Afr. Mat. (2016) 27:491-500 @ CrossMark
DOI 10.1007/513370-015-0345-4

Strong convergence of some algorithms for A-strict
pseudo-contractions in Banach spaces

Meng Wen'3 . Jigen Peng!-3 . Changsong Hu?

Received: 8 February 2014 / Accepted: 11 May 2015 / Published online: 31 May 2015
© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, we introduce a new iterative algorithm for finding a common element
of the set of common fixed points of an infinite family of strictly pseudo-contractive mappings
in a real 2-uniformly smooth Banach space. Then we proved a strong convergence theorem
under some suitable conditions. Our results generalize and improve several recent results.

Keywords Strong convergence - A-Strict pseudo-contractive mapping -
Fixed point Banach space

Mathematics Subject Classification 47H09 - 47H10

1 Introduction

Throughout the paper unless otherwise stated, let E be a real Banach space and E* the dual
space of E. Let {x,} be any sequence in E, then x, — x(respectively, x, — x, X, — Xx)
will denote strong (respectively, weak, weak™) convergence of the sequence {x,}. Let C be
a nonempty, closed and convex subset of £ and T be a self-mapping of C. We use F(T) to
denote the fixed points of 7. The normalized duality mapping J : E — 2£" is defined by

J@) ={f € E*: (x, f) =IIxI* and |fl =IxI}, V¥x€E,
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where (-, -) denotes the generalized duality pairing. In the sequel we shall donate single-
valued duality mappings by j.

We recall that the modulus of smoothness of E is the function pg : [0, 0c0) — [0, c0)
defined by

1
PE(T) := sup [E(llx +yll+lx =yl —=1:lxll =1 lIyl < t] .

E is said to be uniformly smooth if lim,;_, ¢ p%(’) =0.

Letg > 1. E is said to be g-uniformly smooth if there exists a constant ¢ > 0 such that
pe () < ct?. 1t is well-known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is g-uniformly smooth, then ¢ < 2 and E is uniformly
smooth, and hence the norm of E is uniformly Fréchet differentiable. If E is uniformly
smooth, then the normalized duality map j is single-valued and norm to norm uniformly
continuous.

If a Banach space E admits a sequentially continuous duality mapping J from weak
topology to weak star topology, from Lemma 1 of [1], it follows that the duality mapping J
is single-valued, and also E is smooth. In this case, duality mapping J is said to be weakly
sequentially continuous, i.e., for each {x,} C E with x,, — x; then J(x,) — J(x) (see [1]).

A Banach space E is said to satisfy Opial’s condition if for any sequence {x,} in E,
Xp — x(n — o0o) implies

limsup ||x, — x|| < limsup ||x, — y|l, Vy e E with x #y.
n—o0 n—0o0
By Theorem 1 of [1], we know that if £ admits a weakly sequentially continuous duality
mapping, then E satisfies Opial’s condition, and E is smooth; for the details, see [1].
Let C be a subset of a real Hilbert space H. Recall that a mapping 7 : C — C is said to
be strictly pseudo-contractive if there exists a constant 0 < A < 1 such that

ITx —Ty|? < llx —yII> + AL = T)x — (I = T)y|>, x,yeC. (1.1)

Let C be a subset of a real Banach space E. Recall that a mapping 7 : C — C is said to
be strictly pseudo-contractive if there exists a constant 0 < A < 1 such that

(Tx =Ty, j(x — ) < lx = yI> = Al = T)x — (I = Tyl (1.2)

for every x, y € C and for some j(x —y) € J(x —y).

From (1.2) we can prove that if T is A-strict pseudo-contractive, then T is Lipschitz
continuous with the Lipschitz constant L = 1%)‘

It is clear that the class of strictly pseudo-contractive mappings strictly includes the class
of nonexpansive mappings, which are mappings 7 on C such that

ITx = Tyl < llx — yll, V¥x,yeC. (1.3)

Let C beasubsetof E.Then Pc : E — Ciscalledaretraction from E onto C if Pc(x) = x
forall x € C. Aretraction Pc : E — C issaid to be sunny if Pc(x+1t(x — Pc(x))) = Pc(x)
forall x € E and ¢t > 0. A subset C of E is said to be a sunny nonexpansive retract of E if
there exists a sunny nonexpansive retraction of E onto C.

Proposition 1.1 (See, e.g., Bruck [2], Reich [3], Goebel and Reich [4]) Let E be a smooth
Banach space and let C be a nonempty subset of E. Let Pc : E — C be a retraction and let
J be the normalized duality mapping on E. Then the following are equivalent:
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(a) Pc is sunny and nonexpansive.
(b) |Pcx — Peyl* < (x —y, J(Pcx — Pcy)),Vx, y € E.

() (x — Pcx,J(y— Pcx)) <0,Vxe E,y e C.

In 2011, Yao et al. [5] in a real Hilbert space, introduced the following iterative algorithm:
forxo =x € C,

Xnt1 = Pc((1 —k —ay)xy +kTx,); n=0, (1.4

where {o,} is a real sequence in (0; 1). He obtained that the sequence {x, } generated by (1.4)
converges strongly to the minimum-norm fixed point of 7'.

In this paper, motivated and inspired by Yao et al. [5], we will introduce a new iterative
scheme in a real 2-uniformly smooth Banach space which admits a weakly sequentially
continuous duality mapping defined as:given x; = x € C,

oo

Xn+1 :PC((I—IC—O[,,)X" +kznl'(n)Ti-xn); n>1, (1.5)
i=1

where {«,} is a real sequence in (0; 1), k € (0; %) and {n;}$2, is a positive sequence such

that 372, n; = 1. We will prove that if the parameters satisfy appropriate conditions, then

the sequence {x,} generated by (1.5) converges strongly to a common element of the fixed
points of an infinite family of X;-strictly pseudo-contractive mappings.

2 Preliminaries

In order to prove our main results, we need the following lemmas.

Lemma 2.1 [6] Let E be a 2-uniformly smooth Banach space, then exists a constant Cy > 0
such that

e+ Y17 < Ix17 + 20y, j ) + Callyl>, Va,y € E.
Lemma 2.2 [7,8] Let {s,} be a sequence of non-negative real numbers satisfying
Spa1 < (1= Aw)Sy + Anby + Y, n >0,

where {A,}, {8,} and {y,} satisfy the following conditions: (i) {’,} C [0, 1] and Z;io Ay =
oo, (ii) limsup,,_, o 8y < 0 0r > 02 Anby < 00, (i) ¥ > 0(n > 0), X024 ¥a < 00. Then
limy 00 5, = 0.

Lemma 2.3 (See [9, Lemma 1.3]) Let C be a nonempty closed convex subset of a real
2-uniformly smooth Banach space E. Suppose that the normalized duality mapping J :
E — E* is weakly sequentially continuous at zero. Let T : C — E be a \-strict pseudo-
contraction with 0 < A < 1. Then for any {x,} C C, if x, — x, and x, — Tx, — y € E,
thenx — Tx = y.

Lemma 2.4 (See [10, Lemma 2.11]) Let E be a 2-uniformly smooth Banach space which
admits a weakly sequentially continuous duality mapping J from E to E* and C be anonempty
convex subset of E. Assume that T; : C — E is a countable family of \;-strict pseudocon-
traction for some 0 < A; < 1 and inf{A; : i € N} > O such that F = ﬂ?il F(T;) # 0.
Assume that {n; }72 | is a positive sequence such that Z?il n; = 1. Then Zf’il nT; :C—> E
is a A-strict pseudocontraction with A = inf{A; : i € N} and F (Z?i] 77iTi) =F.
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3 Main result

Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E
which admits a weakly sequentially continuous duality mapping J. Let C be also a sunny
nonexpansive retraction of £ and T : C — C be a A-strict pseudo-contraction. Let k €
(O; %) be a constant. For each ¢ € (0; 1), we consider the mapping 7; given by

Tix = Pc((1 —k—t)x +kTx), VxeC.

It is easy to check that 7; : C — C is a contraction for a small enough ¢. As a matter of fact,
from Lemma 2.2 and (1.2),

IT,x — Toyl> = | Pc((1 —k — 0)x + kTx) — Pc((1 —k — 1)y + kTy)|?
<=0 —y) —k((x = Tx) — (y = Ty)|?
< =0x = ylI> =2k(1 —){(I = T)x — (I = T)y, J(x — y))
+ Collk[(I = T)x — (I — T)y]|?
< (1 =0?x = ylI* = 2k(1 = OAIT — T)x — (I — THy]|?
+ CRPI( = T)x — (I — T)yl|?

= =02x = yI* = k[2(1 — Or — Cok1I( — T)x — (I — T)y1lI>.
3.1

We can choose a small enough ¢ such that 21 — Ck > 0. Then, from (3.1),
ITx — Tyl <A —0Dllx—yll, Vx,yeC, (3.2)

which implies that 7; is a contraction. Using the Banach contraction principle, there exists a
unique fixed point x; of 7; in C, that is,

xr = Pc((1 —k —t)x; +kTx;). (3.3)

Theorem 3.1 Suppose that F(T) # (. Then, as t — O, the net {x;} generated by (3.3)
converges strongly to the minimum-norm fixed point of T .

Proof First, we prove that {x,} is bounded. Take p € F(T). From (3.3) and (3.2),

lxe — pll = 1Pc((1 —k — )x; + kTx;) — Pcpll
= —k—=0)x —p)+k(Tx; — p) —1p]
=d=0Dlx = pll+zlpl,

that is, ||x; — p|l < || pll, which implies that {x,} is bounded and so is {7 x,}.
From (3.3),

lxe — Tx;ll = | Pc((1 —k — 1)x; + kTx;) — PcTx||
= I =Gy = Txy) — x|
= (0 =©)llxe = Txell + tllxel-

It follows that

!
llx; = Txll < zllX:ll — 0. (3.4)
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Next we show that {x,} is relatively norm compact as t — 0. Let {#,} C (0; 1) be a sequence
such that t, — 0 as n — oo. Put x,, := x;,. It follows from (3.4) that

lxp, — Txull >0 as n— oo. 3.5
Setting y; = (1 — k — t)x; + kT x;, we then have x;, = Pcy,, and, for any p € F(T),
Xf=p=X =Y +Y—p
=x;—yw+U—-k—1)(x; — p) +k(Tx, — p) — tp. (3.6)
By Proposition 1.1, we have
(xt = yi, J(xp = p)) < 0. (3.7)
Combining (3.6) and (3.7),
Ixe = plI* = (xi — yi. TG = p)) + (1 =k = 1){x; — p, J (x; — p))
+k(Tx; — p, J(x — p)) —t{p, J(x; — p))
= I =k =00 = p) +k(Tx; = p)llllxe = pll = 1{p, J (xr — p))
< (1 =0llxe = pl* = 1{p. J (xe = p)).
which implies that ||x; — p||2 <{(p, J(p — x;)). In particular,
lben = pI? < (p. J(p = xu)), Vp € F(T). (3.8)

Since {x,} is bounded we may assume, without loss of generality, that {x, } converges weakly
to a point x* € C. From (3.5) and Lemma 2.4, we have that x* € F(T). Hence it follows
from (3.8) that

oty — x*[1% < (%, J(x* = x)).

Since J is weak sequentially continuous and x, — x*, we have that x,, — x*. So we prove
that the relative norm compactness of the net {x;} ast — 0.

To show that the entire net {x;} converges to x*, assume x;, — x € F(T), wheret,, — 0.
Put x,,, = x;,,. Similarly, we obtain

[ R O )
and hence
1% — x*[1> < (%, J(x* = 0)). (3.9
Interchanging x* and x, we have
I = &P < (%, J (& = x9). (3.10)
Adding (3.9) and (3.10), we obtain
I”?

2x* — &) < |Ix* — &

)

which implies that x = x*.
Finally, we return to (3.8) and take the limit as n — oo to get

Ix* — pI* < (p, J(p —x*)), ¥pe F(T).
Equivalently,
Ix*1> < (x*, J(p)), Vp e F(T).
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This clearly implies that
Ix*Il < llpll Vp € F(T).
Therefore, x* is a minimum-norm fixed point of 7. This completes the proof. O

Corollary 3.2 Suppose that F(T) # () and the origin 0 belongs to C. Then, ast — 0, the
net {x;} generated by the algorithm

Xt = (1 —k — t)x, +ka,
converges strongly to the minimum-norm fixed point of T .

Now we propose the following iterative algorithm which is the discretisation of the implicit
method (3.3).

Theorem 3.3 Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach
space E which admits a weakly sequentially continuous duality mapping J from E to E*.
Let C be also a sunny nonexpansive retraction of E, T; : C — C be A;-strictly pseudo-
contractive mapping such that F = ﬂil F(T;) # W and ) = inf{}; : i € N} > 0. Assume
for each n, {n!}$2, be an infinity sequence of positive number such that 3 72, ' = 1 and
foralln, n;’ > 0. For given x1 € C arbitrarily, let the sequence {x,} be generated iteratively
by

e ¢}
Xnp1 = Po((U =k = o)xn +k D 0 Tixa), Vn = 1, (3.11)
i=1

where {a,} is a real sequence in (0; 1) and k € (0, %). The following control conditions are
satisfied:

(A1) lim,— o0 0ty =0, Z;.zil oy = 00, Zzozl |1 — ap| < 00;
(A2) 3002 22 It =l < o0, mi = limyy o0 0! > 0.

Then the sequence {x,} generated by (3.11) strongly converges to the minimum-norm fixed
point x* € F.

Proof Foreachn > 1, put B, = Z;’i] nf’Ti. By Lemma 2.4, each B, is a A-strict pseudo-
contraction on C and F(B,) = F for all n.
First, we show that the sequence {x,} is bounded. Take p € F, it follows from (3.11) that

lxn+1 — pll = 1 Pc((1 — k — ay)xp + kByx,) — pll
<A =k —an)(xy — p) +k(Byxn — p)|| + anllpll (3.12)

From (3.2), we note that
(1 —k —on)(xp — p) + k(Bpxn — p)Il < (1 —ap)llxa — pll. (3.13)
It follows from (3.12) and (3.13) that

lxpe1 — pll < (I —ap)llxy — pll + anllpll
< max{llx, — pll. I pll}
< max{|lx; — pll. lIpll}.

Hence, {x,} is bounded and so is {B,x,}.
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We now estimate || x,4+1 — x,||. From (3.11),

Xn+1 = xnll = | Pc((1 =k — oty)xn + kByxy) — Pc((1 —k — oty—1)Xn—1 + kBy—1x2-1) |
<A =k = an)(xn — xp—1) + k(Bpxn — Buxp—1)+k(Bpxn—1 — Byu—1xn—1)

+ (-1 — an)Xp—1l
< N A—k—ay)(en —xn—1) + k(BuXy — Buxp—1) | + kll Buxu—1 — Bp—1xn—1]l

+ latn—1 = dnfl2n-1]]

< (A —=a)llxy — xp—1ll + kI Buxp—1 — Bp—1xp—1ll + lotn—1 — anlllxp—1ll

oo
< (L= a)lben = xatll +k D 0 = 0 " I Tixa 1l + lea—1 — el

i=1

o
< (I —a)lxn — xail + M [Z =0+ e — anq :

i=1
where M = max{sup; - sup,> [ Tixn—1ll, sup,> llxn—1ll}. By Lemma 2.3, we obtain
lim [lxp41 — xu |l = 0. (3.14)
n—oo
On the other hand, we note that

lxn — Buxpll < llxn — Xpt1ll + X041 — Buxnll

< llxn = Xn1ll + (1 = B)lxn — Buxall + otnl|xall,

which implies

Fer = Baxall = 3 = sl + .
Noticing conditions (A1) and (3.14), we have
lim (lx, — Bux,|l = 0. (3.15)
n—o00
Define B = Zf’il niTi, then B : C — C is a A-strict pseudocontraction such that F(B) =

ﬂfil F(T;) = F by Lemma 2.4, furthermore B,x — Bx asn — oo forall x € C. We
observe that

X0 — Bxpll < llxp — Buxnll + | Bpxn — Bxull.
By (3.15) and (A2), we obtain
Jim flx, — Bay|| = 0.
Let the net {x;} be defined by (3.3). By Theorem 3.1, x, — x* as r — 0. Next we prove that

limsup,,_, o (x*, J(x* — x,)) <O0.
Set yy = (1 — k — t)x; + kBx;. It follows that

e — %1% = (= ves (0 = %)) + (= Xy I (¢ — X))
< (¥t — xn, J(xp — xp))
= ((1 =k = )t — x0) + k(Bx; — Bxp), J (x; — x))

+ k(Bxy — xpn, J (xp — X)) — t{xn, J(xr — xp))
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< (1=l = xl* + kIl Bxy = xall 1% = xal
—t{xy — xp, J(Xr — X)) — £{xs, J (xr — X))
=[x — xall® + Kl Bxw — xullllx, — xull = (50, T Ge = X)),
and hence that

k
(e, J(x = 2n)) = 1 Bxn = xnlllle = xull.

Therefore,

lim sup lim sup(x;, J (x; — x,,)) < 0. (3.16)

t—0 n—o00o
From x;, — x* ast — 0, we have x;, — x,, —> x* — x, ast — 0. Noticing that J is single
valued and norm to norm uniformly continuous on bounded sets of a uniformly smooth
Banach space E, we obtain
[, J (e = xn)) = (e, J (6 — xa))

=[x T = x) = J O = x)) 4+ (X5 = xe, T (e — x0)|

< TG = x) = T O = x)) |+ IIx* = Xl — xull = 0 as ¢ — 0.
Hence, Ve > 0; 3§ > 0 such that V¢ € (0; §), forall n > 1, we have

(T = x)) < (I — x)) €

By (3.16), we obtain

lim sup(x™*, J (x* — x,)) = lim sup lim sup(x™, J (x* — x,,))
n—oo t—0 n—oo

< limsup lim sup(x;, J(x; — x,)) + €
t—0 n—oo

<e€.

Since € is arbitrary, we have

lim sup(x*, J (x* — x,)) < 0. (3.17)

n—o0
Finally, we show that x, — x*. Sety, = (1 —k — o) x, +kBpx, foralln > 1. From (3.11),
we observe
a1 = X1 = Gngt = yus I Gont = X)) + (= ¥, T (gt — %)
< (¥ — X5, T (opg1 — X))
= ((1 =k —ay) (g — x*) + k(Bpxy —x*), J (X1 — x7))
+ o, (x*, J(x* = Xn+1))
< I =k — o) (xn — x*) + k(Bpxy — x| 1xn41 — x* ||
+ o (X, T (X = Xpt1))

(L= ap)llxn — x*[xng1 — x| + o (x™, T (" — xp41))

IA

1 —a,

5 (I — N g1 — X513 + o (6, T (2 = X11)),

IA

which implies
20y,

14+ oy
Apply Lemma 2.3 to (3.18), we obtain x,, — x* as n — oo. This completes the proof. O

X1 = X112 < (1 — o) llxn — x*|1* + (", T (™ = xpg1))- (3.18)
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Corollary 3.4 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E which admits a weakly sequentially continuous duality mapping J from E
to E*. Let C be also a sunny nonexpansive retraction of E. Let T;, A, k and n} be as in
Theorem 3.3. Suppose that F = (\i2, F(T;) # ¥ and the origin 0 belongs to C. Assume
that the conditions (A1) and (A2) are satisfied. Then the sequence {x,} generated by the
algorithm

o0
Tt = (U =k = an)xn +k D0 Tixn, Vn = 1,
i=1

converges strongly to the minimum-norm fixed point x* of F.

Corollary 3.5 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E which admits a weakly sequentially continuous duality mapping J from
E to E*. Let C be also a sunny nonexpansive retraction of E. Let T : C — C be a \-
strict pseudo-contraction. Suppose that F = F(T) # (. Assume that the condition (A1) is
satisfied. Then the sequence {x,} generated by the algorithm

Xp41 = —k —ay)xy, +kTx,, VYn>1,
converges strongly to the minimum-norm fixed point x* of F.

Corollary 3.6 Let C be a nonempty closed convex subset of a Hilbert space H, T; : C — C
be Ai-strictly pseudo-contractive mapping such that F = ﬂ,oi[ F(T;) # @ and . = inf{}; :
i € N} > 0. Assume for each n, {n}'}:2, be an infinity sequence of positive number such that
Zf’il n! = land for all n, n! > 0. For given x| € C arbitrarily, let the sequence {x,} be
generated iteratively by

00
Xn+1 =PC((1_k_05n)xn +kz77?Tixn)’ Vn > 1, (3.19)

i=1

where {a,} is a real sequence in (0; 1) and k € (0; 1 — X). The following control conditions
are satisfied:

(A1) limy 00 0y =0, zzozl oy = 00, Z;’[o:l letn 1 — oy | < 005
1 .
(A2) D02 2072 ™ = | < 00, 1 = limy—s.o0 ! > 0.

Then the sequence {x,} generated by (3.19) strongly converges to the minimum-norm fixed
point x* € F.

Remark 3.7 Our results improve and extend the results of Yao et al. [5] in the following
aspects:

(i) Hilbert space is replaced by a 2-uniformly smooth Banach space E which admits a
weakly sequentially continuous duality mapping;

(i1) Theorem 3.3 extends Theorem 3.3 of Yao et al. [5] from one strictly pseudo-contractive
mapping to an infinite family of strictly pseudo-contractive mappings.
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