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Abstract A trigonometrically fitted block third derivative method (TFBTDM)whose coeffi-
cients depend on the frequency and stepsize is constructed for periodic initial value problems.
The motivation governing the development of the TFBTDM is inherent in the fact that if the
frequency or a reasonable estimate of it is known in advance, the method will be more advan-
tageous than the polynomial based methods. Specifically, the TFBTDM is recovered from
a continuous approximation which is constructed by imposing that the chosen interpolating
trigonometric polynomial satisfies the appropriate interpolating conditions. The TFBTDM
is shown to be of order 6 and has a moderately large stability interval. Numerical examples
are given to illustrate the accuracy of the method.
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1 Introduction

In this paper, a TFBTDM whose coefficients depend on the frequency and stepsize is con-
structed for periodic IVPs of the form

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′
0. (1)

The motivation governing the development of the TFBTDM is inherent in the fact that if
the frequency or a reasonable estimate of it is known in advance, the method will be more
advantageous than the polynomial based methods (see [24]). Several techniques based on
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exponential fitting which take advantage of the special properties of the solution of (1) that
may be known in advance have been proposed (see [4,5,13,13,14,21,24–26,30,33]).

It is also shown that the TFBTDM can be used to solve the general second-order IVPs of
the form

y′′ = f (x, y, y′), y(x0) = y0, y′(x0) = y′
0, (2)

since these type of equations arise frequently in engineering, science, and social sciences
with (1) as a special case. Conventionally, (2) is first transformed into a system of first-order
IVPs and solved by the various methods available for solving systems of first order IVPs (see
[2,11,19,22]).

It has been shown that solving (1) directly is preferable, since about half of the storage space
can be saved, especially, if the dimension of (1) is large (see [4,6,11,11–13,20,25,27–29]).
Nevertheless, fewer methods have been proposed for solving the general form (2) directly
(see [1,3,12,34]). These methods are generally implemented in a step-by-step fashion in
which on the partition �N , an approximation is obtained at xn only after an approximation
at xn−1 has been computed, where for some stepsize h and integer N > 0,

�N := {x0 < x1 < · · · < xN }, xn = xn−1 + h, n = 1, . . . , N .

The TFBTDM involves a different approach which discretizes the problem by simultane-
ously solving the resulting system in a block-by-block manner (see [14]). Some techniques
based on combining different methods and using them to simultaneously solve scalar and
systems of first order IVPs are also discussed in [2,7,15].

The paper is organized as follows. In Sect. 2, the TFBTDM is recovered from a continuous
approximation and analyzed. Section3 is devoted to the computational aspect and numerical
examples are given in Sect. 4. Finally, the conclusion of the paper is discussed in Sect. 5.

2 Development of method

In this section, we develop a two-step TFBTDM for the direct numerical solution of (2) on
the interval from xn to xn+2 = xn + 2h. We initially assume that the solution on the interval
[xn, xn+2] is locally approximated by the function

U (x) =
5∑

j=0

� j x
j + �6 sin(wx) + �7 cos(wx), (3)

where � j are coefficients to be uniquely determined and w is the frequency. Since this
function must pass through the points (xn, yn), (xn+1, yn+1), (xn+2, yn+2), we demand that
the following eight equations must be satisfied.

U (xn+ j ) = yn+ j , j = 0, 1, (4)

U ′′(xn+ j ) = fn+ j , U ′′′(xn+ j ) = gn+ j , j = 0, 1, 2, (5)

where gn+ j = d f (x, y(x), y′(x))
dx |xn+ j

yn+ j .
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We note that Eqs. (4) and (5) lead to a system of eight equations and eight undetermined
coefficients which is solved with the aid of Mathematica 9.0 to obtain the coefficients � j

(see [14]). The uniquely determined coefficients are then substituted into (3) and after sim-
plification we obtain the continuous representation of the TFBTDM and its first derivative
as

U (x) = α0(x;w)yn + α1(x;w)yn+1 + h2
2∑

j=0

β j (x;w) fn+ j + h3
2∑

j=0

γ j (x;w)gn+ j , (6)

U ′(x) = d

dx
(U (x)), (7)

where w is the frequency, α0(x;w), α1(x;w), β j (x;w), and γ j (x;w), j = 0, 1, 2 are
continuous coefficients. We assume that yn+ j = U (xn + jh) is the numerical approximation
to the analytical solution y(xn+ j ), y′

n+ j = U ′(xn + jh) is an approximation to y′(xn+ j ),
fn+ j = U ′′(xn + jh) is an approximation to y′′(xn+ j ), and gn+ j = U ′′′(xn + jh) is an
approximation to y′′′(xn+ j ), where for j = 0, 1, 2,

gn+ j = d f (x, y(x), y′(x))
dx

∣∣∣∣
xn+ j

yn+ j

, fn+ j = f
(
xn+ j , yn+ j , y

′
n+ j

)
,

gn+ j = g
(
xn+ j , yn+ j , y

′
n+ j

)
.

2.1 TFBTDM

In order to construct the four members that constitute the TFBTDM given in expressions
(8)–(11), we specify the coefficients in (6) and (7). In particular, we let u = wh and evaluate
(6) at x = xn+2 and (7) at {x = xn, xn+1, xn+2}. Thus, methods (6) and (7) and expressions
(8)–(11) are linked as follows:

Expression (8): Evaluate (6) at x = xn+2

β0(x = xn+2; u) = β2,0, β1(x = xn+2; u) = β2,1, β2(x = xn+2; u) = β2,2,
γ0(x = xn+2; u) = γ2,0, γ1(x = xn+2; u) = γ2,1, γ2(x = xn+2; u) = γ2,2.

Expression (9): Evaluate (7) at x = xn
β0(x = xn; u) = β1,0, β1(x = xn; u) = β1,1, β2(x = xn; u) = β1,2,
γ0(x = xn; u) = γ1,0, γ1(x = xn; u) = γ1,1, γ2(x = xn; u) = γ1,2.

Expression (10): Evaluate (7) at x = xn+1

β0(x = xn+1; u) = β3,0, β1(x = xn+1; u) = β3,1, β2(x = xn+1; u) = β3,2,
γ0(x = xn+1; u) = γ3,0, γ1(x = xn+1; u) = γ3,1, γ2(x = xn+1; u) = γ3,2.

Expression (11): Evaluate (7) at x = xn+2

β0(x = xn+2; u) = β4,0, β1(x = xn+2; u) = β4,1, β2(x = xn+2; u) = β4,2,
γ0(x = xn+2; u) = γ4,0, γ1(x = xn+2; u) = γ4,1, γ2(x = xn+2; u) = γ4,2.

In what follows we give the members of the block, their coefficients and their equivalent
Taylor series expansions.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+2 − 2yn+1 + yn = h2(β2,0 fn + β2,1 fn+1 + β2,2 fn+2) + h3(γ2,0gn+1 + γ2,1gn+1

+γ2,2gn+2)),

β2,0 = csc
[ u
2

]2(24−12u2−24 cos[u]+u3 sin[u])
24u2(−2+uCot

[ u
2

]
)

= 2
15 + 29u2

25200 + 23u4
756000 + 617u6

776160000 + 55813u8
2724321600000 + 599119u10

1144215072000000 + · · · ,

β2,1 = csc
[ u
2

]2(−24+12
(
2+u2

)
cos[u]+5u3 sin[u])

12u2(−2+u cot
[ u
2

]
)

= 11
15 − 29u2

12600 − 23u4
378000 − 617u6

388080000 − 55813u8
1362160800000 − 599119u10

572107536000000 + · · · ,

β2,2 = csc
[ u
2

]2(24−12u2−24 cos[u]+u3 sin[u])
24u2(−2+u cot

[ u
2

]
)

= 2
15 + 29u2

25200 + 23u4
756000 + 617u6

776160000 + 55813u8
2724321600000 + 599119u10

1144215072000000 + · · · ,

γ2,0 = −
(−12+5u2+(

12+u2
)
cos[u]) csc[ u2

]2

24u2(−2+u cot
[ u
2

]
)

= 1
40 + 29u2

50400 + 23u4
1512000 + 617u6

1552320000 + 55813u8
5448643200000 + 599119u10

2288430144000000 + · · · ,

γ2,1 = 0,

γ2,2 =
(−12+5u2+(

12+u2
)
cos[u]) csc[ u2

]2

24u2(−2+u cot
[ u
2

]
)

= − 1
40 − 29u2

50400 − 23u4
1512000 − 617u6

1552320000 − 55813u8
5448643200000 − 599119u10

2288430144000000 + · · · ,

(8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hy′
n − yn+1 + yn = h2(β1,0 fn + β1,1 fn+1 + β1,2 fn+2) + h3(γ1,0gn+1

+γ1,1gn+1 + γ1,2gn+2)),

β1,0 = − csc
[ u
2

](−5
(
24+13u2

)
cos

[ u
2

]+5
(
24+u2

)
cos

[
3u
2

]
+2u

(
70+26u2+(

110+9u2
)
cos[u]) sin[ u2

])

80u2(2u+u cos[u]−3 sin[u]) ,

=−13
42 − 9h2u2

7840 − 739u4
32598720 − 5323u6

10787212800 − 56899u8
4983692313600 − 323286737u10

1174257582930432000 +· · · ,

β1,1 = −
(−4+u2+2u cot

[ u
2

])

4u2

= − 1
6 + u2

720 + u4
30240 + u6

1209600 + u8
47900160 + 691u10

1307674368000 + · · · ,

β1,2 = −
(
140−12u2+2

(−10+u2
)
cos[u]−65u cot

[ u
2

]+5u cos
[
3u
2

]
csc

[ u
2

])

80u(2u+u cos[u]−3 sin[u]) ,

=− 1
42 − 17u2

70560 − 113u4
10866240 − 719u6

2157442560 − 141433u8
14951076940800 − 99071099u10

391419194310144000 +· · · ,

γ1,0 = csc
[ u
2

](
3
(
50+21u2

)
cos

[ u
2

]+3
(−50+9u2

)
cos

[
3u
2

]
−2u

(
105+8u2+135 cos[u]) sin[ u2

])

240u2(2u+u cos[u]−3 sin[u]) ,

=− 59
1680 − 211u2

423360 − 2017u4
195592320 − 1007u6

4314885120 − 497459u8
89706461644800 − 73601807u10

541965038275584000 +· · · ,

γ1,1 = 2
(
u
(−15+u2

)
cos[u]+3

(
5−2u2

)
sin[u])

15u2(2u+u cos[u]−3 sin[u]) ,

= 8
105 − 4u2

6615 − 5u4
611226 − u6

9363900 − 1829u8
1401663463200 − 162959u10

11008664839972800 + · · · ,

γ1,2 = − csc
[ u
2

]((
30+87u2

)
cos

[ u
2

]+3
(−10+u2

)
cos

[
3u
2

]
−2u

(
105−8u2+15 cos[u]) sin[ u2

])

240u2(2u+u cos[u]−3 sin[u]) ,

= 11h3
1680 + 83h3u2

423360 + 1217h3u4
195592320 + 3883u6

21574425600 + 438931u8
89706461644800 + 904676611u10

7045545497582592000 +· · ·

(9)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hy′
n+1 − yn+1 + yn = h2(β3,0 fn + β3,1 fn+1 + β3,2 fn+2) + h3(γ3,0gn+1 + γ3,1gn+1 + γ3,2gn+2)),

β3,0 =
(
1260u−357u3−24u

(
40+u2

)
cos[u]+3u

(−100+7u2
)
cos[2u]−1440 sin[u]+74u4 sin[u]+720 sin[2u]+8u4 sin[2u])

120u2(−9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u2 sin[u]−6 sin[2u]+u2 sin[2u]) ,

= 187
1680 + 611u2

705600 + 32119u4
1629936000 + 101337u6

219739520000 + 41389093u8
3737769235200000 + 79789391683u10

293564395732608000000 + · · · ,

β3,1 = csc
[ u
2

]2(−24+12
(
2+u2

)
cos[u]+5u3 sin[u])

24u2(−2+u cot
[ u
2

]
)

,

= 11
30 − 29u2

25200 − 23u4
756000 − 617u6

776160000 − 55813u8
2724321600000 − 599119u10

1144215072000000 + · · · ,

β3,2 =
(−540−153u2−24

(−20+9u2
)
cos[u]+(

60+9u2
)
cos[2u]+720uSin[u]−34u3 sin[u]+2u3 sin[2u])

120u(−9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u2 sin[u]−6 sin[2u]+u2 sin[2u]) ,

= 37
1680 + 67u2

235200 + 647u4
60368000 + 660083u6

1977655680000 + 11728781u8
1245923078400000 + 2737887979u10

10872755397504000000 + · · · ,

γ3,0 =
(
240u−65u3−4u

(
15+u2

)
cos[2u]−300 sin[u]+9u2 sin[u]+7u4 sin[u]+3 cos[u](−u

(
60+7u2

)+(
100+7u2

)
sin[u]))

60u2(−9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u2 sin[u]−6 sin[2u]+u2 sin[2u]) ,

= 2
105 + 407u2

1058400 + 11129u4
1222452000 + 59321u6

269680320000 + 7566619u8
1401663463200000 + 4546826287u10

33872814892224000000 + · · · ,

γ3,1 = −
(
7u3 cos[u]−3

(−40u+(
40+9u2

)
sin[u]))

60u2(2u+u cos[u]−3 sin[u]) ,

= − 19
210 + 41u2

105840 + 293u4
48898080 + 5039u6

59329670400 + 24811u8
22426615411200 + 4693133u10

352277274879129600 + · · · ,

γ3,2 =
(
60u+40u3+u3 cos[2u]+60 sin[u]−141u2 sin[u]+7u4 sin[u]−cos[u](60u−49u3+(

60+9u2
)
sin[u]))

60u2(−9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u2 sin[u]−6 sin[2u]+u2 sin[2u]) ,

= − 1
168 − 101u2

529200 − 14933u4
2444904000 − 131639u6

741620880000 − 27165101u8
5606653852800000 − 28087766803u10

220173296799456000000 + · · ·

(10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hy′
n+2 − yn+1 + yn = h2(β4,0 fn + β4,1 fn+1 + β4,2 fn+2) + h3(γ4,0gn+1 + γ4,1gn+1 + γ4,2gn+2)),

β4,0 = (−180u − 627u3 − 24u(−20 + 21u2) cos[u] + 3u(−100 + 17u2) cos[2u] − 1440 sin[u]
+1560u2 sin[u] + 4u4 sin[u] + 720 sin[2u] − 60u2 sin[2u] + 13u4 sin[2u])/
(120u2(−9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u2 sin[u] − 6 sin[2u] + u2 sin[2u])),

= 11
70 + 491u2

352800 + 33269u4
814968000 + 3346799u6

2966483520000 + 55966843u8
1868884617600000 + 114007845683u10

146782197866304000000 + · · · ,

β4,1 = csc
[ u
2

]2(−24+12
(
2+3u2

)
cos[u]+u

(−24+13u2
)
sin[u])

24u2(−2+u cot
[ u
2

]
)

,

= 9
10 − 31u2

8400 − 71u4
756000 − 5627u6

2328480000 − 56167u8
908107200000 − 1802863h2u10

1144215072000000 + · · · ,

β4,2 =
(
180−963u2−24

(
40+9u2

)
cos[u]+(

780+99u2
)
cos[2u]+1560u sin[u]+196u3 sin[u]+300u sin[2u]+37u3 sin[2u])

120u(−9u+4u cos[u]+5u cos[2u]+12 sin[u]+4u2 sin[u]−6 sin[2u]+u2 sin[2u]) ,

= 31
70 + 811u2

352800 + 14423u4
271656000 + 3821999u6

2966483520000 + 59624843u8
1868884617600000 + 39089008561u10

48927399288768000000 + · · · ,

γ4,0 = −(60u + 265u3 + 2u(−60 + 131u2) cos[u] + u
(
60 + 13u2

)
cos[2u] + 600 sin[u]

−678u2 sin[u] + 16u4 sin[u] − 300 sin[2u] − 51u2 sin[2u])/
(120u2(−9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u2 sin[u] − 6 sin[2u] + u2 sin[2u])),

= 53
1680 + 1633u2

2116800 + 104807u4
4889808000 + 3425999u6

5932967040000 + 169729529u8
11213307705600000 + 343653127049u10

880693187197824000000 + · · · ,

γ4,1 = 2
(
u
(−15+u2

)
cos[u]+3

(
5−2u2

)
sin[u])

15u2(2u+u cos[u]−3 sin[u]) ,

= 8
105 − 4u2

6615 − 5u4
611226 − u6

9363900 − 1829u8
1401663463200 − 162959u10

11008664839972800 + · · · ,

γ4,2 = (−60u + 305u3 + 18u(20 + 11u2) cos[u] + u(−300 + 37u2) cos[2u] + 120 sin[u]
−582u2 sin[u] − 16u4 sin[u] − 60 sin[2u] − 219u2 sin[2u])/
(120u2(−9u + 4u cos[u] + 5u cos[2u] + 12 sin[u] + 4u2 sin[u] − 6 sin[2u] + u2 sin[2u])),

= − 101
1680 − 2273u2

2116800 − 124807u4
4889808000 − 3742799u6

5932967040000 − 177045529u8
11213307705600000 − 350171487049u10

880693187197824000000 + · · ·

(11)

Remark 2.1 We note that for small values of u the trigonometric coefficients are vulnerable
and subject to heavy cancelation, hence the Taylor series coefficients must be used (see [25]).
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2.2 Order and local truncation error

The algebraic order of each method is given by the integer p = 6 satisfying
⎧
⎪⎪⎨

⎪⎪⎩

y(xn+2) − yn+2 = ©(h p+2),

y(xn+1) − yn+1 = ©(h p+2),

hy′(xn+1) − hy′
n+1 = ©(h p+2),

hy′(xn+2) − hy′
n+2 = ©(h p+2).

where yn+2, yn+1, y′
n+1, and y

′
n+2 are numerical solutions given by themethods by impos-

ing that y(xn) = yn and y′(xn) = y′
n .

The Local Truncation Errors (LTEs) for methods (7), (8) and (9), and (10); denoted LTE
(8), LTE (9), LTE (10), and LTE (11) are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LTE(8) = 29h8
302400 (w

2y(6)(xn) + y(8)(xn)),

LTE(9) = − h8
17280 (w

2y(6)(xn) + y(8)(xn))

LTE(10) = 29h8
604800 (w

2y(6)(xn) + y(8)(xn)),

LTE(11) = 31h8
201600 (w

2y(6)(xn) + y(8)(xn)).

Remark 2.2 The method (8) reduces to the sixth-order conventional third derivative method
as u → 0.

Remark 2.3 The method, in its current form is designed only for second order initial value
problems. However, the derivation approach given in Sect. 2 can be extended to differential
equations of any order. For instance, the approach was used to derived polynomial based
methods for solving third and fourth order differential equations in [16,17].

2.3 Linear-stability of the TFBTDM

Themethods (7), (8) and (9), and (10) are combined to give the TFBTDM,which is expressed
as

A(0)Yμ = A(1)Yμ−1 + h2
(
B(1)Fμ−1 + B(0)Fμ

)
, (12)

where Yμ, Fμ, Yμ−1, Fμ−1, μ = 0, 1, . . . , N/k, n = 0, 2, 4, . . . , N − 2 are given
as Yμ = (yn+1, yn+2, hy′

n+1, hy
′
n+2)

T , Fμ = ( fn+1, fn+2, hgn+1, hgn+2)
T , Yμ−1 =

(yn−1, yn, hy′
n−1, hy

′
n)

T , Fμ−1 = ( fn−1, fn, hgn−1, hgn)T , A(i), B(i), i = 0, 1 are 4 × 4
matrices whose entries are given by the coefficients of the methods (7), (8) and (9), and (10).

The linear-stability of the TFBTDM is discussed by applying the method to the test
equation y′′ = λy, where λ is expected to run through the (negative) eigenvalues of the
Jacobian matrix ∂ f

∂y (see [27]). Letting q = λh2, it is easily shown that the application of (12)
to the test equation yields

Yμ = M(q, u)Yμ−1 , M(q, u) := (A(0)(u) − qB(0)(u))−1(A(1)(u) + qB(1)(u)), (13)

where the matrix M(q, u) is the amplification matrix which determines the stability of the
method.

Definition 2.4 The region ϒ = (q, u) is the stability region if in this region the spectral
radius ρ(M(q, u)) ≤ 1.
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Fig. 1 The stability region for
the TFBTDM plotted in the
(q, u)-plane

Definition 2.5 As u → 0, the interval [−q0, 0] is the stability interval, if in this interval
ρ(M(q, 0)) ≤ 1 and q0 is the stability boundary (see [27]).

Remark 2.6 Wenote that the general presentation of stability of themethod gives the stability
region ϒ = (q, u). However, as u → 0, the interval [−q0, 0] is the stability interval, if in
this interval ρ(M(q, 0)) ≤ 1, in this case, q0 is called the stability boundary. This is stated to
simply emphasize that as u → 0 the behavior of the TFBTDM is consistent with the behavior
of standard methods in the literature. Since the stability matrix depends on two variables q
and u, we plot the stability region in the (q, u)-plane (see Fig. 1). As u → 0, we found that
ρ(M(q, 0)) ≤ 1 if q ε [−65.36, 0], hence q0 = 65.36.

3 Computational aspects

The TFBTDM (12) is applied to (2) on the partition �N as follows:

Step 1 Choose N , h = (b − a)/N , and the number of blocks � = N/2; using (12), n = 0,
μ = 1, the values of (y1, y2)T and (y′

1, y
′
2)

T are simultaneously obtained over the sub-interval
[x0, x2], as y0 and y′

0 are known from the IVP (2).

Step 2 For n = 2, μ = 2, the values of (y3, y4)T and (y′
3, y

′
4)

T are simultaneously obtained
over the sub-interval [x2, x4], as y2 and y′

2 are known from the previous block.

Step 3 The process is continued for n = 4, . . . , N − 2 and μ = 3, . . . , � to obtain the
numerical solution to (1) on sub-intervals [x4, x6], . . . , [xN−2, xN ].

Linear problems were solved using a code written in Mathematica 9.0 enhanced by the
feature NSolve[ ], while nonlinear problems were solved by the Newton’s method enhanced
by the feature FindRoot[ ] (see [18]). It is vital to note that Mathematica can symbolically
compute derivatives, hence the entries of the Jacobian matrix which involve the partial deriv-
atives of both f and g are automatically generated.

4 Numerical examples

In this section, we present some numerical results obtained using the TFBTDM and compare
the results with those given by existing methods in the literature. We have included a test
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Table 1 Absolute errors at x = 8 for Example 4.1

VAR8 (p = 8) TFBTDM (p = 6)

N Err(y(x)) Err(y′(x)) N Err(y(x)) Err(y′(x))

67 7.11 × 10−7 6.06 × 10−7 40 2.92 × 10−8 5.65 × 10−8

82 9.26 × 10−8 4.03 × 10−7 60 2.92 × 10−9 5.23 × 10−9

97 8.78 × 10−9 3.61 × 10−8 80 5.45 × 10−10 9.50 × 10−10

112 1.21 × 10−10 8.29 × 10−9 100 1.46 × 10−10 2.51 × 10−10

125 2.71 × 10−11 1.00 × 10−11 120 4.96 × 10−11 8.46 × 10−11

problem which is traditionally used in the literature to discuss stability to validate the fact
that the TFBTDMhas a moderately large stability boundaryϒ0 = 65.36.We have calculated
the absolute error of the approximate solution on the partition �h as |y− y(x)|. We note that
the number of function evaluations (FNCs) per step involved in implementing the TFBTDM
is two.

We note that the method can be implemented for all values of N, however, the comparison
was done with different choices of N, because we wanted to use the N values that were used
in the existing papers that we were using for comparison. All computations were carried out
using a code written in Mathematica 9.0.

Example 4.1 We consider the Bessel’s equation (see [34]) given by

x2y′′ + xy′ + (x2 − 0.25)y = 0, y(1) =
√

2

π
sin 1 � 0.67,

y′(1) = (2 cos 1 − sin 1)/
√
2π � 0.10,

Exact : y(x) = J1/2(x) =
√

2

πx
sin x .

This problem was chosen to demonstrate the performance of the TFBTDM on the general
second order IVPwhich includes y′ on the right-hand side. The absolute errors (Err(y(x)) =
|y(x)− y| and (Err(y′(x)) = |y′(x)− y|) in the solution and its derivative were obtained at
x = 8 using the TFBTDM. Similar results, which are reproduced in Table 1 were obtained
for the same problem by Vigo-Aguiar and Ramos (VAR8 [34] using the variable-step Falker
method of order eight (p = 8) in the predictor-corrector mode. It is seen that although we
used fixed step-sizes, the TFBTDM generally performs better than the method in [34].

Example 4.2 We consider given example which was also solved by [26] on the range
[0, 10π].

y′′ + W 2y = 0, y(0) = 1, y′(0) = 0,

where W 2 = 100 and the exact solution y(x) = cos(Wx).
This problem has been extensively solved in the literature to demonstrate the performance

of numerical techniques (see [26]). Hence, the problem was solved by the TFBTDM and the
results were compared with those given in [26]. Details of the results are given in Table 2
and it is seen that although the TFBTDM is of a lower order p = 6, it is more accurate than
the method in [34] which is of a higher order p = 10.
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Table 2 Results for Example 4.6
with h = π/12

Simos [26] TFBTDM
x Err Err

π 3.45 × 10−8 6.22 × 10−15

2π 1.52 × 10−7 1.31 × 10−14

4π 6.34 × 10−7 1.95 × 10−14

6π 1.45 × 10−6 4.00 × 10−14

8π 2.59 × 10−6 5.46 × 10−14

10π 4.07 × 10−6 6.77 × 10−14

Table 3 Results for Example 4.6
with h = π/5

Simos [26] TFBTDM
x Err Err

π 1.85 × 10−7 2.77 × 10−6

2π 3.25 × 10−6 2.97 × 10−8

4π 7.57 × 10−6 1.16 × 10−7

6π − 2.53 × 10−7

8π 4.57 × 10−5 4.28 × 10−7

10π 2.38 × 10−4 6.29 × 10−7

Example 4.3 Consider the nonlinear Duffing equation which was also solved by [26] on the
range [0, 10π].

y′′ + y + y3 = B cos�x, y(0) = C0, y
′(0) = 0,

y(x) = C1 cos(�x) + C2 cos(3�x) + C3 cos(5�x) + C4 cos(7�x),

where � = 1.01, B = 0.002, C0 = 0.200426728069, C1 = 0.200179477536, C2 =
0.246946143 × 10−3, C3 = 0.304016 × 10−6, C4 = 0.374 × 10−9.

This problem was chosen to demonstrate the performance of the TFBTDM on a nonlinear
IVPs. The results produced by the TFBTDMwere compared with those given in [26]. Details
of the results are given in Table 3 and it is seen that although the TFBTDM is of order p = 6,
it is more accurate than the method in [34] which is of order p = 10.

Example 4.4 Weconsider the nonlinear perturbed systemon the range [0, 10], with ε = 10−3

(see [8]).

y′′
1 + 25y1 + ε(y21 + y22 ) = εϕ1(x), y1(0) = 1, y′

1(0) = 0,

y′′
2 + 25y2 + ε(y21 + y22 ) = εϕ2(x), y2(0) = ε, y′

2(0) = 5,

where

ϕ1(x) = 1 + ε2 + 2ε sin(5x + x2) + 2 cos(x2) + (25 − 4x2) sin(x2),

ϕ2(x) = 1 + ε2 + 2ε sin(5x + x2) − 2 sin(x2) + (25 − 4x2) cos(x2),

and the exact solution is given by y1(x) = cos(5x) + ε sin(x2), y2(x) = sin(5x) +
ε cos(x2), represents a periodic motion of constant frequency with small perturbation of
variable frequency.
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Table 4 A comparison of methods for Example 4.4

ARKN5(3) TFARKN5(3) TFBTDM

N (rejected) −Log10(Err) N (rejected) −Log10(Err) N −Log10(Err)

42 (15) 2.82 29 (6) 2.78 50 2.27

86 (7) 4.96 88 (9) 5.33 100 5.01

260 (5) 7.16 262 (8) 7.85 260 7.96

812 (3) 9.37 800 (4) 10.38 800 10.83

This problem was chosen to demonstrate the performance of the TFBTDM on a non-
linear perturbed system. The problem was also solved by [8] using a variable step-size
fifth-order trigonometrically fitted Runge–Kutta–Nyströmmethod TFARKN5(3) and a fifth-
orderRunge–Kutta–Nyströmmethod (ARKN5(3))whichwas constructed by [10]. InTable 4,
the maximum global error (Err = Max |y(x)− y|) for the three methods are compared. We
remark that the TFARKN5(3) andARKN5(3) are expected to perform better because they are
exact when the solution involves a linear combination of trigonometric functions as well as
implemented as a variable-step method. Nevertheless, the TFBTDM which is implemented
using a fixed step-size is highly competitive to them, especially as the step-size is decreased.

Example 4.5 We consider the nonlinear system of second order IVP (see [21])

y′′
1 = (y1 − y2)

3 + 6368y1 − 6384y2 + 42 cos(10x), y1(0) = 0.5, y′
1(0) = 0,

y′′
1 = −(y1−y2)

3+12768y1−12784y2+42 cos(10x), y2(0)=0.5, y′
2(0)=0, xε[0, 10],

with exact solution y1(x) = y2(x) = cos(4x) − cos(4x)/2.

This problem was chosen to demonstrate the performance of the TFBTDM on a nonlinear
system. The accuracy and efficiency of the TFBTDM are measured by the end-point global
errors for the y-component and the corresponding FNCs used. The results obtained using
the TFBTDM are displayed in Table 5 and compare with those given in [21]. It is seen from
Table 5 that TFBTDM performs generally better than those in [21] in terms of accuracy and
efficiency.

Example 4.6 We consider the stiff IVP which was also solved in [6].

y′′
1 = (ε − 2)y1 + (2ε − 2)y2, y′′

2 = (1 − ε)y1 + (1 − 2ε)y2,

y1(0) = 2, y′
1(0) = 0, y2(0) = −1, y′

2(0) = 0 , ε = 2500, xε [0, 10π].
Exact : y1(x) = 2 cos x, y2(x) = − cos x,

where ε is an arbitrary parameter. This problem was chosen to justify that the stability
of the TFBTDM. The eigenvalues of the matrix of coefficients of the equations for y′′

1 and
y′′
2 are −1 and −ε, thus, the analytical solution of the system exhibit two frequencies 1 and√
ε, however the initial conditions eliminate the high frequency component

√
ε (see [6]). As

u → 0, the method is stable when q ∈ [−65.3613, 0]. In Table 6, we give the absolute errors
at selected values of x , which indicate that choosing N = 355, the method is stable since
for this value of N , q ∈ [−65.3613, 0]. However, for N = 353, q 	 [−65.3613, 0], hence
the method becomes unstable. In particular, the method is stable when h ε (0,

√
q0/ε). We

observe from Table 6, that TFBTDM (4) is stable for h ε (0, 0.1617) and unstable otherwise.
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Table 5 The correct decimal digit at the endpoint for Example 4.4

TIRK3 RADAU5 EFRK43 TFBTDM

FNCs Err FNCs Err FNCs Err FNCs Err

907 2.5 × 10−4 853 2.2 × 10−4 2057 3.7 × 10−4 804 1.21 × 10−6

1288 6.6 × 10−6 1208 4.4 × 10−4 1715 3.0 × 10−4 1204 1.09 × 10−7

1682 7.0 × 10−6 1639 6.0 × 10−6 3079 2.7 × 10−5 1604 1.96 × 10−8

Table 6 Results for Example 4.6 h = 10π/195 h = 10π/193
x Err Err

1.5 2.79 × 10−13 4.68 × 10−13

3.1 9.88 × 10−14 7.75 × 10−14

6.3 5.29 × 10−14 6.93 × 10−13

12.6 8.57 × 10−14 3.39 × 10−10

18.9 1.87 × 10−13 1.59 × 10−7

25.1 3.08 × 10−13 7.68 × 10−5

31.4 4.96 × 10−13 3.70 × 10−2

4.1 Estimating the frequency

A classical procedure for estimating the frequency is not available, however, some techniques
for estimating the frequency are given in [13,31,32]. A preliminary testing indicates that a
good estimate of the frequency can be obtained by demanding that LT E(8) = 0, and solving
for the frequency. That is, solve for ω given that

29h8

302400
(w2y(6)(xn) + y(8)(xn)) = 0,

where y( j) = d j y
dx j , j = 6, 8 are j th derivative, D = d

dx is a differential operator, and w is
assumed to be a constant. We rewrite this equation as

29h8

302400
D6(w2 + D2)y = 0,

we estimate the frequency by imposing that

(w2 + D2)y = 0, (14)

and solving for w at x = xn . We implemented this procedure on example 4.2 and obtained
w = 10 which is in agreement with the known frequency. Hence, this procedure is interesting
and will be the subject of our future research.

4.2 Rate of convergence of the TFBTDM

In this subsection, we use example 4.1 to validate the fact that the TFBTDM is of order 6.
Hence, we give the rate of convergence (ROC) of TFBTDM which is calculated using the
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Table 7 ROC for Example 4.1 h Err ROC

1/7 6.55 × 10−4

1/14 3.17 × 10−5 4.4

1/28 6.28 × 10−7 5.7

1/56 1.59 × 10−8 5.3

1/112 2.63 × 10−10 5.9

1/224 4.16 × 10−12 6.0

formula ROC = Log2(Errh/Errh/2), Errh is the maximum absolute error obtained using
the step size h. It is observed in Table 7 that as the stepsize is reduced by halve, the method
behaves as an order 6 method. For instance, Err1/122/Err1/224 = (2.63 × 10−10)/(4.16 ×
10−12) = 63.22 ≈ 26 = 64. Thus, theROCof the TFBTDM is consistentwith the theoretical
order (p = 6) of the method.

5 Conclusions

We have proposed a TFBTDM whose coefficients depend on the frequency and stepsize for
accurately and efficiently solving periodic IVPs. It has been shown that the TFBTDM takes
advantage of any problemwhose frequency or a reasonable estimate of it is known in advance
to perform better than the purely polynomial based methods. Specifically, the TFBTDM is
recovered from a continuous approximationwhich is constructed by imposing that the chosen
interpolating trigonometric polynomial satisfies the appropriate interpolating conditions. The
TFBTDM is shown to be of order 6 and this is validated by the ROC of the TFBTDM which
is consistent with the theoretical order (p = 6) of the method (see Table 7). Moreover, the
TFBTDM is shown to have a large stability region (see Fig. 1). In addition, the TFBTDM is
applied in a block-by-block fashion and hence, it is self-starting and implemented without
the use of predictors. Details of the numerical results are displayed in Tables 1, 2, 3, 4, 5.
Our future research will be focused on developing variable step methods equipped with a
strategy for estimating unknown frequencies.
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