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Abstract In this paper, we introduce a new iterative algorithm for finding a common element
of the set of common fixed points of an infinite family of strictly pseudo-contractivemappings
in a real 2-uniformly smooth Banach space. Then we proved a strong convergence theorem
under some suitable conditions. Our results generalize and improve several recent results.
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1 Introduction

Throughout the paper unless otherwise stated, let E be a real Banach space and E∗ the dual
space of E . Let {xn} be any sequence in E , then xn → x(respectively, xn ⇀ x , xn ⇁ x)
will denote strong (respectively, weak, weak∗) convergence of the sequence {xn}. Let C be
a nonempty, closed and convex subset of E and T be a self-mapping of C . We use F(T ) to
denote the fixed points of T . The normalized duality mapping J : E → 2E

∗
is defined by

J (x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 and ‖ f ‖ = ‖x‖}, ∀x ∈ E,
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where 〈·, ·〉 denotes the generalized duality pairing. In the sequel we shall donate single-
valued duality mappings by j .

We recall that the modulus of smoothness of E is the function ρE : [0,∞) → [0,∞)

defined by

ρE (t) := sup

{
1

2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

E is said to be uniformly smooth if limt→0
ρE (t)
t = 0.

Let q > 1. E is said to be q-uniformly smooth if there exists a constant c > 0 such that
ρE (t) ≤ ctq . It is well-known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is q-uniformly smooth, then q ≤ 2 and E is uniformly
smooth, and hence the norm of E is uniformly Fréchet differentiable. If E is uniformly
smooth, then the normalized duality map j is single-valued and norm to norm uniformly
continuous.

If a Banach space E admits a sequentially continuous duality mapping J from weak
topology to weak star topology, from Lemma 1 of [1], it follows that the duality mapping J
is single-valued, and also E is smooth. In this case, duality mapping J is said to be weakly
sequentially continuous, i.e., for each {xn} ⊂ E with xn ⇀ x ; then J (xn) ⇁ J (x) (see [1]).

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E ,
xn ⇀ x(n → ∞) implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E wi th x �= y.

By Theorem 1 of [1], we know that if E admits a weakly sequentially continuous duality
mapping, then E satisfies Opial’s condition, and E is smooth; for the details, see [1].

Let C be a subset of a real Hilbert space H . Recall that a mapping T : C → C is said to
be strictly pseudo-contractive if there exists a constant 0 < λ < 1 such that

‖T x − T y‖2 ≤ ‖x − y‖2 + λ‖(I − T )x − (I − T )y‖2, x, y ∈ C. (1.1)

Let C be a subset of a real Banach space E . Recall that a mapping T : C → C is said to
be strictly pseudo-contractive if there exists a constant 0 < λ < 1 such that

〈T x − T y, j (x − y)〉 ≤ ‖x − y‖2 − λ‖(I − T )x − (I − T )y‖2, (1.2)

for every x, y ∈ C and for some j (x − y) ∈ J (x − y).
From (1.2) we can prove that if T is λ-strict pseudo-contractive, then T is Lipschitz

continuous with the Lipschitz constant L = 1+λ
λ

.
It is clear that the class of strictly pseudo-contractive mappings strictly includes the class

of nonexpansive mappings, which are mappings T on C such that

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ C. (1.3)

LetC be a subset of E . Then PC : E → C is called a retraction from E ontoC if PC (x) = x
for all x ∈ C . A retraction PC : E → C is said to be sunny if PC (x+ t (x−PC (x))) = PC (x)
for all x ∈ E and t ≥ 0. A subset C of E is said to be a sunny nonexpansive retract of E if
there exists a sunny nonexpansive retraction of E onto C .

Proposition 1.1 (See, e.g., Bruck [2], Reich [3], Goebel and Reich [4]) Let E be a smooth
Banach space and let C be a nonempty subset of E. Let PC : E → C be a retraction and let
J be the normalized duality mapping on E. Then the following are equivalent:
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(a) PC is sunny and nonexpansive.
(b) ‖PCx − PC y‖2 ≤ 〈x − y, J (PCx − PC y)〉,∀x, y ∈ E.
(c) 〈x − PCx, J (y − PCx)〉 ≤ 0,∀x ∈ E, y ∈ C.

In 2011, Yao et al. [5] in a real Hilbert space, introduced the following iterative algorithm:
for x0 = x ∈ C ,

xn+1 = PC ((1 − k − αn)xn + kT xn); n ≥ 0, (1.4)

where {αn} is a real sequence in (0; 1). He obtained that the sequence {xn} generated by (1.4)
converges strongly to the minimum-norm fixed point of T .

In this paper, motivated and inspired by Yao et al. [5], we will introduce a new iterative
scheme in a real 2-uniformly smooth Banach space which admits a weakly sequentially
continuous duality mapping defined as:given x1 = x ∈ C ,

xn+1 = PC

(
(1 − k − αn)xn + k

∞∑
i=1

η
(n)
i Ti xn

)
; n ≥ 1, (1.5)

where {αn} is a real sequence in (0; 1), k ∈ (0; 2λ
C2

) and {ηi }∞i=1 is a positive sequence such
that

∑∞
i=1 ηi = 1. We will prove that if the parameters satisfy appropriate conditions, then

the sequence {xn} generated by (1.5) converges strongly to a common element of the fixed
points of an infinite family of λi -strictly pseudo-contractive mappings.

2 Preliminaries

In order to prove our main results, we need the following lemmas.

Lemma 2.1 [6] Let E be a 2-uniformly smooth Banach space, then exists a constant C2 > 0
such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x)〉 + C2‖y‖2, ∀x, y ∈ E .

Lemma 2.2 [7,8] Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0,

where {λn}, {δn} and {γn} satisfy the following conditions: (i) {λn} ⊂ [0, 1] and ∑∞
n=0 λn =

∞, (ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 λnδn < ∞, (iii) γn ≥ 0(n ≥ 0),
∑∞

n=0 γn < ∞. Then
limn→∞ sn = 0.

Lemma 2.3 (See [9, Lemma 1.3]) Let C be a nonempty closed convex subset of a real
2-uniformly smooth Banach space E. Suppose that the normalized duality mapping J :
E → E∗ is weakly sequentially continuous at zero. Let T : C → E be a λ-strict pseudo-
contraction with 0 < λ < 1. Then for any {xn} ⊂ C, if xn ⇀ x, and xn − T xn → y ∈ E,
then x − T x = y.

Lemma 2.4 (See [10, Lemma 2.11]) Let E be a 2-uniformly smooth Banach space which
admits aweakly sequentially continuousdualitymapping J from E to E∗ andC beanonempty
convex subset of E. Assume that Ti : C → E is a countable family of λi -strict pseudocon-
traction for some 0 < λi < 1 and inf{λi : i ∈ N} > 0 such that F = ⋂∞

i=1 F(Ti ) �= ∅.
Assume that {ηi }∞i=1 is a positive sequence such that

∑∞
i=1 ηi = 1. Then

∑∞
i=1 ηi Ti : C → E

is a λ-strict pseudocontraction with λ = inf{λi : i ∈ N} and F
(∑∞

i=1 ηi Ti
) = F.
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3 Main result

Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E
which admits a weakly sequentially continuous duality mapping J . Let C be also a sunny
nonexpansive retraction of E and T : C → C be a λ-strict pseudo-contraction. Let k ∈
(0; 2λ

C2
) be a constant. For each t ∈ (0; 1), we consider the mapping Tt given by

Tt x = PC ((1 − k − t)x + kT x), ∀x ∈ C.

It is easy to check that Tt : C → C is a contraction for a small enough t . As a matter of fact,
from Lemma 2.2 and (1.2),

‖Tt x − Tt y‖2 = ‖PC ((1 − k − t)x + kT x) − PC ((1 − k − t)y + kT y)‖2
≤ ‖(1 − t)(x − y) − k((x − T x) − (y − T y))‖2
≤ (1 − t)2‖x − y‖2 − 2k(1 − t)〈(I − T )x − (I − T )y, J (x − y)〉

+ C2‖k[(I − T )x − (I − T )y]‖2
≤ (1 − t)2‖x − y‖2 − 2k(1 − t)λ‖(I − T )x − (I − T )y]‖2

+ C2k
2‖(I − T )x − (I − T )y]‖2

= (1 − t)2‖x − y‖2 − k[2(1 − t)λ − C2k]‖(I − T )x − (I − T )y]‖2.
(3.1)

We can choose a small enough t such that 2λ − C2k > 0. Then, from (3.1),

‖Tt x − Tt y‖ ≤ (1 − t)‖x − y‖, ∀x, y ∈ C, (3.2)

which implies that Tt is a contraction. Using the Banach contraction principle, there exists a
unique fixed point xt of Tt in C , that is,

xt = PC ((1 − k − t)xt + kT xt ). (3.3)

Theorem 3.1 Suppose that F(T ) �= ∅. Then, as t → 0, the net {xt } generated by (3.3)
converges strongly to the minimum-norm fixed point of T .

Proof First, we prove that {xt } is bounded. Take p ∈ F(T ). From (3.3) and (3.2),

‖xt − p‖ = ‖PC ((1 − k − t)xt + kT xt ) − PC p‖
≤ ‖(1 − k − t)(xt − p) + k(T xt − p) − tp‖
≤ (1 − t)‖xt − p‖ + t‖p‖,

that is, ‖xt − p‖ ≤ ‖p‖, which implies that {xt } is bounded and so is {T xt }.
From (3.3),

‖xt − T xt‖ = ‖PC ((1 − k − t)xt + kT xt ) − PCT xt‖
≤ ‖(1 − k)(xt − T xt ) − t xt‖
≤ (1 − k)‖xt − T xt‖ + t‖xt‖.

It follows that

‖xt − T xt‖ ≤ t

k
‖xt‖ → 0. (3.4)
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Next we show that {xt } is relatively norm compact as t → 0. Let {tn} ⊂ (0; 1) be a sequence
such that tn → 0 as n → ∞. Put xn := xtn . It follows from (3.4) that

‖xn − T xn‖ → 0 as n → ∞. (3.5)

Setting yt = (1 − k − t)xt + kT xt , we then have xt = PC yt , and, for any p ∈ F(T ),

xt − p = xt − yt + yt − p

= xt − yt + (1 − k − t)(xt − p) + k(T xt − p) − tp. (3.6)

By Proposition 1.1, we have

〈xt − yt , J (xt − p)〉 ≤ 0. (3.7)

Combining (3.6) and (3.7),

‖xt − p‖2 = 〈xt − yt , J (xt − p)〉 + (1 − k − t)〈xt − p, J (xt − p)〉
+ k〈T xt − p, J (xt − p)〉 − t〈p, J (xt − p)〉

≤ ‖(1 − k − t)(xt − p) + k(T xt − p)‖‖xt − p‖ − t〈p, J (xt − p)〉
≤ (1 − t)‖xt − p‖2 − t〈p, J (xt − p)〉,

which implies that ‖xt − p‖2 ≤ 〈p, J (p − xt )〉. In particular,

‖xn − p‖2 ≤ 〈p, J (p − xn)〉, ∀p ∈ F(T ). (3.8)

Since {xn} is bounded wemay assume, without loss of generality, that {xn} converges weakly
to a point x∗ ∈ C . From (3.5) and Lemma 2.4, we have that x∗ ∈ F(T ). Hence it follows
from (3.8) that

‖xn − x∗‖2 ≤ 〈x∗, J (x∗ − xn)〉.
Since J is weak sequentially continuous and xn ⇀ x∗, we have that xn → x∗. So we prove
that the relative norm compactness of the net {xt } as t → 0.

To show that the entire net {xt } converges to x∗, assume xtm → x̄ ∈ F(T ), where tm → 0.
Put xm = xtm . Similarly, we obtain

‖xm − x∗‖2 ≤ 〈x∗, J (x∗ − xm)〉
and hence

‖x̄ − x∗‖2 ≤ 〈x∗, J (x∗ − x̄)〉. (3.9)

Interchanging x∗ and x̄ , we have

‖x∗ − x̄‖2 ≤ 〈x̄, J (x̄ − x∗)〉. (3.10)

Adding (3.9) and (3.10), we obtain

2‖x∗ − x̄‖2 ≤ ‖x∗ − x̄‖2,
which implies that x̄ = x∗.

Finally, we return to (3.8) and take the limit as n → ∞ to get

‖x∗ − p‖2 ≤ 〈p, J (p − x∗)〉, ∀p ∈ F(T ).

Equivalently,

‖x∗‖2 ≤ 〈x∗, J (p)〉, ∀p ∈ F(T ).
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This clearly implies that

‖x∗‖ ≤ ‖p‖ ∀p ∈ F(T ).

Therefore, x∗ is a minimum-norm fixed point of T . This completes the proof. ��
Corollary 3.2 Suppose that F(T ) �= ∅ and the origin 0 belongs to C. Then, as t → 0+, the
net {xt } generated by the algorithm

xt = (1 − k − t)xt + kT xt

converges strongly to the minimum-norm fixed point of T .

Nowwepropose the following iterative algorithmwhich is the discretisation of the implicit
method (3.3).

Theorem 3.3 LetC be a nonempty closed convex subset of a real 2-uniformly smoothBanach
space E which admits a weakly sequentially continuous duality mapping J from E to E∗.
Let C be also a sunny nonexpansive retraction of E, Ti : C → C be λi -strictly pseudo-
contractive mapping such that F = ⋂∞

i=1 F(Ti ) �= ∅ and λ = inf{λi : i ∈ N} > 0. Assume
for each n, {ηni }∞i=1 be an infinity sequence of positive number such that

∑∞
i=1 ηni = 1 and

for all n , ηni > 0. For given x1 ∈ C arbitrarily, let the sequence {xn} be generated iteratively
by

xn+1 = PC ((1 − k − αn)xn + k
∞∑
i=1

ηni Ti xn), ∀n ≥ 1, (3.11)

where {αn} is a real sequence in (0; 1) and k ∈ (0, 2λ
C2

). The following control conditions are
satisfied:

(A1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn | < ∞;
(A2)

∑∞
n=1

∑∞
i=1 |ηn+1

i − ηni | < ∞, ηi = limn→∞ ηni > 0.

Then the sequence {xn} generated by (3.11) strongly converges to the minimum-norm fixed
point x∗ ∈ F.

Proof For each n ≥ 1, put Bn = ∑∞
i=1 ηni Ti . By Lemma 2.4, each Bn is a λ-strict pseudo-

contraction on C and F(Bn) = F for all n.
First, we show that the sequence {xn} is bounded. Take p ∈ F , it follows from (3.11) that

‖xn+1 − p‖ = ‖PC ((1 − k − αn)xn + kBnxn) − p‖
≤ ‖(1 − k − αn)(xn − p) + k(Bnxn − p)‖ + αn‖p‖. (3.12)

From (3.2), we note that

‖(1 − k − αn)(xn − p) + k(Bnxn − p)‖ ≤ (1 − αn)‖xn − p‖. (3.13)

It follows from (3.12) and (3.13) that

‖xn+1 − p‖ ≤ (1 − αn)‖xn − p‖ + αn‖p‖
≤ max{‖xn − p‖, ‖p‖}
≤ max{‖x1 − p‖, ‖p‖}.

Hence, {xn} is bounded and so is {Bnxn}.
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We now estimate ‖xn+1 − xn‖. From (3.11),

‖xn+1 − xn‖ = ‖PC ((1 − k − αn)xn + kBnxn)−PC ((1 − k − αn−1)xn−1 + kBn−1xn−1)‖
≤ ‖(1 − k − αn)(xn − xn−1) + k(Bnxn − Bnxn−1)+k(Bnxn−1 − Bn−1xn−1)

+ (αn−1 − αn)xn−1‖
≤ ‖(1−k−αn)(xn−xn−1) + k(Bnxn−Bnxn−1)‖ + k‖Bnxn−1 − Bn−1xn−1‖

+ |αn−1 − αn |‖xn−1‖
≤ (1 − αn)‖xn − xn−1‖ + k‖Bnxn−1 − Bn−1xn−1‖ + |αn−1 − αn |‖xn−1‖

≤ (1 − αn)‖xn − xn−1‖ + k
∞∑
i=1

|ηni − ηn−1
i |‖Ti xn−1‖ + |αn−1 − αn |‖xn−1‖

≤ (1 − αn)‖xn − xn−1‖ + M

[ ∞∑
i=1

|ηni − ηn−1
i | + |αn−1 − αn |

]
,

where M = max{supi≥1 supn≥1 ‖Ti xn−1‖, supn≥1 ‖xn−1‖}. By Lemma 2.3, we obtain

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.14)

On the other hand, we note that

‖xn − Bnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Bnxn‖
≤ ‖xn − xn+1‖ + (1 − k)‖xn − Bnxn‖ + αn‖xn‖,

which implies

‖xn − Bnxn‖ ≤ 1

k
(‖xn − xn+1‖ + αn‖xn‖).

Noticing conditions (A1) and (3.14), we have

lim
n→∞ ‖xn − Bnxn‖ = 0. (3.15)

Define B = ∑∞
i=1 ηi Ti , then B : C → C is a λ-strict pseudocontraction such that F(B) =⋂∞

i=1 F(Ti ) = F by Lemma 2.4, furthermore Bnx → Bx as n → ∞ for all x ∈ C . We
observe that

‖xn − Bxn‖ ≤ ‖xn − Bnxn‖ + ‖Bnxn − Bxn‖.
By (3.15) and (A2), we obtain

lim
n→∞ ‖xn − Bxn‖ = 0.

Let the net {xt } be defined by (3.3). By Theorem 3.1, xt → x∗ as t → 0. Next we prove that
lim supn→∞〈x∗, J (x∗ − xn)〉 ≤ 0.

Set yt = (1 − k − t)xt + kBxt . It follows that

‖xt − xn‖2 = 〈xt − yt , J (xt − xn)〉 + 〈yt − xn, J (xt − xn)〉
≤ 〈yt − xn, J (xt − xn)〉
= 〈(1 − k − t)(xt − xn) + k(Bxt − Bxn), J (xt − xn)〉

+ k〈Bxn − xn, J (xt − xn)〉 − t〈xn, J (xt − xn)〉
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≤ (1 − t)‖xt − xn‖2 + k‖Bxn − xn‖‖xt − xn‖
− t〈xn − xt , J (xt − xn)〉 − t〈xt , J (xt − xn)〉

= ‖xt − xn‖2 + k‖Bxn − xn‖‖xt − xn‖ − t〈xt , J (xt − xn)〉,
and hence that

〈xt , J (xt − xn)〉 ≤ k

t
‖Bxn − xn‖‖xt − xn‖.

Therefore,

lim sup
t→0

lim sup
n→∞

〈xt , J (xt − xn)〉 ≤ 0. (3.16)

From xt → x∗ as t → 0, we have xt − xn → x∗ − xn as t → 0. Noticing that J is single
valued and norm to norm uniformly continuous on bounded sets of a uniformly smooth
Banach space E , we obtain

|〈x∗, J (x∗ − xn)〉 − 〈xt , J (xt − xn)〉|
= |〈x∗, J (x∗ − xn) − J (xt − xn)〉 + 〈x∗ − xt , J (xt − xn)〉|
≤ |〈x∗, J (x∗ − xn) − J (xt − xn)〉| + ‖x∗ − xt‖‖xt − xn‖ → 0 as t → 0.

Hence, ∀ε > 0; ∃ δ > 0 such that ∀t ∈ (0; δ), for all n ≥ 1, we have

〈x∗, J (x∗ − xn)〉 ≤ 〈xt , J (xt − xn)〉 + ε.

By (3.16), we obtain

lim sup
n→∞

〈x∗, J (x∗ − xn)〉 = lim sup
t→0

lim sup
n→∞

〈x∗, J (x∗ − xn)〉
≤ lim sup

t→0
lim sup
n→∞

〈xt , J (xt − xn)〉 + ε

≤ ε.

Since ε is arbitrary, we have

lim sup
n→∞

〈x∗, J (x∗ − xn)〉 ≤ 0. (3.17)

Finally, we show that xn → x∗. Set yn = (1−k−αn)xn +kBnxn for all n ≥ 1. From (3.11),
we observe

‖xn+1 − x∗‖2 = 〈xn+1 − yn, J (xn+1 − x∗)〉 + 〈yn − x∗, J (xn+1 − x∗)〉
≤ 〈yn − x∗, J (xn+1 − x∗)〉
= 〈(1 − k − αn)(xn − x∗) + k(Bnxn − x∗), J (xn+1 − x∗)〉

+ αn〈x∗, J (x∗ − xn+1)〉
≤ ‖(1 − k − αn)(xn − x∗) + k(Bnxn − x∗)‖‖xn+1 − x∗‖

+ αn〈x∗, J (x∗ − xn+1)〉
≤ (1 − αn)‖xn − x∗‖‖xn+1 − x∗‖ + αn〈x∗, J (x∗ − xn+1)〉
≤ 1 − αn

2
(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + αn〈x∗, J (x∗ − xn+1)〉,

which implies

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2αn

1 + αn
〈x∗, J (x∗ − xn+1)〉. (3.18)

Apply Lemma 2.3 to (3.18), we obtain xn → x∗ as n → ∞. This completes the proof. ��
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Corollary 3.4 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E which admits a weakly sequentially continuous duality mapping J from E
to E∗. Let C be also a sunny nonexpansive retraction of E. Let Ti , λ, k and ηni be as in
Theorem 3.3. Suppose that F = ⋂∞

i=1 F(Ti ) �= ∅ and the origin 0 belongs to C. Assume
that the conditions (A1) and (A2) are satisfied. Then the sequence {xn} generated by the
algorithm

xn+1 = (1 − k − αn)xn + k
∞∑
i=1

ηni Ti xn, ∀n ≥ 1,

converges strongly to the minimum-norm fixed point x∗ of F.

Corollary 3.5 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E which admits a weakly sequentially continuous duality mapping J from
E to E∗. Let C be also a sunny nonexpansive retraction of E. Let T : C → C be a λ-
strict pseudo-contraction. Suppose that F = F(T ) �= ∅. Assume that the condition (A1) is
satisfied. Then the sequence {xn} generated by the algorithm

xn+1 = (1 − k − αn)xn + kT xn, ∀n ≥ 1,

converges strongly to the minimum-norm fixed point x∗ of F.

Corollary 3.6 Let C be a nonempty closed convex subset of a Hilbert space H, Ti : C → C
be λi -strictly pseudo-contractive mapping such that F = ⋂∞

i=1 F(Ti ) �= ∅ and λ = inf{λi :
i ∈ N} > 0. Assume for each n, {ηni }∞i=1 be an infinity sequence of positive number such that∑∞

i=1 ηni = 1 and for all n, ηni > 0. For given x1 ∈ C arbitrarily, let the sequence {xn} be
generated iteratively by

xn+1 = PC

(
(1 − k − αn)xn + k

∞∑
i=1

ηni Ti xn

)
, ∀n ≥ 1, (3.19)

where {αn} is a real sequence in (0; 1) and k ∈ (0; 1 − λ). The following control conditions
are satisfied:

(A1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn | < ∞;
(A2)

∑∞
n=1

∑∞
i=1 |ηn+1

i − ηni | < ∞, ηi = limn→∞ ηni > 0.

Then the sequence {xn} generated by (3.19) strongly converges to the minimum-norm fixed
point x∗ ∈ F.

Remark 3.7 Our results improve and extend the results of Yao et al. [5] in the following
aspects:

(i) Hilbert space is replaced by a 2-uniformly smooth Banach space E which admits a
weakly sequentially continuous duality mapping;

(ii) Theorem 3.3 extends Theorem 3.3 of Yao et al. [5] from one strictly pseudo-contractive
mapping to an infinite family of strictly pseudo-contractive mappings.
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