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Abstract A trigonometrically fitted block third derivative method (TFBTDM) whose coeffi-
cients depend on the frequency and stepsize is constructed for periodic initial value problems.
The motivation governing the development of the TFBTDM is inherent in the fact that if the
frequency or a reasonable estimate of it is known in advance, the method will be more advan-
tageous than the polynomial based methods. Specifically, the TFBTDM is recovered from
a continuous approximation which is constructed by imposing that the chosen interpolating
trigonometric polynomial satisfies the appropriate interpolating conditions. The TFBTDM
is shown to be of order 6 and has a moderately large stability interval. Numerical examples
are given to illustrate the accuracy of the method.
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1 Introduction

In this paper, a TFBTDM whose coefficients depend on the frequency and stepsize is con-
structed for periodic IVPs of the form

Y= fx, ), y(x0) = yo, ¥'(x0) = - (1)

The motivation governing the development of the TFBTDM is inherent in the fact that if
the frequency or a reasonable estimate of it is known in advance, the method will be more
advantageous than the polynomial based methods (see [24]). Several techniques based on
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exponential fitting which take advantage of the special properties of the solution of (1) that
may be known in advance have been proposed (see [4,5,13,13,14,21,24-26,30,33]).

It is also shown that the TFBTDM can be used to solve the general second-order IVPs of
the form

Y= flx,y, ), y(xo) = yo, ¥ (x0) = yp, 2)

since these type of equations arise frequently in engineering, science, and social sciences
with (1) as a special case. Conventionally, (2) is first transformed into a system of first-order
IVPs and solved by the various methods available for solving systems of first order IVPs (see
[2,11,19,22]).

Ithas been shown that solving (1) directly is preferable, since about half of the storage space
can be saved, especially, if the dimension of (1) is large (see [4,6,11,11-13,20,25,27-29]).
Nevertheless, fewer methods have been proposed for solving the general form (2) directly
(see [1,3,12,34]). These methods are generally implemented in a step-by-step fashion in
which on the partition Iy, an approximation is obtained at x,, only after an approximation
at x,_1 has been computed, where for some stepsize 4 and integer N > 0,

My ={xo<x1<---<xy}, X4=x4—1+h, n=1,...,N.

The TFBTDM involves a different approach which discretizes the problem by simultane-
ously solving the resulting system in a block-by-block manner (see [14]). Some techniques
based on combining different methods and using them to simultaneously solve scalar and
systems of first order [VPs are also discussed in [2,7,15].

The paper is organized as follows. In Sect. 2, the TFBTDM is recovered from a continuous
approximation and analyzed. Section 3 is devoted to the computational aspect and numerical
examples are given in Sect. 4. Finally, the conclusion of the paper is discussed in Sect. 5.

2 Development of method

In this section, we develop a two-step TFBTDM for the direct numerical solution of (2) on
the interval from x;, to x,,42 = x,, + 2h. We initially assume that the solution on the interval
[xn, xn42] is locally approximated by the function

5
Ux) = Z ijj + £g sin(wx) + £7 cos(wx), 3)

j=0

where £; are coefficients to be uniquely determined and w is the frequency. Since this
function must pass through the points (x,;, ¥), (Xn+1, Yn+1)s (Xn+2, Yn+2), we demand that
the following eight equations must be satisfied.

Uxntj) = ynvj, Jj=0,1, 4)
U'(xntj) = fatjr U"(ngj) = guyj, j=0,1,2, Q)

where &ntj = df (x, )’S;), Y () |x’l+./'

Yn+j*
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We note that Egs. (4) and (5) lead to a system of eight equations and eight undetermined
coefficients which is solved with the aid of Mathematica 9.0 to obtain the coefficients £;
(see [14]). The uniquely determined coefficients are then substituted into (3) and after sim-
plification we obtain the continuous representation of the TFBTDM and its first derivative
as

2 2
U (x) = ag(x; W)y, + o1 (53 w)yny1 +h* D B0 w) furj +h° D (6 w)gny, (6)
Jj=0 Jj=0
, d
U'(x) = (U ). )
X

where w is the frequency, ao(x; w), a1 (x; w), B;(x; w), and y;(x; w), j = 0, 1,2 are
continuous coefficients. We assume that y, ; = U (x,, + jh) is the numerical approximation
to the analytical solution y(x,4;), y;1+/. = U’(x, + jh) is an approximation to y’(x,4;),
Sfotj = U"(x, + jh) is an approximation to ¥ (xn)), and guqj = U (x, + jh) is an
approximation to y”’(x,4;), where for j =0, 1, 2,

df (x, y(x), y'(x))
dx

Xn+j

’
En+j = s fn+j =f (xn—}—jayn-kj’ynJrj) ,

Yn+j

En+j = 8 (xn+j» Yn+js y;;—'—j) .

2.1 TFBTDM

In order to construct the four members that constitute the TFBTDM given in expressions
(8)—(11), we specity the coefficients in (6) and (7). In particular, we let u = wh and evaluate
(6) at x = x,47 and (7) at {x = xp, X541, Xp+2}. Thus, methods (6) and (7) and expressions
(8)—(11) are linked as follows:

Expression (8): Evaluate (6) at x = x,,42
Bo(x = xp+25 u) = B2,0, B1(X = Xpt2;u) = B2,1, B2 (X = Xpt2;u) = P22,
YO(X = Xpt25 ) = 2,0, V1(X = Xpq2; ) = Y21, Y2 (X = Xpy2; 4) = ¥2.2.

Expression (9): Evaluate (7) at x = x,
Bolx = xp;u) = Br,o, B1(x = xu;u) = 1,1, Bo(x = x5 1) = P12,
YO(X = Xp; u) = y1,0, VI(X = Xp; u) = Y11, V2 (X = Xp; u) = y12.

Expression (10): Evaluate (7) at x = x;,41
Box = xpg15u) = B30, B1(x = Xpq15u) = B3,1, Bo(x = xpp15u) = B30,
YOX = Xpt15 u) = 3,0, VI(X = Xpt15 U) = 3.1, V2 (X = Xpt15 U) = V3.2

Expression (11): Evaluate (7) at x = x,42
Bo(x = xpq2; u) = Ba,0, B1(x = xpq2;u) = Ba 1, Bo(x = xpq2; u) = P42,
Yo(X = Xp425 U) = V4,0, YI(X = Xpq2; u) = Va1, Y2(X = Xpq2; U) = y4..

In what follows we give the members of the block, their coefficients and their equivalent
Taylor series expansions.
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Ynt2 = 29nt1 4 ¥n = h2(Ba,0fu + Bot fast + Bo2 fus2) + H3 (1208041 + V218041
+92.28142)),

csc[%]2 (24—12u>—24 cos[u]+u> sin[u])
Pro = 2412 (—24uCot[ %])
2

_ 2 292 23u* 617u® 55813u® 59911910
= 15 t 3500 T 756000 T 776160000 T 2724321600000 T 1144215072000000 T "
By = csc[%]z(—24+12(2+u2) cos[u]+5u sin[u])
2,1 = 12u2(—2+ucot[%])

_ 1 29?23t 617w® 5581348 599119410 4o
= 15 7 12600 — 378000 — 388080000 1362160800000  572107536000000 ’

_ csc[%]2(24—12u2—24cos[u]+u3 sin[u])
P2 = 24u? (—2+u cot[ 4]) ®)

_ 2 2942 23u* 617u® 55813u® 59911910
= 15 t 3500 T 756000 T 776160000 T 2724321600000 T T144215072000000 T "
(= 12450+ (1242) cos[u]) cse[ 4]

Y2,0 = — 24u? (—2+u cot[%])

_ 1 2942 23u* 617u® 55813u® 59911910

= 70 t 30400 T 1512000 T 1552320000 T 5448643200000 T 2288430144000000 T
2,1 =0,

_ (—12+5u2+(12+uz) cos[u]) csc[%]2
2= 24u? (—2+u cot[%])

_ 1 29u> 23u* 617u® 55813u® 599119410 +o.

740 T 50400 — 1512000 ~ 1552320000 5448643200000  2288430144000000

By} = Y1 + Y0 = h2Brofu + Bi1 fus1 + Br2fus2) + B2 (V1 0gn41
+V1,18n+1 + V1,28n+2)),

_eslg] (—5(24+13u%) cos[ 4 ]+5(24-+4%) cos| 3 |+2(70+2642+(110+902) coslu]) sin[ 4]

ﬂl,O - 80u2 (2u~+u cos[u]—3 sin[u]) ’
_13_9n%W® 739t 5323u%  56899u®  323286737u!”
427 77840 T 32598720 ~ 10787212800 ~ 4983692313600  1174257582930432000 ’
(—4+u+2ucot[4])
/31,1 = _T

_ _1 u? ut u® ub 691u'?
=61 70 * 3000 * 130900 + F7900T60 T TROT674368000 T
(140-1242+2(~10+1%) coslul—65u cot § |+5ucos| 3 |ese[ 4])
B2 =— 80u (2u—+u cos[u]—3 sin[u]) )

%@ st 71w 141433 990710990 )
13 T 70560 0866240 2157442560 _ 14951076940800 3974191943 10144000 ;

escl 4 ](3(50+210) cos[ 4]+3(~50-+9u2) cos| % |2u(105+842+135 coslu]) sin[ 4])

YLo = 240u? (2u--u cos[u]—3 sin[u]) ’
_ 59 211W®  2017u* 10074 4974594  73601807u'® +en
1680 ~ 423360 ~ 195592320 ~ 4314885120 ~ 89706461644800  541965038275584000 ’
_ 2(u(—15+u?) cos[ul+3(5—2u?) sin[u])
YL = 150 Qu-tucoslul—3sim[ul)

8 4u? Sut 6 18298 162959110

u
= 105 ~ 6615 ~ 611226 ~ 9363900 _ 1401663463200  TT008664839972800 T " >
esc[4]((30+87u%) cos[ 4 ]+3(~10-+?) cos| 3 | ~2u(105-8u>+15 cos[ul) sin[ 4])
Y2 =- 240u? (2u-u cos[u]—3 sin[u]) ’

_ 1 83h3u2+ 12173 u* 3883u® 438931u® 90467661 1u!” +ee

1680 ' 423360 ' 195592320 + 21574425600 + 89706461644800 + 7045545497582592000
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R,y = Yng1 + ¥n = h2(B3.0fu + B3 fus1 + B3.2fus2) + 13 (3.08n+1 + V318041 + ¥3.28n42)).

(1260u—3571 —24u (40+u?) cos[u]+3u (—100+7u>) cos[2u]—1440 sin[u]+74u* sin[u]+720 sin[2u]+8u* sin[2u])
B30 = 120u2 (—9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u? sin[u]—6 sin[2u]+u? sin[2u]) ’
= 187 4 611u> + 32119u* + 101337u® + 41389093u® + 79789391683 +e
1680 T 705600 ' 1629936000 ' 219739520000 ' 3737769235200000 ' 293564395732608000000 )
_esc[ 4] (—24+12(2+u?) coslul+5u? sin[u])
Bs1 = 24u? (—24u cot[ 5 ]) )
— 202 et el7u®  ss813ud  s599Lioul0
3 25200 756000 — 776160000 2724321600000  1144215072000000 )
—540—153u® —24(—20+9u?) cos[u]+(60-+9u>) cos[2u]+720uSin[u]—34u> sin[u]+2u> sin[2u])
B32 = 120u (—9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u? sin[u]—6 sin[2u]+u? sin[2u]) ’
2 4 6 8 10
= % + zgggoo + 6()6;678u000 + 1976766055863812)000 + 12453%233%0000 + 108722773575%%77957021%00000 +---, (10)
(240u—65u> —4u (15+u?) cos[2u]—300 sin[u]+9u? sin[u]+7u* sin[u]+3 cos[u] (—u (60+7u>)+ (100+7u?) sin[u]))
V3.0 = 60u? (—9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u? sin[u]—6 sin[2u]+u? sin[2u]) ’
— 2 4 4o 1owt o 593lk® . 7566619u’ . 45468060087u0 |
105 T T058400 T 1222452000 ' 269680320000 ' 1401663463200000 ' 33872814892224000000 )
_ (7u3 cos[u]—3(—40u+(40+9u2) sin[uJ))
Vi1 =- 60u2 (2u-+u cos[u]—3 sin[u]) ’
2 4 6 8 10
= — 270 + Tos8a0 T Z8ER080 T Soe60a00 + TEHEISATIZO0 T+ FSITAIIARIITIIE0 T+
(60u-+40u> +u3 cos[2u]+60 sinfu]—141u? sin[u]+7u* sin[u]—cos[u] (60u—49u> +(60-+9u>) sin[u]))
V32 = 60u? (—9u-+4u cos[ul+5u cos[2u]+12 sin[u]+4u? sin[u]—6 sin[2u]+u? sin[2u]) ’
1 101> 14933u* 131639u® 271651018 280877668030

168 529200 2444904000 741620880000 5606653852800000 220173296799456000000 toe

Ry, = Yna1 + ¥n = h*(Bao fu + Bad fur1 + Ba2 fus2) + 1 (a0gnr1 + V41841 + Va28n42)),

Ba.o = (—180u — 627u® — 24u(—20 + 21u?) cos[u] + 3u(—100 + 17u?) cos[2u] — 1440 sin[u]
+1560u? sin[u] + 4u* sin[u] + 720 sin[2u] — 60u? sin[2u] + 13u* sin[2u])/
(120u® (—=9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u? sin[u] — 6 sin[2u] + u? sin[2u])),
2 4 6 8 10
= 70 + 352800 T S19068000 T DosiR3520000 T TRGRIII7800000 T TAGTRI9TRG6301000000 +
osc| 4] (—24+12(2+3u) coslul-+u(—24+13u?) sinfu])
Paa = 24u? (—2+u cot[ 4 ]) ’

9 _ 3w _ 7wt 5627u® s6167u®  _ 1802863h%u'” +..
0 ~ 8400 — 756000 2328480000 _ 908107200000  1144215072000000 )

I
_ (180—963u®—24(40+9u?) cos[u]+(780+99u?) cos[2u]+1560u sinfu]+196u> sin[u]+300u sin[2u]+37u? sin[2u])

ﬂ4'2 12011(—9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u? sin[u]—6 sin[2u]+u? sin[2u]) ’
=3y 811u> + 14423u* + 3821999u° + 59624843u® + 390890085611 '° T
= 70 T 352800 T 271656000 ' 2966483520000 ' 1868884617600000 T 48927399288768000000 ’

Va0 = —(60u + 265u> + 2u(—60 + 131u?) cos[u] + u (60 + 13u?) cos[2u] + 600 sin[u] (1)

—678u? sin[u] + 16u* sin[u] — 300 sin[2u] — 511> sin[2u])/
(12012 (—9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u? sin[u] — 6 sin[2u] + u? sin[2u])),
=33 4 1633u> + 104807u* + 3425999u° + 169729529u® + 343653127049u'0 4o
— 1680 2116800 4889808000 5932967040000 11213307705600000 880693187197824000000 ’
— 2(u(=15+u?) cos[u]+3(5—2u>) sin[u])

Va1 = 15u2 (2u+u cos[u]—3 sin[u]) ’
_ 8 4> st WS 1829u8 _ 162959u'0 4o
— 105 6615 611226 9363900 1401663463200 11008664839972800 ’

v = (—60u +305u> + 18u(20 + 11u?) cos[u] + u(—300 + 37u?) cos[2u] 4 120 sin[u]
—582u? sin[u] — 16u* sin[u] — 60 sin[2u] — 219u? sin[2u])/
(120u® (—9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u? sin[u] — 6 sin[2u] + u? sin[2u])),

101 2273u 124807u* 3742799u° 177045529u% 3501714870490

1680 2116800 ~ 4889808000 ~ 5932967040000 ~ 11213307705600000 ~ 880693187197824000000 t+o

Remark 2.1 We note that for small values of u the trigonometric coefficients are vulnerable
and subject to heavy cancelation, hence the Taylor series coefficients must be used (see [25]).
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370 S. N. Jator

2.2 Order and local truncation error

The algebraic order of each method is given by the integer p = 6 satisfying

y(nt2) — Yng2 = QP +2),
Y(Xng1) — Yng1 = O(h17+2)7
hy' (Xn41) — hy), 1 = OhPT?),
hy (xn42) — hyl, ., = O(hP*?).

where Y12, Yu+1, ¥,,1>and y; . , are numerical solutions given by the methods by impos-
ing that y(x,) = y, and y'(x,) = y;r

The Local Truncation Errors (LTEs) for methods (7), (8) and (9), and (10); denoted LTE
(8), LTE (9), LTE (10), and LTE (11) are given by

LTE(®) = 220 (w?y© (x,) + y® (),
LTE(9) = — 1255 w2y © (x,) + y® (x,)
LTE(10) = g2 (w?y© (x,) + y® (),
LTE(11) = 210 w2y © (x,) + y® ().

Remark 2.2 The method (8) reduces to the sixth-order conventional third derivative method
asu — 0.

Remark 2.3 The method, in its current form is designed only for second order initial value
problems. However, the derivation approach given in Sect.2 can be extended to differential
equations of any order. For instance, the approach was used to derived polynomial based
methods for solving third and fourth order differential equations in [16,17].

2.3 Linear-stability of the TFBTDM

The methods (7), (8) and (9), and (10) are combined to give the TFBTDM, which is expressed
as

A0V, =AY, 02 (BVFum + BOF,), (12)

where Y, Fy, Y1, Fy1, 0 = 0,1,...,N/k,n = 0,2,4,...,N — 2 are given
as Y, = (Vnt1, Ynt2, hyﬁ,+1, hy,/H_z)T’ Fy = (fat1, fat2, hgnt1, hgn+2)Ta Yy-1 =
(ynfh ynvhy;,_ls hyl/q)T’ Fufl = (fnfla fna hgnfhhgn)T’ A(i)s B(i)’ i =0lare4 x4
matrices whose entries are given by the coefficients of the methods (7), (8) and (9), and (10).

The linear-stability of the TFBTDM is discussed by applying the method to the test
equation y” = Ay, where A is expected to run through the (negative) eigenvalues of the
Jacobian matrix g—{ (see [27]). Letting ¢ = Ah?, it is easily shown that the application of (12)
to the test equation yields

Y= Mg, )1, Mg, u) = (AQw) —gBOw) AV + ¢BVw)), 13)

where the matrix M (g, u) is the amplification matrix which determines the stability of the
method.

Definition 2.4 The region Y = (g, u) is the stability region if in this region the spectral
radius p(M(q, u)) < 1.
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Block third derivative method based... 371

Fig. 1 The stability region for
the TFBTDM plotted in the
(q, u)-plane

0 20000 40000 60000 20000 100000

Definition 2.5 As u — 0, the interval [—qo, 0] is the stability interval, if in this interval
p(M(q,0)) <1 and g is the stability boundary (see [27]).

Remark 2.6 'We note that the general presentation of stability of the method gives the stability
region Y = (q, u). However, as u — 0, the interval [—go, 0] is the stability interval, if in
this interval p (M (g, 0)) < 1, in this case, g is called the stability boundary. This is stated to
simply emphasize that as u — 0 the behavior of the TFBTDM is consistent with the behavior
of standard methods in the literature. Since the stability matrix depends on two variables ¢
and u, we plot the stability region in the (q, u)-plane (see Fig. 1). As u — 0, we found that
p(M(q,0)) < 1if g e [—65.36, 0], hence gy = 65.36.

3 Computational aspects

The TFBTDM (12) is applied to (2) on the partition Iy as follows:

Step 1 Choose N, h = (b — a)/N, and the number of blocks I' = N/2; using (12), n = 0,
u = 1, the values of (yq, yz)T and ( yi , yé)T are simultaneously obtained over the sub-interval
[x0, x2], as yo and y, are known from the IVP (2).

Step 2 For n = 2, i = 2, the values of (y3, y4)7 and (yg, yft)T are simultaneously obtained
over the sub-interval [x2, x4], as y» and yé are known from the previous block.

Step 3 The process is continued forn = 4,...,N —2 and © = 3,..., [ to obtain the
numerical solution to (1) on sub-intervals [x4, x¢], ..., [xnN_2, XN].

Linear problems were solved using a code written in Mathematica 9.0 enhanced by the
feature N Solvel[ ], while nonlinear problems were solved by the Newton’s method enhanced
by the feature Find Root[ ] (see [18]). It is vital to note that Mathematica can symbolically
compute derivatives, hence the entries of the Jacobian matrix which involve the partial deriv-
atives of both f and g are automatically generated.

4 Numerical examples

In this section, we present some numerical results obtained using the TFBTDM and compare
the results with those given by existing methods in the literature. We have included a test
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372 S. N. Jator

Table 1 Absolute errors at x = 8 for Example 4.1

VARS (p = 8) TFBTDM (p = 6)

N Err(y(x)) Err(y (x)) N Err(y(x)) Err(y'(x))
67 7.11 x 1077 6.06 x 10~/ 40 2.92 x 1078 5.65 x 1078
82 9.26 x 1078 4.03 x 1077 60 2.92 x 1072 523 x 1072
97 8.78 x 107 3.61 x 1078 80 5.45 x 10710 9.50 x 10~10
112 1.21 x 10710 8.29 x 1072 100 1.46 x 10710 2.51 x 10710
125 271 x 1071 1.00 x 10~ 11 120 4.96 x 1011 8.46 x 10~ 11

problem which is traditionally used in the literature to discuss stability to validate the fact
that the TFBTDM has a moderately large stability boundary Yo = 65.36. We have calculated
the absolute error of the approximate solution on the partition Iy as |y — y(x)|. We note that
the number of function evaluations (FNCs) per step involved in implementing the TFBTDM
is two.

We note that the method can be implemented for all values of N, however, the comparison
was done with different choices of N, because we wanted to use the N values that were used
in the existing papers that we were using for comparison. All computations were carried out
using a code written in Mathematica 9.0.

Example 4.1 We consider the Bessel’s equation (see [34]) given by

2.1 / 2 2 .
x“y +xy +(x°—0.25y =0, y(1)=,/—sinl ~0.67,
b4

y'(1) = (2cos 1 —sin1)/4/27 =~ 0.10,

[ 2
Exact: y(x) = Ji2(x) =,/ — sinx.
TX

This problem was chosen to demonstrate the performance of the TFBTDM on the general
second order IVP which includes y’ on the right-hand side. The absolute errors (Err (y(x)) =
|y(x) — y|and (Err(y’(x)) = |y'(x) — y|) in the solution and its derivative were obtained at
x = 8 using the TFBTDM. Similar results, which are reproduced in Table 1 were obtained
for the same problem by Vigo-Aguiar and Ramos (VARS8 [34] using the variable-step Falker
method of order eight (p = 8) in the predictor-corrector mode. It is seen that although we
used fixed step-sizes, the TFBTDM generally performs better than the method in [34].

Example 4.2 We consider given example which was also solved by [26] on the range
[0, 107].

Y+ Wy =0, y0) =1,y (0) =0,

where W2 = 100 and the exact solution y(x) = cos(Wx).

This problem has been extensively solved in the literature to demonstrate the performance
of numerical techniques (see [26]). Hence, the problem was solved by the TFBTDM and the
results were compared with those given in [26]. Details of the results are given in Table 2
and it is seen that although the TFBTDM is of a lower order p = 6, it is more accurate than
the method in [34] which is of a higher order p = 10.
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Block third derivative method based... 373
Tz}ble 2 Results for Example 4.6 Simos [26] TEBTDM
withh = /12
X Err Err
T 3.45 x 1078 6.22 x 10~15
27 1.52 x 1077 1.31 x 10714
4 6.34 x 1077 1.95 x 10714
67 1.45 x 1076 4.00 x 1014
87 2.59 x 107° 5.46 x 10714
107 4.07 x 1076 6.77 x 10~ 14
Ta}ble 3 Results for Example 4.6 Simos [26] TEBTDM
with h = /5
X Err Err
7 1.85x 1077 277 x 107
27 3.25x 107° 2.97 x 1078
A 7.57 x 107° 1.16 x 1077
6 - 2.53 x 1077
8 4.57 x 1077 428 x 1077
107 238 x 1074 6.29 x 1077

Example 4.3 Consider the nonlinear Duffing equation which was also solved by [26] on the

range [0, 10 ].

v +y+y> = BcosQx, y(0) = Co, y'(0) =0,
y(x) = Cy cos(2x) + C2 cos(3Q2x) + C3cos(52x) + C4cos(72x),

where @ = 1.01, B = 0.002, Cp = 0.200426728069, C; = 0.200179477536, C; =

0.246946143 x 1073, C3 = 0.304016 x 107°, C4 = 0.374 x 1077,

This problem was chosen to demonstrate the performance of the TFBTDM on a nonlinear
IVPs. The results produced by the TFBTDM were compared with those given in [26]. Details
of the results are given in Table 3 and it is seen that although the TFBTDM is of order p = 6,

it is more accurate than the method in [34] which is of order p = 10.

Example 4.4 We consider the nonlinear perturbed system on the range [0, 10], withe = 1073

(see [8]).

Y +25y1 +e(i +y3) = e@i(x), y1(0) =1, y{(0) =0,
Yy 425y +e(yf +v3) = epa(x), ¥2(0)=¢&, y5(0) =S5,

where

01(x) = 1 4+ &2 + 2esin(5x + x2) + 2 cos(x?) + (25 — 4x?) sin(x?),
0 (x) =1+ &2 + 26 sin(5x + x%) — 2sin(x?) + (25 — 4x2) cos(x?),

and the exact solution is given by y((x) =

cos(5x) + &sin(x?),

»(x) = sin(5x) +

& cos(x?), represents a periodic motion of constant frequency with small perturbation of

variable frequency.
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Table 4 A comparison of methods for Example 4.4

ARKNS5(3) TFARKNS5(3) TFBTDM

N (rejected) —Logg(Err) N (rejected) —Logo(Err) N —Logo(Err)
42 (15) 2.82 29 (6) 2.78 50 2.27

86 (7) 4.96 88 (9) 5.33 100 5.01

260 (5) 7.16 262 (8) 7.85 260 7.96

812 (3) 9.37 800 (4) 10.38 800 10.83

This problem was chosen to demonstrate the performance of the TFBTDM on a non-
linear perturbed system. The problem was also solved by [8] using a variable step-size
fifth-order trigonometrically fitted Runge—Kutta—Nystrém method TFARKNS5(3) and a fifth-
order Runge—Kutta—Nystrom method (ARKNS5(3)) which was constructed by [10]. In Table 4,
the maximum global error (Err = Max|y(x) — y|) for the three methods are compared. We
remark that the TFARKNS5(3) and ARKNS5(3) are expected to perform better because they are
exact when the solution involves a linear combination of trigonometric functions as well as
implemented as a variable-step method. Nevertheless, the TFBTDM which is implemented
using a fixed step-size is highly competitive to them, especially as the step-size is decreased.

Example 4.5 We consider the nonlinear system of second order IVP (see [21])

y) = (y1 — y2)* 4 6368y; — 6384y +42cos(10x), y1(0) = 0.5, y}(0) = 0,
¥ = —(y1—y2)° +12768y; — 12784y, 4+42 cos(10x), y2(0)=0.5, y5(0)=0, x€[0, 10],

with exact solution yj(x) = y2(x) = cos(4x) — cos(4x)/2.

This problem was chosen to demonstrate the performance of the TFBTDM on a nonlinear
system. The accuracy and efficiency of the TFBTDM are measured by the end-point global
errors for the y-component and the corresponding FNCs used. The results obtained using
the TFBTDM are displayed in Table 5 and compare with those given in [21]. It is seen from
Table 5 that TFBTDM performs generally better than those in [21] in terms of accuracy and
efficiency.

Example 4.6 We consider the stiff [IVP which was also solved in [6].
==y +Qe=2)y yy =0 =)y +1-2e)y,
y1(0) =2, y1(0) =0, y2(0) = —1, y5(0) =0, = 2500, xe [0, 107].
Exact: yj(x) =2cosx, y2(x) = —cosx,

where ¢ is an arbitrary parameter. This problem was chosen to justify that the stability
of the TFBTDM. The eigenvalues of the matrix of coefficients of the equations for y{ and
y4 are —1 and —e, thus, the analytical solution of the system exhibit two frequencies 1 and
/€, however the initial conditions eliminate the high frequency component /¢ (see [6]). As
u — 0, the method is stable when g € [—65.3613, 0]. In Table 6, we give the absolute errors
at selected values of x, which indicate that choosing N = 355, the method is stable since
for this value of N, g € [—65.3613, 0]. However, for N = 353, ¢ > [—65.3613, 0], hence
the method becomes unstable. In particular, the method is stable when 4 € (0, \/qo/€). We
observe from Table 6, that TFBTDM (4) is stable for 4 € (0, 0.1617) and unstable otherwise.
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Table 5 The correct decimal digit at the endpoint for Example 4.4

TIRK3 RADAUS5 EFRK43 TFBTDM
FNCs Err FNCs Err FNCs Err FNCs Err
907 25x 1074 853 22x1074 2057 37 x 1074 804 1.21 x 107°

1288 6.6 x 1070 1208 4.4 x 1074 1715 3.0x 1074 1204 1.09 x 1077
1682 7.0 x 1076 1639 6.0 x 1076 3079 2.7 x 1075 1604 1.96 x 1078

Table 6 Results for Example 4.6

h =107/195 h =107/193
X Err Err
15 2.79 x 10713 4.68 x 10713
3.1 9.88 x 10714 775 x 10714
6.3 529 x 10714 6.93 x 10713
126 8.57 x 10714 3.39 x 10710
18.9 1.87 x 10713 1.59 x 1077
25.1 3.08 x 10713 7.68 x 1077
314 496 x 10713 3.70 x 1072

4.1 Estimating the frequency

A classical procedure for estimating the frequency is not available, however, some techniques
for estimating the frequency are given in [13,31,32]. A preliminary testing indicates that a
good estimate of the frequency can be obtained by demanding that LT E(8) = 0, and solving
for the frequency. That is, solve for w given that

2948
~o3a00 @y @) +y® ) =0,
where y(/ ) = ZJT‘, j=6,8are j h Jerivative, D = j—x is a differential operator, and w is

assumed to be a constant. We rewrite this equation as

2948 DS 4 D)y = 0
=7 DpSw =0,
302400 Y
we estimate the frequency by imposing that
(w? + DY)y =0, (14)

and solving for w at x = x,,. We implemented this procedure on example 4.2 and obtained
w = 10 which is in agreement with the known frequency. Hence, this procedure is interesting
and will be the subject of our future research.

4.2 Rate of convergence of the TFBTDM

In this subsection, we use example 4.1 to validate the fact that the TFBTDM is of order 6.
Hence, we give the rate of convergence (ROC) of TFBTDM which is calculated using the
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Table 7 ROC for Example 4.1

h Err ROC
1/7 6.55 x 1074

1/14 3.17 x 1079 44
1/28 6.28 x 10~/ 5.7
1/56 1.59 x 1078 53
1/112 2.63 x 10710 5.9
1/224 4.16 x 10712 6.0

formula ROC = Log,(Errp/Errp), E rr is the maximum absolute error obtained using
the step size h. It is observed in Table 7 that as the stepsize is reduced by halve, the method
behaves as an order 6 method. For instance, Erri 122/ Erri a4 = (2.63 x 10710)/(4.16 x
10712) = 63.22 ~ 2° = 64. Thus, the ROC of the TFBTDM is consistent with the theoretical
order (p = 6) of the method.

5 Conclusions

We have proposed a TFBTDM whose coefficients depend on the frequency and stepsize for
accurately and efficiently solving periodic IVPs. It has been shown that the TFBTDM takes
advantage of any problem whose frequency or a reasonable estimate of it is known in advance
to perform better than the purely polynomial based methods. Specifically, the TFBTDM is
recovered from a continuous approximation which is constructed by imposing that the chosen
interpolating trigonometric polynomial satisfies the appropriate interpolating conditions. The
TFBTDM is shown to be of order 6 and this is validated by the ROC of the TFBTDM which
is consistent with the theoretical order (p = 6) of the method (see Table 7). Moreover, the
TFBTDM is shown to have a large stability region (see Fig. 1). In addition, the TFBTDM is
applied in a block-by-block fashion and hence, it is self-starting and implemented without
the use of predictors. Details of the numerical results are displayed in Tables 1, 2, 3, 4, 5.
Our future research will be focused on developing variable step methods equipped with a
strategy for estimating unknown frequencies.
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