G is defined
by V(G) = X and E(G) = {(x,y) : x > y}.Define T : G4 - Ggand o : Gy x Gg —
[0, o) by

X ifx>4
Tx =14 - 5
[x2 if0<x <4, ©)
and
1 ifx,y >4,
a(x,y) = - 6
(. ) [0 otherwise. ©

0 ifr =0,
Take £(1) = % foreacht > O and ¢ (t) = lll/z ! If x, y > 4, then we have

d(Tx,Ty) |)C _ y| 1 d(x,y)
a(x,y) ¢@t)dt = 1 =5 ¢ (1) dt,
0 0

and for otherwise, we have

d(Tx,Ty) 1 d(x,y)
Ot(x,y)/ ¢(t)dt=0§5/ ¢ (1) dt.
0 0

Thus, (4) holds for each (x,y) € E(G). Therefore, T is an «-integral type G-contraction
mapping. But 7 is not an integral G-contraction, since (4, 2) € E(G) % (T4,T2) € E(G).

Theorem 2.4 Let G; be a complete graph-metric space and T : G4 — G4 be an «-integral
type G-contraction mapping satisfying the following assumptions:

(1) T is a-subadmissible;
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(ii) there exists xo € G4 such that a(xy, Txg) > 1;
(i) ifx,y € Ggand a(x,y) > 1, then (x,y) € E(G);
@iv) T is G-continuous;

Then T has a fixed point.

Proof Starting from xo € Gy in (ii). Define a sequence {x,} in G4 such that x,41 = Tx,
for each n € N U {0}. Since T is a-subadmissible, by induction we have

a(xy, xp41) > 1 foreachn € NU {0}. (7)

From (4), we have

d(xp,Xn+1) d(Txp—1,Txp)
/ @) dt:/ ¢ (1) dt
0 0

d(Txy—1,Txn)
a(xy—1, xn)/ (1) dt
0

( d(xp—1,%n) )
=£ / ¢@)dr ),
0

for all n € N. By induction, we have

d(Xp, Xp41) d(x0,x1)
/0 o) dr <§&" /0 o) dt ), ®

for all n € N. Letting n — o0 in (8), we have

IA

d(xnxxn-H)
lim ¢(t) dt =0. )
n—o00 0
From (2) and (9), we have
lim d(xp,, xp4+1) = 0. (10)
n—o0

Now, using a similar argument as given by authors in [13,14], we will show that {x,} is a
Cauchy sequence in G4. Assume on contrary that {x,} is not a Cauchy sequence. Then there
exists € > 0 for which we can find two sequences of positive integers {ny} and {my} such
that for each k € N, we have

ne >mi >k, dxXn, Xm) =€, dxpy—1, Xm) <€ an
By using triangular inequality and (11), we have

€ < d(xnky xmk) =< d(xnka xnkfl) + d(xnkfla xmk)

< d(Xpy, Xp—1) + €.
Letting k — oo in above inequality and using (10), we get
klirlgod(xnk,xmk) =e. (12)
Again by using triangular inequality, we have

d(xnk—l» xmk—l) =< d(xnk—h xnk) + d(xnks xmk) + d(xmk’ xmk—l)
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and
d(xnks xmk) = d(xnk7 xnkfl) + d(xnkfla xmkfl) + d(xmkfla xmk)
for all k € N. Using (10) and (12) in above two inequalities, we get

i d (1, Xy 1) = €. (13)
—00

As T is a-subadmissible, from (7), we have a(x,,—1, Xm, —1) > 1 for all k € N. Then by
Condition (iii) we get (x,,—1, Xm,—1) € E(G) for all k € N. From (4), we have

d(xnkyxmk) d(Txnk—lvTxmk—l)
/ b () dt / b () dt
0 0
d(TXnk—laTka—l)
a(xnk—qumk—l)/o ¢(r) dt

d(xnk—l sxmk—l)
& /0 o (1) dt (14)

for all k € N. Using properties of & and let k — oo in (14), we have

/€¢>(t)dt55(/e¢(t)dt) </€¢<r)dz.
0 0 0

A contradiction to our assumption. Hence {x,} is a Cauchy sequence in G4. Since G is
complete, there exists x* € G4 such that x, — x* as n — 0o. G-continuity of 7 implies
Xp+1 = Tx, — Tx™ as n — oo. By uniqueness of limit, we have Tx* = x*. O

IA

IA

Theorem 2.5 Let G4 be a complete graph-metric space and T : G4 — Gg4 be an o-integral
type G-contraction mapping satisfying the following assumptions:
(1) T is a-subadmissible;
(i1) there exists xo € Gg such that a(xo, Txg) > 1;
(iii) ifx,y € Ggand a(x,y) > 1, then (x,y) € E(G);
@v) if {x,} is a sequence in G4 such that x,, — x asn — 00 and o(xy, Xp+1) > 1 for each
n € NU{0}, then a(x,,x) > 1 for each n € NU {0}.

Then T has a fixed point.

Proof According to the proof of Theorem 2.4, we know that {x,} be a Cauchy sequence in
Gy. Since G4 is complete, there exists x* € G4 such that x, — x* as n — oo. From (7)
and Conditions (iv) and (iii), we have

a(x,, x™) > 1and (x,, x*) € E(G) foreachn € NU {0}. (15)
By the triangular inequality, we have
|d(Tx*, x*) —d(Txp, x*)| < d(Tx*, Tx,) (16)
for all n € N U {0}. Thus, we have

|d(Tx*,x*)—d (T xp,x*)| d(Tx*,Txp)
/ B dr < / o) di
0 0
d(Tx*,Txy)
< a(xn,X*)/ G (t) dt
0
d(x*,xp)
< g(/ 6() dt) (17
0
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for all n € N U {0}. Letting n — oo in (17), we have
|d(Tx*,x*)—d (T xp,x*)|

lim ¢(t)dt =0. (18)
n—0o0 0
From (18), we have
lim |d(Tx*, x*) —d(Tx,,x")| =0. (19)
n—o0

This implies that
d(Tx*,x*) = lim d(Tx,,x*) = lim d(x,41,x*) =0.
n—o0 n—oo
Hence Tx* = x*. o

We use the following condition to obtain the uniqueness of the fixed point.
(A) For each fixed points x and y of 7, we have «(x, y) > 1.

Theorem 2.6 Adding the Condition (A) to the hypotheses of Theorem 2.4 (resp. Theo-
rem 2.5), we get the uniqueness of the fixed point of T.

Proof Suppose that x* and y* are two distinct fixed points of 7. From Condition (A), we
get o (x*, y*) > 1 and hence

d(x*,y*) d(Tx*,Ty*)
/ ¢(1) dt < a(x*,y*)/ (1) dt
0 0

( d(x*,y*) )
<t / p(t) di
0

d(x*,y*)
< / @) dr. (20)
0

A contradiction to our assumption. Hence T has unique fixed point. O

Example 2.7 Let X = R with the usual metric d and X endowed with the graph G such that
V(G)=Xand E(G) = {(x,y) :x,y > —1}.Define T : G4 - Ggand«a : Gg x G4 —
[0, c0) by

L ifx>0
Tx=12 "*=" Q1)
x ifx <0,
and
1 ifx,y>0,
a(x,y) = - 22
(. ) {0 otherwise. @2)

Take £(1) = % and ¢ (t) =t foreacht > 0. If x, y > 0, then we have

d(Tx,Ty) 1[|x =yl 2 pdy) d(x,y)
oz(x,y)/ ¢’(l‘)dt=§( ) ) :Z/ o) dt =& / o) dt |,
0 0 0

and for otherwise, we have

d(Tx,Ty) 1 [dx.y) d(x,y)
a(x, y)/ $p@)dt=0< */ ¢ty dt=§ / d(t)de ).
0 4 Jo 0
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This shows that (4) holds for each (x,y) € E(G). Therefore, T is an «-integral type G-
contraction mapping. If x, y € G4 and a(x, y) = 1, then x, y > 0. By definition of T and
o, we have «(Tx, Ty) = 1. For each x € G4 such that «(T"x, T”‘Hx) > 1 for all integers
n > 0, we have a(T™x, T"x) = 1 for all integers m > n > 0. Hence T is «-subadmissible.
Also, we have xo = 1 € G4 such that «(1, T1) = «(1, 1/2) = 1. Moreover, if x,y € Gq4
such that o(x, y) > 1, then x, y > 0 which implies that (x, y) € E(G). Finally, it is easy to
see that the continuity of 7" implies that 7" is G-continuous. Therefore, all the hypotheses of
Theorem 2.4 hold. Hence T has a fixed point, that is, a point 0.

Note that T is neither a Banach G-contraction mapping nor an integral G-contraction
mapping. Indeed, if we take (x, y) = (-1, —1/2) € E(G), we get

d(Tx,Ty) = d(T(—1), T(=1/2)) > cd(—1, —1/2) = cd(x, y)

and

d(Tx,Ty) d(T(—=1),T(-1/2)) d(—1,—-1/2) d(x,y)
/ o (1) dt:/ ¢(t) dt > c/ ¢ (1) dt:c/ ¢ (t) dt
0 0 0 0

forallc € (0,1) and ¢ € ©.
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