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Abstract Ourmain concern in this paper is to studymixed regular-singular control problems,
where the control variable has two components, the first being absolutely continuous and the
second singular. The coefficients of the state process, as well as the running and final costs are
random functions, so as the state process is no longer a Markov process. Our main result is to
derive necessary conditions for optimality, also known as the Pontriagin stochastic maximum
principle by usingMalliavin calculus techniques. The adjoint process, which plays a key role
in the stochastic maximum principle, is given by means of the Malliavin derivatives of the
optimal state process.

Keywords Singular control · Optimal control · Stochastic maximum principle · Malliavin
derivative · Partial information · Necessary optimality conditions · Adjoint process
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1 Introduction

In this paper, we consider optimal mixed stochastic regular-singular control problems, where
the state process satisfies the following stochastic differential equation:

{
dxt = b (t, xt , ut , ω) dt + σ (t, xt , ut , ω) dBt + λ (t, ω) dξt ;
x0 = x ∈ R.

(1.1)
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The control is a pair (ut , ξt ) such that ut stands for the regular, called also the absolutely
continuous part and ξt is the singular part.

The expected cost has the form

J (u, ξ) = E

⎡
⎣g (xT , ω) +

T∫
0

f (t, xt , ut , ω) dt +
T∫

0

h (t, ω) dξt

⎤
⎦ , (u, ξ) ∈ AE , (1.2)

A major approach to deal with stochastic control problems is to derive optimality necessary
conditions satisfied by some optimal control, known as the stochastic maximum principle.
The first fundamental result on this subject was obtained byKushner [24], for classical regular
or absolutely continuous controls. Since then, a huge literature has been produced on this
subject, among them, in particular, those by Benssoussan [10], Bismut [11], Haussmann [21]
and Peng [30]. One can refer to the excellent book by Yong and Zhou [31] for a complete
account on the subject and the references therein.

In this paper, we study general regular-singular stochastic control problems, in which the
controller has only partial information. The control has two components, the first one is a
classical regular control and the second one is a singular control. We consider systems driven
by random coefficients and the running and the final costs are allowed to be random. It is
clear that for such systems the dynamic programming does not hold, as the state process is no
longer a Markov process. Our goal is to obtain necessary conditions for optimality satisfied
by some optimal control.

We use Malliavin calculus techniques [27], to express the adjoint process in an explicit
form. Our result extends those by Baghery and Oksendal [2], Meyer-Brandis et al. [25] and
Øksendal and Sulem [29], to mixed regular-singular control problems. See also [26] for
the mean field control problems. Note that in the stochastic maximum principle, a serious
drawback is the computation at least numerically of the adjoint process. This process is given
by a conditional expectation and satisfies a linear backward stochastic differential equation
(BSDE). Numerical and Monte Carlo methods have been developed recently to deal with
BSDEs by using Malliavin calculus, see [12,13,16,19]. This could be seen as a step forward
to solve numerically stochastic control problems by using these methods.

Stochastic control problems of singular type, have been studied extensively in the litera-
ture, as they model numerous situations in different areas, see [18,28,29]. A typical example
in mathematical finance is the so called portfolio optimization problem, under transaction
costs [17,20]. These problems were studied through dynamic programming principle, see
[22], where it was shown in particular that, the value function is continuous and is the unique
viscosity solution of the HJB variational inequality. In particular the value function satisfies
a variational inequality, which gives rise to a free boundary problem, and the optimal state
process is a diffusion reflected at the free boundary. Bather and Chernoff [8] were the first to
study such a problem. Benĕs et al. [9] solved a one dimensional example by observing that
the value function in their example satisfies the so called the principle of smooth fit. Davis
and Norman [17] solved the two dimensional problem, arising in portfolio selection models,
under transaction costs. The case of diffusions with jumps has been studied in Øksendal and
Sulem [28].

The first maximum principle for singular stochastic control problems was derived by
Cadenillas and Haussmann [14], for systems with linear dynamics, convex cost criterion
and convex state constraints. An extension to non linear systems has been developed via
convex perturbations method for both absolutely continuous and singular components by
Bahlali and Chala [3]. The second order stochastic maximum principle for nonlinear SDEs
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with a controlled diffusion matrix was obtained by Bahlali and Mezerdi [7], extending the
Peng maximum principle [30] to singular control problems. Similar techniques have been
used by Anderson [1] and Bahlali et al. [6], to study the stochastic maximum principle for
relaxed-singular controls. The case of systems with non smooth coefficients has been treated
by Bahlali et al. [4], where the classical derivatives are replaced by the generalized ones in the
definition of adjoint processes. See also the recent paper by ∅ksendal and Sulem [29], where
Malliavin calculus techniques have been used to define the adjoint process. The relationship
between the stochastic maximum principle and dynamic programming has been investigated
in [5,15]. See also [28] for some worked examples.

2 Introduction to Malliavin calculus

In this section, we give some properties of the Malliavin derivatives, which will be useful for
the definition of the adjoint process. The detailed proofs can be found in Nualart [27].

Let (Bt ) be a d-dimensional Brownian motion, defined on a probability space (�,F, P)

and let (Ft ) be its natural filtration. The following theorem gives theWiener chaos expansion
of a square integrable random variable, see [27] page 13.

Theorem 2.1 Any square integrable random variable F ∈ L2 (�,FT , P) can be expanded
into a series of multiple stochastic integrals:

F =
∞∑
n=0

In ( fn) , (2.1)

for a unique sequence of symmetric deterministic functions fn ∈ L2 (λn) , where λ is the
Lebesgue measure on [0, T ] and

In ( fn) = n!
T∫

0

tn∫
0

. . .

t2∫
0

fn (t1, . . . , tn) dBt1dBt2 . . . dBtn ,

(the n-times iterated integral of fn with respect to B) for n = 1, 2, . . . and I0 ( f0) = f0
when f0 is a constant.)

Moreover, we have the isometry

E
[
F2] = ‖F‖2L2(P)

=
∞∑
n=0

n! ‖ fn‖2L2(λn)
. (2.2)

Definition 2.2 (Malliavin derivative Dt ). Let F ∈ L2 (P) be FT−measurable.

(i) We say that F ∈ D1,2 if

‖F‖2
D1,2

:=
∞∑
n=1

nn! ‖ fn‖2L2(λn)
< ∞. (2.3)

(ii) For any F ∈ D1,2, we define the Malliavin derivative Dt F of F at time t , as the
expansion

Dt F :=
∞∑
n=1

nIn−1 ( fn (., t)) , (2.4)
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where In−1 ( fn (., t)) is the (n − 1) −fold iterated integral of fn (t1, . . . , tn−1, t)with respect
to the first n − 1 variables t1, . . . , tn−1 and tn = t is left as parameter.

Note that ‖D.F‖L2(P×λ) = ‖F‖2
D1,2

< ∞, thus the derivative Dt F is well-defined as an

element of L2 (P × λ) .

Example

Let F =
T∫
0

f (s) dBs , where f ∈ L2 ([0, T ]), then:

1. Dt F = f (t) ,

2. Dt (Fn) = nFn−1Dt F = nFn−1 f (t) .

Now, we shall give a few rules that will be needed in this paper

• Integration by parts and duality formula

Suppose that (ut ) is Ft−adapted with E

(
T∫
0
u2t dt

)
< +∞ and let F ∈ D1,2. Then

E

⎡
⎣F

T∫
0

utdBt

⎤
⎦ = E

⎡
⎣

T∫
0

ut Dt Fdt

⎤
⎦ . (2.5)

• Clark-Ocone representation formula (see [27], Proposition 1.3.14 page 46).

Let F ∈ D1,2, then

F = E (F) +
1∫

0

E (Dt F/Ft ) dBt . (2.6)

• A generalized Clark-Ocone formula (see [27], Theorem 6.3.1, page 337).

Suppose that

B̃t = Bt +
t∫

0

θsds,

where θ = {θt , t ∈ [0, T ]} is an adapted and measurable process such that

T∫
0

θ2t dt < +∞, P − a.s.

Suppose that E (ZT ) = 1, where the process Zt is given by

Zt = exp

⎛
⎝−

t∫
0

θsd Bs − 1

2

t∫
0

θ2s ds

⎞
⎠ .

By the Girsanov theorem B̃ =
{
B̃t , t ∈ [0, T ]

}
is a Brownian motion under the probability

Q on FT , with density
dQ

dP
= ZT . Let F be an FT -measurable random variable such that

F ∈ D1,2 and let θ ∈ L1,2. Assume that

123



A stochastic maximum principle for mixed regular-singular. . . 413

(i)

E
(
Z2
T F

2)+ E

⎛
⎝Z2

T

T∫
0

(Dt F)2 dt

⎞
⎠ < ∞,

(ii)

E

⎛
⎜⎝Z2

T F
2

T∫
0

⎛
⎝θt +

T∫
t

Dtθsd Bs +
T∫
t

θs Dtθsds

⎞
⎠

2

dt

⎞
⎟⎠ < ∞.

Then

F = EQ (F) +
T∫

0

EQ

⎛
⎝Dt F − F

T∫
t

Dtθsd B̃s/Ft

⎞
⎠ d B̃s . (2.7)

See also [23] for applications to finance.

3 Formulation of the problem

Suppose the state process xt = x (u,ξ)
t ; t ≥ 0, satisfies the following stochastic differential

equation: {
dxt = b (t, xt , ut ) dt + σ (t, xt , ut ) dBt + λt dξt ;
x0 = x ∈ R.

(3.1)

Here (Bt ) is 1-dimensional Brownian motion, defined on a filtered probability space(
�,F, (Ft )t≥0 , P

)
, satisfying the usual conditions. Assume that (Ft ) is the natural fil-

tration of (Bt ). The coefficients

b : [0, T ] × R ×U × � → R,

σ : [0, T ] × R ×U × � → R,

λ : [0, T ] × � → R,

are given Ft−predictable processes.
Suppose in addition that we are given a subfiltration Et ⊂ Ft , t ∈ [0, T ], representing the

information available to the controller at time t and satisfying the usual conditions.

• Let T be a strictly positive real number and consider the following sets.
• UE

1 is the class of measurable, Et -adapted processes u : [0, T ] × � → U, where U is
some Borel subset of R

k .

• UE
2 is the class of measurable, Et -adapted processes ξ : [0, T ] × � → [0,∞) such that

ξ is nondecreasing, right-continuous with left hand limits and ξ0 = 0.

Definition 3.1 An admissible control is an Et -adapted process (u, ξ) ∈ UE
1 × UE

2 such that

E

[∫ T

0
|ut |2 dt + |ξT |2

]
< ∞.

We denote by AE the set of all admissible controls.
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The expected reward to be maximized has the form

J (u, ξ) = E

⎡
⎣g (xT ) +

T∫
0

f (t, xt , ut ) dt +
T∫

0

h (t) dξt

⎤
⎦ , (u, ξ) ∈ AE , (3.2)

where

f : [0, T ] × R ×U × � → R,

g : R × � → R,

h : [0, T ] × � → R,

are given Ft -adapted processes.
The goal of the controller is to maximize the functional J (u, ξ) over AE . An admissible

control
(
û, ξ̂

)
∈ AE is optimal if:

J
(
û, ξ̂

)
= sup

(u,ξ)∈AE
J (u, ξ) . (3.3)

Our objective is to derive necessary conditions satisfied by
(
û, ξ̂

)
.

Note that since we allow b, σ , h, f and g to be random coefficients and also because
our controls must be Et -adapted, this problem is no longer of Markovian type and hence
cannot be solved by dynamic programming. Our attention will be focused on the stochastic
maximum principle, for which an explicit form for the adjoint process is obtained. Malliavin
calculus techniques will be used to get an explicit form of the adjoint process.

Assumptions The following assumptions will be in force throughout this paper.
(H1)b, σ , g, f are adaptedprocesses such that there exists a positive constantC satisfying:

|b(t, x, u)| + |σ(t, x, u)| + | f (t, x, u)| + |g(x)| ≤ C(1 + |x | + |u|).
(H2) b, σ , g, f are continuously differentiable with respect to x ∈ R and u ∈ U for each

t ∈ [0, T ] , and a.s. ω ∈ �, with bounded derivatives.
(H3) λ, h are bounded continuous processes.
(H4)For all bounded Ft−measurable random variables α = α (ω) the process vα

s =
α (ω) 1(t,r ] (s) ; s ∈ [0, T ] belongs to Uε

1 .

(H5)For u, v ∈ UE
1 with v bounded, there exists δ > 0 such that

uθ = u + θv ∈ UE
1 for all θ ∈ [−δ, δ] .

Under the above assumptions, for every (u, ξ) ∈ AE , Eq. (3.1) admits a unique strong
solution given by

x (u,ξ)
t = x +

t∫
0

b
(
s, x (u,ξ)

s , us
)
ds +

t∫
0

σ
(
s, x (u,ξ)

s , us
)
dBs +

t∫
0

λ (t) dξs, (3.4)

and the reward functional J is well defined from AE into R.
We list some notations which will be used throughout this paper.
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Notations For ξ ∈ UE
2 , let ν (ξ) denotes the set of Et -adapted processes η of finite variation

such that there exists δ > 0 such that ξ + θη ∈ UE
2 , for all θ ∈ [0, δ]. For all u ∈ UE

1 and
0 ≤ t ≤ s ≤ T, we denote the following processes

R (t) := g′ (xT ) +
T∫
t

∂ f

∂x
(s, xs, us) ds, (3.5)

Dt (R (t)) := Dtg
′ (xT ) +

T∫
t

Dt
∂ f

∂x
(s, xs, us) ds, (3.6)

H0 (s, x, u) = R (s) b (s, x, u) + Ds R (s) σ (s, x, u) , (3.7)

G (t, s) := exp

⎛
⎝

s∫
t

{
∂b

∂x
(r, xr , ur ) − 1

2

(
∂σ

∂x

)2

(r, xr , ur )

}
dr

+
s∫

t

∂σ

∂x
(r, xr , ur ) dBr

⎞
⎠ , (3.8)

p (t) := R (t) +
T∫
t

∂H0

∂x
(s, xs, us)G (t, s) ds, (3.9)

q (t) := Dt p (t) . (3.10)

We define the usual Hamiltonian of the control problem (3.1)–(3.2) by:

H : [0, T ] × R×U × ×R × R × � → R,

where

H (t, x, u, p, q, ω) = f (t, x, u, ω) + p (t) b (t, x, u, ω) + q (t) σ (t, x, u, ω) , (3.11)

4 The stochastic maximum principle

Thepurpose of the stochasticmaximumprinciple is tofindnecessary conditions for optimality

satisfied by an optimal control. Suppose that
(
û, ξ̂

)
∈ AE is an optimal control and let x̂t

denotes the optimal trajectory, that is, the solution of (3.1) corresponding to
(
û, ξ̂

)
. As it is

well known the stochasticmaximumprinciple is based on the computation of the derivative of
the reward functional with respect to some perturbation parameter. Let us define the perturbed
controls as follows.

• uθ = û+θv,where v is some bounded Et−adapted process. We know by (H5) that there
exists δ > 0 such that uθ = û + θv ∈ UE

1 for all θ ∈ [−δ, δ]
• ξθ = ξ̂ + θη, where η ∈ ν (ξ) the set of Et−adapted processes of finite variation, for

which there exists δ = δ(ξ̂ ) > 0 such that ξ̂ + θη ∈ UE
2 .

Since
(
û, ξ̂

)
is an optimal control it holds that:

(1) lim
θ→0+

1
θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
≤ 0 , where ξθ = ξ̂ + θη, and
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(2) lim
θ→0

1
θ

(
J
(
uθ , ξ̂

)
− J

(
û, ξ̂

))
≤ 0 , where uθ = û + θv.

We use the two limits to obtain the variational inequalities. To achieve this goal, we need the
following technical Lemmas.

We define the derivative process Y (t) by

Y (t) = lim
θ→0+

1

θ

(
x
(
û,ξ θ

)
t − x

(
û,ξ̂
)

t

)
, (4.1)

Since that Y (0) = 0, then

dY (t) = ∂b

∂x
(t)Y (t) dt + ∂σ

∂x
(t)Y (t) dBt + λ (t) dηt , (4.2)

where we use the abbreviated notation:
∂b

∂x
(t) = ∂b

∂x

(
t, x̂t , ût , ω

)
,

∂σ

∂x
(t) = ∂σ

∂x

(
t, x̂t , ût , ω

)
.

Lemma 4.1 The solution of Eq. (4.2) is given by

Y (t) = Z (t)

⎡
⎣

t∫
0

Z−1 (s) λ (s) dηs

⎤
⎦ ; t ∈ [0, T ] , (4.3)

where Z (t) is the solution of the homogeneous version of (4.2), i.e.{
dZ (t) = ∂b

∂x
(t) Z (t) dt + ∂σ

∂x
(t) Z (t) dBt ,

Z (0) = 1.
(4.4)

Proof We set Y (t) = Z (t) At where

At =
t∫

0

Z−1 (s) λ (s) dηs .

By using Itô’s formula for semimartingales, we get

dY (t) = Z (t) d At + AtdZ (t) + d 〈A, Z〉t ,
dY (t) = λ (t) dηt + At

(
∂b

∂x
(t) Z (t) dt + ∂σ

∂x
(t) Z (t) dBt

)

= ∂b

∂x
(t)Y (t) dt + ∂σ

∂x
(t)Y (t) dBt + λ (t) dηt .

This completes the proof. �
In the sequel, we use the abbreviated notation:

Q (t, s) = Z (s)

Z (t)
for t < s.

Lemma 4.2 Let
(
û, ξ̂

)
be an optimal control. Then

lim
θ→0+

1

θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
= E

⎡
⎣

T∫
0

(
λ (t) P̂ (t) + h (t)

)
dηt

⎤
⎦ , (4.5)
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where

P̂ (t) := R̂ (t) +
T∫
t

∂H0

∂x
(s) Q (t, s) ds, (4.6)

R̂ (t) = R

(
û,ξ̂
)
(t) = g′ (x̂T )+

T∫
t

∂ f

∂x
(s) ds, (4.7)

H0(s, x) = R(s) + Ds R(s)σ (s, x). (4.8)

Proof We have

lim
θ→0+

1

θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
= E

⎡
⎣g′ (x̂T )Y (T ) +

T∫
0

∂ f

∂x
(t)Y (t) dt

+
T∫

0

h (t) dηt

⎤
⎦ . (4.9)

We have from (4.2)

E

⎡
⎣

T∫
0

∂ f

∂x
(t)Y (t) dt

⎤
⎦ = E

⎡
⎣

T∫
0

∂ f

∂x
(t)

t∫
0

⎧⎨
⎩Y (s)

∂b

∂x
(s) ds + Y (s)

∂σ

∂x
(s) dBs

+ λ (s) dηs

⎫⎬
⎭ dt

⎤
⎦ .

Since Y (0) = 0, we have by the duality formulae for the Malliavin derivatives,

E

⎡
⎣

T∫
0

∂ f

∂x
(t)Y (t) dt

⎤
⎦ =

⎡
⎣E

T∫
0

t∫
0

⎧⎨
⎩

∂ f

∂x
(t)Y (s)

∂b

∂x
(s) ds + Ds

(
∂ f

∂x
(t)

)
Y (s)

∂σ

∂x
(s) ds

+ ∂ f

∂x
(t) λ (s) dηs

⎫⎬
⎭ dt

⎤
⎦ ,

by using Fubini theorem

E

⎡
⎣

T∫
0

∂ f

∂x
(t)Y (t) dt

⎤
⎦ = E

⎡
⎣

T∫
0

T∫
s

{
∂ f

∂x
(t)Y (s)

∂b

∂x
(s) dt + Ds

(
∂ f

∂x
(t)

)
Y (s)

∂σ

∂x
(s) dt

}
ds

+
T∫

0

⎛
⎝

T∫
s

∂ f

∂x
(t) λ (s) dt

⎞
⎠ dηs

⎤
⎦ , (4.10)
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changing the notation s → t , this becomes

E

⎡
⎣

T∫
0

∂ f

∂x
(t)Y (t) dt

⎤
⎦ = E

⎡
⎣

T∫
0

T∫
t

{
∂ f

∂x
(s)Y (t)

∂b

∂x
(t) ds + Dt

(
∂ f

∂x
(s)

)
Y (t)

∂σ

∂x
(t) ds

}
dt

+
T∫

0

⎛
⎝

T∫
t

∂ f

∂x
(s) λ (t) ds

⎞
⎠ dηt

⎤
⎦

= E

⎡
⎣

T∫
0

⎧⎨
⎩
⎛
⎝

T∫
t

∂ f

∂x
(s) ds

⎞
⎠Y (t)

∂b

∂x
(t)

+ Dt

⎛
⎝

T∫
t

(
∂ f

∂x
(s)

)
ds

⎞
⎠Y (t)

∂σ

∂x
(t)

⎫⎬
⎭ dt

+
T∫

0

⎛
⎝

T∫
t

∂ f

∂x
(s) ds

⎞
⎠ λ (t) dηt

⎤
⎦ . (4.11)

Similarly we get

E
[
g′ (XT )Y (T )

] = E

⎡
⎣g′ (XT )

⎧⎨
⎩

T∫
0

Y (t)
∂b

∂x
(t) dt + Y (t)

∂σ

∂x
(t) dBt + λ (t) dηt

⎫⎬
⎭
⎤
⎦

= E

⎡
⎣

T∫
0

Y (t)

{
g′ (XT )

∂b

∂x
(t) + Dt

(
g′ (XT )

) ∂σ

∂x
(t)

}
dt + g′ (XT ) λ (t) dηt

⎤
⎦ .

(4.12)

Combining (4.10) and (4.11) and using the notations (3.5) and (3.7), we obtain

lim
θ→0+

1

θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
= E

⎡
⎣

T∫
0

Y (t)

{
R (t)

∂b

∂x
(t) + Dt R (t)

∂σ

∂x
(t)

}
dt

+{R (t) λ (t) + h (t)} dηt

⎤
⎦

= A1 (η) + A2 (η) ,

where

A1 (η) = E

⎡
⎣

T∫
0

Y (t)

{
R (t)

∂b

∂x
(t) + Dt R (t)

∂σ

∂x
(t)

}
dt

⎤
⎦ ,

and

A2 (η) = {R (t) λ (t) + h (t)} dηt .

We set

d�t = ∂H0

∂x
(t) dt,
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then by using Lemma 4.1 it follows that

A1 (η) = E

⎡
⎣

T∫
0

Y (t)
∂H0

∂x
(t) dt

⎤
⎦

= E

⎡
⎣

T∫
0

Y (t) d�t

⎤
⎦

= E

⎡
⎣

T∫
0

⎛
⎝Z (t)

t∫
0

Z−1 (s) λ (s) dηs

⎞
⎠ d�t

⎤
⎦ .

Hence by using Fubini’s theorem we get by changing the notation s → t

A1 (η) = E

⎡
⎣

T∫
0

⎛
⎝
⎛
⎝

T∫
t

Z (s) d�s

⎞
⎠ Z−1 (t) λ (t) dηt

⎞
⎠
⎤
⎦

= E

⎡
⎣

T∫
0

T∫
t

Q (t, s)
∂H0

∂x
(s) dsλ (t) dηt

⎤
⎦ .

Finaly

lim
θ→0+

1

θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
= A1 (η) + A2 (η)

= E

⎡
⎣

T∫
0

(
λ (t) P̂ (t) + h (t)

)
dηt

⎤
⎦ .

This completes the proof. �
We define the derivative process Y (t) by

Y (t) = Y v (t) = lim
θ→0

1

θ

(
x

(
uθ ,ξ̂

)
t − x

(
û,ξ̂
)

t

)
, (4.13)

then Y (t) satisfies the following equation

dY (t) = Y (t)

[
∂b

∂x
(t) dt + ∂σ

∂x
(t) dBt

]
(4.14)

+ vt

[
∂b

∂u
(t) dt + ∂σ

∂u
(t) dBt

]
,

Y (0) = 0,

Lemma 4.3 The following identity holds

lim
θ→0

1

θ

(
J
(
uθ , ξ̂

)
− J

(
û, ξ̂

))
= E

⎡
⎣

T∫
0

{
R (t)

{
∂b

∂x
(t) Y (t) + ∂b

∂u
(t) vt

}

+ Dt R (t)

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}
+ ∂ f

∂u
(s) vt

}]
dt.
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Proof We have

d

dθ
J
(
uθ , ξ̂

)
|θ=0 = E

⎡
⎣

T∫
0

{
∂ f

∂x
(t) Y (t) + ∂ f

∂u
(t) vt

}
dt

+ g′ (x̂T ) Y (T )

⎤
⎦ , (4.15)

where Y (t) = Y v (t) is the solution of the linear equation

{
dY (t) = [ ∂b

∂x (t) Y (t) + ∂b
∂u (t) vt

]
dt + [ ∂σ

∂x (t) Y (t) + ∂σ
∂u (t) vt

]
dBt

Y (0) = 0
(4.16)

By the duality formula we get

E
(
g′ (x̂T ) Y (T )

) = E

⎡
⎣g′ (x̂T )

T∫
0

{
∂b

∂x
(t) Y (t) + ∂b

∂u
(t) vt

}
dt

+ g′ (x̂T )
T∫

0

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}
dBt

⎤
⎦

= E

⎡
⎣

T∫
0

g′ (x̂T )
{

∂b

∂x
(t) Y (t) + ∂b

∂u
(t) vt

}
dt

+
T∫

0

Dtg
′ (x̂T )

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}
dt

⎤
⎦ .

Using similar arguments and Fubini’s theorem it follows that,

E

⎡
⎣

T∫
0

∂ f

∂x
(t) Y (t)dt

⎤
⎦ = E

⎡
⎣

T∫
0

⎛
⎝

t∫
0

∂ f

∂x
(t)

{
∂b

∂x
(s) Y (s) + ∂b

∂u
(s) vs

}
ds

⎞
⎠ dt

+
T∫

0

⎛
⎝

t∫
0

Ds
∂ f

∂x
(t)

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}
ds

⎞
⎠ dt

⎤
⎦

= E

⎡
⎣

T∫
0

⎛
⎝

T∫
s

∂ f

∂x
(t)

{
∂b

∂x
(s) Y (s) + ∂b

∂u
(s) vs

}
dt

⎞
⎠ ds

+
T∫

0

⎛
⎝

T∫
s

Ds
∂ f

∂x
(t)

{
∂σ

∂x
(s) Y (s) + ∂σ

∂u
(s) vs

}
dt

⎞
⎠ ds

⎤
⎦ .

(4.17)
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Changing the notation s → t, we get

E

⎡
⎣

T∫
0

∂ f

∂x
(t) Y (t)dt

⎤
⎦

= E

⎡
⎣

T∫
0

⎛
⎝
⎛
⎝

T∫
t

∂ f

∂x
(s) ds

⎞
⎠
{

∂b

∂x
(t) Y (s) + ∂b

∂u
(t) vt

}⎞
⎠ dt

+
T∫

0

⎛
⎝

T∫
t

(
Dt

∂ f

∂x
(s) ds

){
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}⎞
⎠ dt

⎤
⎦ . (4.18)

Using the notation

R (t) := g′ (XT ) +
T∫
t

∂ f

∂x
(s) ds,

and combining (4.17) and (4.18), we get

lim
θ→0

1

θ

(
J
(
uθ , ξ̂

)
− J

(
û, ξ̂

))
= E

⎡
⎣

T∫
0

⎧⎨
⎩R (t)

⎧⎨
⎩

∂b

∂x
(t) Y (t) + ∂b

∂u
(t) vt

⎫⎬
⎭

+ Dt R (t)

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}

+∂ f

∂u
(t) vt

⎫⎬
⎭ dt

⎤
⎦ , (4.19)

which completes the proof. �
Now, we are ready to state the main result of this paper. Note that the following theorem

extends in particular [25]Theorem3.4 and [29]Theorem2.4 tomixed regular-singular control
problems.

Theorem 4.4 (The stochastic maximum principle) Let
(
û, ξ̂

)
∈ AE be an optimal control

maximizing the reward J over AE and x̂t denotes the optimal trajectory, then for a.e. t ∈
[0, T ] we have:

i) E

[
V(

û,ξ̂
)(t)/Et

]
≤ 0, and E

[
V(

û,ξ̂
)(t)/Et

]
d ξ̂t = 0 where

V(
û,ξ̂
)(t) = λ (t) p̂ (t) + h (t) ,

ii) E

[
∂H

∂u

(
t, x̂t , ût

)
/Et
]

= 0, where

H
(
t, x̂t , ût , p̂ (t) , q̂ (t)

) = f
(
t, x̂t , ût

)+ p̂ (t) b
(
t, x̂t , ût

)+ q̂ (t) σ
(
t, x̂t , ût

)
,

is the usual Hamiltonian.
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Proof First, we start to prove (i). By Lemma 4.2 we have

lim
θ→0+

1

θ

(
J
(
û, ξ θ

)− J
(
û, ξ̂

))
= E

⎡
⎣

T∫
0

V(
û,ξ̂
)(t)dηt

⎤
⎦ ≤ 0,

for all η ∈ UE
2 . In particular, this holds if we choose η such that dη (t) = a (t) dt, where

a (t) ≥ 0 is continuous and Et−adapted, then

E

⎡
⎣

T∫
0

V(
û,ξ̂
)(t)a (t) dt

⎤
⎦ ≤ 0.

Since this holds for all such Et−adapted processes, we deduce that

E

[
V(

û,ξ̂
)(t)/Et

]
≤ 0; a.e.t ∈ [0, T ] . (4.20)

Then, choosing ηt = −ξ̂t we get

E

⎡
⎣

T∫
0

V(
û,ξ̂
)(t)

(
−d ξ̂t

)⎤⎦ ≤ 0.

Next, choosing ηt = ξ̂t we get

E

⎡
⎣

T∫
0

V(
û,ξ̂
)d ξ̂t

⎤
⎦ ≤ 0.

Hence

E

⎡
⎣

T∫
0

V(
û,ξ̂
)(t)d ξ̂t

⎤
⎦ = E

⎡
⎣

T∫
0

E

(
V(

û,ξ̂
)(t)/Et

)
d ξ̂t

⎤
⎦ = 0,

which combined with (4.20) gives

E

(
V(

û,ξ̂
)(t)/Et

)
d ξ̂t = 0.

Now let us prove (i i).
We have

lim
θ→0

1

θ

(
J
(
uθ , ξ̂

)
− J

(
û, ξ̂

))
≤ 0.

Then by Lemma 4.3 we get

0 ≥ E

⎡
⎣

T∫
0

{
R (t)

{
∂b

∂x
(t) Y (t) + ∂b

∂u
(t) vt

}
(4.21)

+Dt R (t)

{
∂σ

∂x
(t) Y (t) + ∂σ

∂u
(t) vt

}
+ ∂ f

∂u
(s) vt

}⎤
⎦ dt.
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Now we apply the above to v = vα ∈ UE
1 of the form vα (s) = α1[t,t+h] (s) , for some

t, h ∈ (0, T ), t +h ≤ T,where α = α (ω) is bounded and Et -measurable. Then Y vα (s) = 0
for 0 ≤ s ≤ t , hence (4.21) becomes

A1 + A2 ≤ 0, (4.22)

where

A1 = E

⎡
⎣

T∫
t

{
R (s)

∂b

∂x
(s) Y (s) + Ds R (s)

∂σ

∂x
(s) Y (s)

}
ds

⎤
⎦ ,

and

A2 =
⎡
⎣

t+h∫
t

{
R (s)

∂b

∂u
(t) + Ds R (s)

∂σ

∂u
(t) + ∂ f

∂u
(s)

}
αds

⎤
⎦ .

Note that by (4.14), with Y (s) = Y vα (s), s ≥ t + h the process Y (s) satisfies the following
dynamics

dY (s) = Y (s)

{
∂b

∂x
(s) ds + ∂σ

∂x
(s) dBs

}
, (4.23)

for s ≥ t + h with initial condition Y (t + h) at time t + h. An application of Itô’s formula
yields

Y (s) = Y (t + h)G (t + h, s) ; s ≥ t + h, (4.24)

where, for s ≥ t ,

G (t, s) = exp

⎛
⎝

s∫
t

{
∂b

∂x
(r) − 1

2

(
∂σ

∂x

)2

(r)

}
dr +

s∫
t

∂σ

∂x
(r) dBr

⎞
⎠ .

Note that G (t, s) does not depend on h, but Y (s) does. We have by (3.7)

A1 = E

⎡
⎣

T∫
t

∂H0

∂x
(s) Y (s)ds

⎤
⎦ .

Differentiating with respect to h at h = 0 we get

d

dh
A1

∣∣∣∣
h=0

= d

dh
E

⎡
⎣

t+h∫
t

∂H0

∂x
(s) Y (s)ds

⎤
⎦
∣∣∣∣∣∣
h=0

+ d

dh
E

⎡
⎣

T∫
t+h

∂H0

∂x
(s) Y (s)ds

⎤
⎦
∣∣∣∣∣∣
h=0

.

Using the fact that Y (t) = 0, we see that

d

dh
E

⎡
⎣

t+h∫
t

∂H0

∂x
(s) Y (s)ds

⎤
⎦
h=0

= 0.
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Therefore, using (4.24) and the fact that Y (t) = 0 it holds that,

d

dh
A1

∣∣∣∣
h=0

= d

dh
E

⎡
⎣

T∫
t+h

∂H0

∂x
(s) Y (t + h)G (t + h, s) ds

⎤
⎦
∣∣∣∣∣∣
h=0

=
T∫
t

d

dh
E

[
∂H0

∂x
(s) Y (t + h)G (t + h, s)

]∣∣∣∣
h=0

ds

=
T∫
t

d

dh
E

[
∂H0

∂x
(s)G (t, s) Y (t + h)

]∣∣∣∣
h=0

ds. (4.25)

By (4.16)

Y (t + h) = α

t+h∫
t

{
∂b

∂u
(s) ds + ∂σ

∂u
(s) dBs

}
+

t+h∫
t

Ys

{
∂b

∂x
(s) ds + ∂σ

∂x
(s) dBs

}
. (4.26)

Therefore, by the duality formulae,
d

dh
A1

∣∣∣∣
h=0

= �1 + �2, where

�1 =
T∫
t

d

dh
E

⎡
⎣∂H0

∂x
(s)G (t, s) α

⎛
⎝

t+h∫
t

∂b

∂u
(r) dr + ∂σ

∂u
(r) dBr

⎞
⎠
⎤
⎦
∣∣∣∣∣∣
h=0

ds

=
T∫
t

d

dh
E

⎡
⎣F (t, s) α

⎛
⎝

t+h∫
t

∂b

∂u
(r) dr + ∂σ

∂u
(r) dBr

⎞
⎠
⎤
⎦
∣∣∣∣∣∣
h=0

ds

=
T∫
t

d

dh
E

⎡
⎣α

⎛
⎝

t+h∫
t

{
F (t, s)

∂b

∂u
(r) dr + Dr F (t, s)

∂σ

∂u
(r)

}
dr

⎞
⎠
⎤
⎦
∣∣∣∣∣∣
h=0

ds

=
T∫
t

E

[
α

{
F (t, s)

∂b

∂u
(t) dt + Dt F (t, s)

∂σ

∂u
(t)

}]
ds, (4.27)

F (t, s) = ∂H0
∂x (s)G (t, s) , and

�2 =
T∫
t

d

dh
E

⎡
⎣∂H0

∂x
(s)G (t, s)

⎛
⎝

t+h∫
t

Yr

{
∂b

∂x
(r) dr + ∂b

∂x
(r) dBr

}⎞
⎠
⎤
⎦ ds.

Using the fact that Y (t) = 0, we see that

�2 = 0.

We conclude that
d

dh
A1|h=0 = �1.

Moreover, we see directly that

d

dh
A2|h=0 = E

[
α

{
R (t)

∂b

∂u
(t) + Dt R (t)

∂σ

∂u
(t) + ∂ f

∂u
(t)

}]
.
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Therefore, differentiating (4.26) with respect to h at h = 0, gives the inequality

E

⎡
⎣α

⎧⎨
⎩
⎛
⎝R (t) +

T∫
t

F (t, s) ds

⎞
⎠ ∂b

∂u
(t)

+ Dt

⎛
⎝R (t) +

T∫
t

F (t, s) ds

⎞
⎠ ∂σ

∂u
(t) + ∂ f

∂u
(t)

⎫⎬
⎭
⎤
⎦ ≤ 0.

We can reformulate this by using the notation (3.9) and (3.10)

E

[
α

{
p (t)

∂b

∂u
(t) + q (t)

∂σ

∂u
(t) + ∂ f

∂u
(t)

}]
≤ 0.

Using the definition of the Hamiltonian (3.11) the last inequality can be rewritten

E

[
∂H

∂u

(
t, x̂t , ût

)
α

]
≤ 0.

Since this holds for all bounded Et -measurable random variable α, we conclude that

E

[
∂H

∂u

(
t, x̂t , ût

)
/Et
]

= 0.

This completes the proof. �
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