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Abstract In this paper we prove strong convergence result for a problem of finding a point
which minimizes a proper convex lower-semicontinuous function f which is also a fixed
point of a total asymptotically strict pseudocontractive mapping such that its image under a
bounded linear operator A minimizes another proper convex lower-semicontinuous function
g inreal Hilbert spaces. In our result in this work, our iterative scheme is proposed with a way
of selecting the step-size such that its implementation does not need any prior information
about the operator norm |[|A|| because the calculation or at least an estimate of the operator
norm ||A|| is very difficult, if it is not an impossible task. Our result complements many
recent and important results in this direction.
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1 Introduction

In this paper, we shall assume that H is a real Hilbert space with inner product (., .) and
norm ||.||. Let / denote the identity operator on H. Now, let us recall the definitions of some
operators that will be used in this paper.

Let T : H — H be a mapping. A point x € H is called a fixed point of T if Tx = x. The
set of fixed points of 7 is denoted by F(T'). A point x* € H is called a minimum norm fixed
point of T if and only if x* € F(T) and ||x*|| = min{||x|| : x € F(T)}.
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Definition 1.1 The mapping 7 : H — H is said to be
(a) nonexpansive if
Tx =Tyl <|lx —yll,Vx,y € H.

(b) asymptotically nonexpansive mapping if there exists a sequence {/t,} of real positive
numbers such that lim u,, = 0 and

T"x = T"y|| < (14 p)llx = yll,Vx,y € H, ¥n > 1.
(¢) k-strictly pseudocontractive (see, [2]) if for 0 < k < 1,
ITx = Tyl < llx = yIP+ k(I =T)x = (I =T)y|%, ¥ x,ye H. (L)

(d) asymptotically k-strict pseudo-contraction mapping in the intermediate sense if there
exist a constant k € [0, 1) and sequences {u,} C [0, 00), {§,} C [0, c0) with u,, — O
and &, — 0 as n — oo such that for all n > 1,

NT"x — T"y[1* < (1 + p)llx — ylI* +kll(x — y) = (Tx — Ty)||* + &, Vx, y € H.

) (k,{un}, &1}, @)-total asymptotically strict pseudocontractive mapping [6], if there
exist a constant k € [0, 1) and sequences {u,} C [0,00),{&]} C [0,00) with
un — Oand § — 0asn — oo, and a continuous and strictly increasing function
¢ : [0, 00) — [0, o) with ¢ (0) = 0 such that foralln > 1,

HT"x — T"y|1* < |lx — v + kll(x — y) — (Tx — Ty)||?
Fund(lx — yl) +&,,Vx,y € H.

For an example of a total asymptotically strict pseudocontractive mapping, we refer the
reader to Chang et al. [6].

In this paper, we shall assume that H is a real Hilbert space with inner product (., .) and
norm |[|.||. Let I denote the identity operator on H. Let C and Q be nonempty, closed and
convex subsets of real Hilbert spaces H| and H, respectively. The split feasibility problem
(SFP) is to find a point

x € C such that Ax € Q, (1.2)

where A : Hi — H; is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was first introduced by Censor and Elfving [5] for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction [3]. The SFP attracts the
attention of many authors due to its application in signal processing. Various algorithms
have been invented to solve it (see, for example, [4,12,15,17,19,21,23,26] and references
therein).

Note that the split feasibility problem (1.2) can be formulated as a fixed-point equation
by using the fact

Pc(I — yA*(I — Po)A)x™ =x*, (1.3)

where Pc is the metric projection from H{ onto C [defined as ||x — Pcx|| = minyec ||x—y||].
Hence, x* solves the SFP (1.2) if and only if x* solves the fixed point equation (1.3) (see [18]
for the details). This implies that we can use fixed-point algorithms (see [24,25,27]) to solve
SFP. A popular algorithm that solves the SFP (1.2) is due to Byrne’s CQ algorithm [3] which
is found to be a gradient-projection method (GPM) in convex minimization. Subsequently,
Byrne [4] applied Krasnoselskii-Mann iteration to the CQ algorithm, and Zhao and Yang
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[28] applied Krasnoselskii-Mann iteration to the perturbed CQ algorithm to solve the SFP.
It is well known that the CQ algorithm and the Krasnoselskii-Mann algorithm for a split
feasibility problem do not necessarily converge strongly in the infinite-dimensional Hilbert
spaces.

Leth : H — R U {400} be a functional on a real Hilbert space H.

Definition 1.2 1. The Moreau-Yosida approximate of the function & of parameter A > 0 is
defined as /15, (y) := minye s {h(u) + 2 [lu — ylI).

2. argminf :={x e H: f(x) < f(x),Vx € H}.

3. The proximal mapping of f is defined as prox, ((y) = argmin, 5 {f (u) + ﬁ | —y||?}.

4. The subdifferential of f at x is the set
of x):={ueH: f(y)>fx)+ u,y—x),Vy € H}.
Let us consider the following problem: find a solution x* € Hj such that

min { f(x) + g, (Ax)}, (1.4)
xeH;

where Hp, H; are two real Hilbert spaces, f : Hf — R U {4o00},g : H» - RU {+o00}
two proper, convex, lower semicontinuous functions and A : H; — H, a bounded linear
operator, g, (y) = min,ep, {g(u) + i [lu—y| |2} stands for the Moreau-Yosida approximate
of the function g of parameter A.

Observe that by taking f = §¢ [defined as §c(x) = 0 if x € C and +oo otherwise],
g = d¢ the indicator functions of two nonempty, closed and convex sets C, Q of Hy and H»
respectively, Problem (1.4) reduces to

. |1 >
;ngnl{&c(x) + (80)i(Ax)} & min [ﬁll(l — Pg)(Ax)| ] (1.5)
which, when C N A~1(Q) # #, is equivalent to (1.2).

By the differentiability of the Moreau-Yosida approximate g, see for instance [16], we
have the additivity of the subdifferentials and thus we can write

A0+ 81 (A0) = 370 + A"Vgi (A = 7 () + A" (2728 ()
This implies that the optimality condition of (1.4) can be then written as
0 € 23f (x) + A*(I — prox;g)(Ax). (1.6)
Inclusion (1.6) in turn yields to the following equivalent fixed point formulation
Prox,,; s (x* — pA*I - proxlg)Ax*) =x*. (1.7)
To solve (1.4), relation (1.7) suggests to consider the following split proximal algorithm
Xnt1 = Prox,, ; (xn — ua A*(I — proxkg)Ax”) . (1.8)

Based on an idea introduced in Lopez et al. [11], Moudafi and Thakur [13] recently proved
weak convergence results for solving (1.4) in the case argmin f N A~!(argming) # @, or in
other words: in finding a minimizer x* of f such that Ax* minimizes g, namely

x* € argmin f such that Ax* € argmin g, (1.9)
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/, g being two proper, lower semicontinuous convex functions. We will denote the solution
set of (1.9) by I'. Concerning problem (1.9), Moudafi and Thakur [13] introduced a new
way of selecting the step-sizes: Set 6(x,) = \/||Vh(xn)||2 +IVI(x)||? with h(x,) =
%ll([ — proxkg)Aanz, [(x,) = %H(I — proanf)x,,n2 and introduced the following split
proximal algorithm:

Split Proximal Algorithm: Given an initial point x; € H;. Assume that x,, has been con-
structed and 6 (x,) # 0, then compute x,; via the rule

Xn+1 = Proxxunf(xn — AT — Proxxg)Axn)v n>l, (1.10)

% with 0 < p, < 4. If O(x,) = O, then x,,11 = x, isa

solution of (1.4) and the iterative process stops, otherwise, we setn := n+1 and go to (1.10).
Using the split proximal algorithm (1.10), Moudafi and Thakur [13] proved the following
weak convergence theorem for approximating a solution of (1.9).

where stepsize ©, = pp

Theorem 1.3 Assume that f and g are two proper convex lower-semicontinuous functions
and that (1.9) is consistent (i.e., ' # (). If the parameters satisfy the following conditions
€ <p, < % — € (for some € > 0 small enough), then the sequence {x,} generated

by (1.10) weakly converges to a solution of (1.9).

We remark here that it is quite usual to seek a particular solution of a given nonlinear
problem, in particular, the minimum-norm solution. For instance, given a nonempty, closed
and convex subset C of a Hilbert space H; and a bounded linear operator A : Hy — Ha,
where H; is another Hilbert space. The C-constrained pseudoinverse of A, AE is then defined
as the minimum-norm solution of the constrained minimization problem

AL(b) := argmin, ¢ ||Ax — b]|
which is equivalent to the fixed point problem
x = Pc(x — AA*(Ax — b)),

where Pc is the metric projection from Hj onto C, A* is the adjoint of A, A > 0 is a constant,
and b € Hj is such that Pm(b) € A(C). It is therefore our aim in this paper to introduce
an iterative algorithm that can generate sequence which converges strongly to the minimum-
norm solution of a given convex proximal split feasibility problem and fixed point problems
for total asymptotically strict pseudocontractive mapping in real Hilbert spaces.

2 Preliminaries

Definition 2.1 A mapping 7 : H — H is said to be uniformly L-Lipschitzian continuous if
there exists a constant L > 0 such that ||T"x — T"y|| < L||x — y||,Vx,y € H,n > 1.

Lemma 2.2 Let K be a nonempty, closed and convex subset of a real Hilbert space H and let
T : K — K be a uniformly L-Lipschitzian continuous and (k, {it,,}, {&n}, ¢)-total asymptot-
ically strict pseudocontractive mapping such that F(T) # (. Suppose there exist constants
Mo > 0, K1 > 0 such that (L) < MoA?, YA > K. Then F(T) is closed and convex.

Proof Since T is a uniformly L-Lipschitzian continuous, F(T) is closed. Next, we show that
F(T) is convex. Next, we show that F(T') is convex. For ¢t € [0, 1] and x,y € F(T), put
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7z :=tx + (1 — t)y, we show that z = Tz. Since ¢ is continuous, it follows that ¢ attains
maximum (say M) in [0, K] and by our assumption, ¢ (1) < Motz, Vt > K. In either case,
we have that

¢ (1) < M + Mot?, Vit € [0, 00).
Using Lemma 2.3 (iii), we obtain

Tz — z||* = [|t(T"z — x) + (1 = )(T"z — y)||?
=t|T"z = x|*+ (1 = DTz =yl =t = D)lx — y||?

< t(llz = %I+ KIT"z = 21 + mag(llz = 1D + & )
+ (1 =011z = Y12+ KIT"2 = 2l + pag (12 = ¥ID + &)
— (1= n)llx — y|?
< 1(11z = X1+ KIT"z = 2l + 1o (M + Mollz = xI1%) + &)
+ (= 0)(llz = ¥+ KIT"2 = 2l + (M + Mollz = yIP) + &)
— (1= n)llx = y|I?
_ ( 2 2 n 2 2
= t((1= 02l = Y1+ KIIT"2 = 2l + a (M + Mollz = x1%) + &) (1 = 1)
x (11 = yIZ + KTz = 2l + (M + Mollz = ¥1P) + &)
— (1= nllx = y|?
= kIIT"z = 2I* + (M + Mollz = ¥II°) + . @
This implies from (2.1) that
(1 =RNT"z = 2| < pn(M + Mollz = YII*) + -

Thus, lim,,—, o ||T"z — z|| = 0, which implies that lim,_, o, 7"z = z. By continuity of T,
we obtain that

z= lim 7"z = lim T(T" " '2) = T(lim T""'z) = Tz.
n—oo n—oo n—oo
Hence, z € F(T), that F(T) is convex. ]
We state the following well-known lemmas which will be used in the sequel.
Lemma 2.3 Let H be areal Hilbert space. Then there holds the following well-known results:

(@) lx + yI1* = [Ix]* +2(x, y) + [IylI*, Vx, y € H.
(ii) Ilx + 11> < Ix[* +2(y, x + y),¥x,y € H.

(i) |ltx + (A=0)yl* = tllx|> + A=DIy|[* =t A —=)llx =yl ¥x, y € H,Vt € [0, 1].

Lemma 2.4 (Chang et al. [6]) Let T : H — H be a uniformly L-Lipschitzian continuous
and (k, {in}, {€n}, d)-total asymptotically strict pseudocontractive mapping, then I — T is
demiclosed at 0, i.e., if x, — x € H and x, — Tx, — 0, then x = Tx.

Lemma 2.5 (Alberetal. [1]) Let {A,} and {y,} be nonnegative, {a, } be positive real numbers
such that
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Antl < Ap — @y + Y, n > 1

Let foralln > 1,

Vn
— <¢; and «a, < a.
Oy

Then A, < max{\i, K.}, where K, = (1 + a)c;.

Lemma 2.6 (Xu, [20]) Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation:

apy1 < (1 _O[n)an + oy0n + Y, n = 1,
where
(i) {an} C 10,11, > an = o0;
(ii) limsupo, <O0;
(iii) Yp>0; (n>1), Ty, < oo.
Then, a, — 0 asn — oo.

Now, our interest is in studying the convergence properties of the following algo-
rithm: Given an initial point x; € Hj, then compute u, using u, = (1 — a,)x,. Set
Oun) = VIIVAuIP? + [[VIun)|? with h(u,) = 3|1 — prox, ) Aup| |, (u,) =
%ll([ — prox;,, f)un [|? and introduce the following algorithm:

Algorithm: Let T : H; — H; is a uniformly L-Lipschitzian continuous and (k, {1t,},
{&1}, ¢)-total asymptotically strict pseudocontractive mapping such that F(T') # @. Given
an initial point x; € Hp, the compute u,, using u, = (1 —oy)x, and 6 (u,) # 0, then compute
Xp+1 via the rule

up = (1 —ap)xy,

Y = proanf(un — 1, A*(I — prox)\g)Aun), 2.2)
Xpp1 =L = Bu)yn + ,BnTn_Ym n>1,
h(un) -+l (un)

where stepsize 1, = p, 920un) with 0 < p, < 4. If O(u,) = 0, then x,,41 = x, isa
solution of (1.9) which is also a fixed point of a uniformly L-Lipschitzian continuous and
(k, {in}, {&n}, @)-total asymptotically strict pseudocontractive mapping 7 and the iterative

process stops, otherwise, we set n := n + 1 and go to (2.2).

3 Main results

Theorem 3.1 Let T : Hy — H; is a uniformly L-Lipschitzian continuous and (k, {|t,},
{&,}, @)-total asymptotically strict pseudocontractive mapping such that F(T) # (). Assume
that f : Hl — R U {400} is a proper convex lower-semicontinuous function, g : Hy —
R U {400} is a proper convex lower-semicontinuous function such that (1.9) is consistent
(ie, ' #@)and T N F(T) # (. Let {«, } and {B,} be sequences in (0, 1). If the parameters
satisfy the following conditions
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00 00
(@) 3 pn < 00; 3 & < 00;
n=1 n=1
) 00
(b) pn = olay); & = o(ay); lim oy = 0; oy = OQ;
n— 00 =l

(c) € <pp < %—eforsomee > 0;

(d) 0 <liminfp, <limsupfB, <1 —k;
n—oo

n—oo

(e) there exist constants Mo > 0, K1 > 0 such that ¢ (t) < Mot>,Vt > Ki;

then sequence {x,} generated by (2.2) converges strongly to x* € ' N F(T) which is also
the minimum-norm solution (i.e., x* € I' N F(T) and ||x*|| = min{||x|| : x € T N F(T)}).

Proof Letx* € I'. Observe that Vhi(u,) = A*(1 —Pprox; o) Aup, VI(uy) = (I —prox,; ;)x.
Using the fact that prox,,,, is nonexpansive, x* verifies (1.9) (since minimizers of any
function are exactly fixed-points of its proximal mapping) and having in hand

(VAGuy), uy — x*) = ((I = prox; ) Ay, Au, — Ax*) > [|(I = prox, o) Auy|[* = 2h(uy),
thanks to the fact that I — prox;,, is firmly nonexpansive, we can write

lyn — x*11 = [l — x*|1* 4+ 21V = 200 (Vi (uy), uy — x*)
< Nl — x*[1* + T2HIVhu)|1* — 4T, (un)

2 (h(uy) + l(un))z h(up) + (uy)

_ ¥ 12 2

= |luy — x| + 0, (02(un))2 [IVh(u,)l| 4pp 92(14") h(uy,)
ey () F 1) () F 1) h(u)

R (ST S O ST

N w2 4h(up) _ (h(un)+l(u11))2

= ltn =1 = pu (s = ) g G.1)

Using (3.1) in (2.2), we obtain that

g1 — x* 12 = 11(1 = By + Bu Ty — x*11?
= |(1 = B) (yn — X*) + Bu(T"yy — x)||?
= (1= B)llyn = X* |1 + BallT" yu — x*[12 = Bu(1 = BINT" v — yull?
< (1= By = X1+ Ba[ 1lyn = 1% + KTy = 32
+ 1nd (1yn — x*11) +sn] — Bl = BINT "y — yull?
= lyn = x*[17 + Ba(Bn — (L = DTy — yulI* + Buttnd (13 — x*1)
+ Bk (3.2)

Since ¢ is continuous, it follows that ¢ attains maximum (say M) in [0, K] and by our
assumption, ¢ () < Mozz, Vt > K. In either case, we have that

d(t) < M + Mot>, Vi € [0, 00). (3.3)
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Using (3.2) and (3.3), we have that

Xn41 — x*1% < Hyn = X2 4 Bu(Bn — (1 = kDT yu — yulI* + Buttn Mollyn — x*|I?
+ Bubn + Buttn M
< lyn = X112 + BustnMollyn — x*|1* + Bukn + Buitn M
< un = x> + Bustn Mollun — x*[1* + Bubn + Buin My

= [ = awllx = 512 + 171 2]
+ ButtnMo| (1 = @)l = x| + cal X112 ] 4+ Babin + Busin My
= [ =@l = 271 + el 1] + Bun Mol by — 3711

+ Bubtn Mollx* |12 + Bubn + Buitn My
= 110 = 1 = [etn = Bustn Mo 115 = 5112 + 1, (3.4)

where oy = i |[x*[|* + Buttn Mol Ix*11? + Buén + BaitaMi, Vn > 1.From (3.4), we have
a1 = X1 = 1o = 12 = [0 = o] lxa = x*IP 400 (35)

Since u, = o(a,), *, = o(a,) and &, = o(w,), we may assume without loss of generality
that there exist constants ko € (0, 1) and M, > 0 such that foralln > 1,

M]W() <1—kp, and ﬁ < M,.

[67%) 273
Thus, we obtain from (3.5) that

2 2 2
Xnr1 — X117 < llxp — x*||7 — ankollxn — x*[|° + 0.

By Lemma 2.5, we have that
[y — (17 < max{|lx) — x|, (1 4 ko) M2}

Therefore, {x,} is bounded. Furthermore, the sequences {y,} and {u,} are bounded.
Observe that since T is a uniformly L-Lipschitzian continuous and (k, {1}, {£,}, ¢)-total
asymptotically strict pseudocontractive, then

IT"x = 217 < [lx = x*[17 + klbe = T"%I17 + wadp (13 — x*[) + &
= (T"x —x*, T"x —x*) < (x = x*, x = T"x) + (x —x*, T"x —x*) + k||x — T"x||?
Fund (X — x*|]) + &
= (T"x —x* T"x —x) < (x —x*, x = T"x) + kllx — T"x|[* + g (|x — x*|)) + &,
= (T"x —x, T"x —x) 4+ (x —x*, T"x —x) < (x —x*, x = T"x) + k||x — T"x||?
Fing (lx — x*[]) + &,
= (1=k)llx = T"x]* < 2(x —x*,x = T"x) + pp ¢ (||x — x*[)) + &,. (3.6)
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It follows from (2.2) and (3.6) that

xnt1 — X512 = [1(1 = Ba)yn + BuT"yn — x*|I?
=10 = X*) + Ba(Tyn — y)II*
= {lyn — X*II> + Byn — T"yall* = 281 (yn — X*, yu — Tyn)

< llyw =12+ B Bu = (=Dl = T3l + b Ulyn = 51D + 60
< Ut =12+ Ba (B = (L =kDI 3w =Tyl + B[ 10 (1a —"11) + 60
= 1101 = @)y = 21 + BB — (1 = O)llyw = Tyl

+ B a3 = x*11) + &
= (1= ) llxn = 21 + o 117 = o (1 — @) i — 1™, x7)

+ Ba (B = (1= )lyw = Tyl + a1 Ulya = 71D + 6
< o = 211 + @l — o (1= o) — %, x%)

+ Ba (B = (1= )lyw = Tyl + Ba 1 Ulya = 1) + &
< Jln = 117 e 1112 — o (1 = en) g — 2%, %)

BB — (1 = )lyw = T3l P+ B[ 10 (M1 + Mollya —"112) + & |.

3.7

Since {x,} and {y,} are bounded, M > 0 such that
—(1 — o)y —x*,x") <M, Vn>1.
Therefore,

Bu((1 = k) — B lyn — T"yulI*> < @2 Ix*(1? 4+ oy M — || 5051 — x*[1> 4 ||, — x*||?
+ (M + Mollyn — x*11*) + & (3.8)

Now we divide the rest of the proof into two cases.

Casel
Assume that {||x, — x*||} is monotonically decreasing sequence. Then {||x,, — x*||} is con-
vergent, obviously

enst =¥ = lboy = x*|> = 0,1 — o0 (3.9)
This together with (3.8) and the conditions that o;, — 0, u,, — 0 and &, — O imply that
[[yn = T"ynll = 0,n — 0.

From (3.1) and (2.2), we have that

( 4h (un) _p)(h(un)+l(un))2
PGy + 1y ) 02 ()
< (I —aw)llxn — |1 + ol IX 17 = X1 — X124+ M* Rl lun — x|

2 2 2
< ln = X1 = [t = X112 an 15| + M Ayl — x| 1.

< (14 M*A)||un — x*11> = |lyn — x|

@ Springer
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Using conditions that o, — 0 and A, — 0, we have that

4h(uy) (h(uyp) *‘l(un))z
Pn ( n)

— 0, n— oo.

hun) + 1) ") 02wy
Hence, we obtain
2
Blu) + 1™ (3.10)
92(1/!,,)

Consequently, we have

lim (h(u,) +1(uy)) =0 <% lim h(u,) =0 and lim I(u,) =0,
n—oo n—oo n—oo

because 02(uy,) = ||Vhun)||* + ||VI(uy)||? is bounded. This follows from the fact that VA
is Lipschitz continuous with constant || A| 12, Vi is nonexpansive and {u,} is bounded. More
precisely, for any x* which solves (1.9), we have

[IVR@un)|| = [[Vh(up) — Vx*|| S*HAHZHMn —x'|| and
VIl = [IVI(up) = VXTI < [lup — x7|].

Now, let z be a weak cluster point of {u,}, there exists a subsequence {unj} which weakly
converges to z. The lower-semicontinuity of / then implies that

0 < h(z) < liminfh(uy,) = lim h(u,) = 0.
j—00 n—o00

That is, h(z) = 3||(I — prox; ) Az|| = 0, i.e., Az is a fixed point of the proximal mapping
of g or equivalently, 0 € 9,4(Az). In other words, Az is a minimizer of g.
Likewise, the lower-semicontinuity of / implies that

0 <I(z) < liminfl(u,,) = lim {(uy) = 0.
j—00 n—o00

That is, I(z) = %ll(l — proxy; p)zl| = 0, i.e., z is a fixed point of the proximal mapping of
f or equivalently, 0 € df(z). In other words, z is a minimizer of f. Hence, z € T.

Next, we show that z € F(T). Since x* = prox)\rnf(x* — up A I — proxkg)Ax*) and
A*(I — prox;,) A is Lipschitz with constant ||A||?, we have from (2.2) that

llyn —x*11?
= [Iprox; ,  (tn — pn A*(I — prox, o) Au) — prox, . ¢ (x* — 1, A*(I — prox; ) Ax™) ||*
((un — T A™(I — prox; ) Auy) — (x* — A" — proxAg)Ax*) s Y —x¥)

IA

1
5[||<un — Ty A*(I = prox; o) Auy) — (x* — 7, A*(I — prox; ) Ax*) || + [[yn — x*|?
—[[(tn — T A*(I = prox, ) Auy) — (x* — 1, A*(I — prox; ) Ax*) — (y» — x*)||2]

l 2N\2 X2 k2 o _ * o
—_ n n n n n n n
< S|+ Tl APl = 21+ [1yn = 217 = llttn = yn = Ta (A (I = prox, ) Au

—A*(I — proxkg)Ax*)llz]

1

S [+ Tl = 12+l — 2
— [t = yull* + 2T (un — yn. A*(I = prox, ) Au, — A*(I — prox; ) Ax*))
— 17 ||A*(I — prox, ) Au, — A*(I — proxxg)Ax*)||2].
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Thus,

yn — x*[17 < (1 + %l AP0 — X* (12 = 1un — yall?

+ 27 (un — yn, A*(I — prox; ) Au, — A*(I — prox; ) Ax™))

— 17 ||A*(I — prox, ) Au, — A*(I — prox, ) Ax*)||>. (3.11)
We observe that
h l
O<rn<4M—>0, n— oo
602 (un)

implies that 7, — 0, n — oco. Furthermore, we obtain from (3.11) and (2.2) that
Hitw — yall* < (4 Tl APy — X2 = |lyn — x*[1
+ 2 (Up — yn, A*(I — prox; ) Au, — A*(I — prox; ) Ax™))
= [y — x| + wll Al Q + tl Al Ny — x| = |lyn — x*|I
+ 2 (U — yn, A*(I — prox; ) Au, — A*(I — prox; ) Ax™))
< (1= ap)llxn — 2% + anllx*|1* = [Jx0g1 — x*|
+ TallAIP@ + Tl lAIP) |tn — X* 17 + 270 (up — yn. A*(I — prox; ) Auy,
— A*(I — prox; ) Ax™))
< =[P = X1 — ¥+ @l P+ Tl A2 + Tl AN |1 —x %]
+ 27, (tn — yn, A*(I — prox; ) Au, — A*(I — prox; ) Ax™)). (3.12)

Since t, — 0, n — oo and a, — 0, n — 00, we obtain that
lim ||u, — y,|| = 0.
n—0o0

We observe that ||u;,, — x,|| < a,llx,|| = 0, n — oo and

xn — yull < lun — xull + 4y — yull = 0, n — oco.

Using Lemma 2.3 (i), we have that

Xns1 = Xall* = [1Xn = ¥n + Y0 — X1 |12
<y = Xt |12+ 200 = Yus X — 1)
< yn = Xngt |12 4 201 — yullllxn — xns1l. (3.13)
Using (2.2) and (3.13), we have

1
yn = T"yull? = —511yn — Xa1|1?

n

1
= [ ln = ol + 20k = llib = a1} G14)
n
Since lim,, o ||yn — T"yn|| =0and 0 < liminf, , B, <limsup,_, ., B < 1 —k, then

we have that

tim [l = o112+ 2l = vl = a1l =0,
n—oo

from which we have

lim |[|x, — xp41]] = 0.
n—00
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Consequently,
Hnp1 — unll = [I(1 = @pg1)xn 41 — (1 = ) x|
< lens1 = anlllxp1ll + (I = a)[Xn41 — xnll = 0, n— 00.  (3.15)
Now,
Ynt1 = Yull < lyns1 = tntll + 1w = yall + [lung1 — unll. (3.16)

Using (3.15) and the fact that lim,—, oo ||#n — yn|| = 0 in (3.16), we obtain
lim [|yn41 — yull = 0.
n—0o0

Using the fact that 7" is uniformly L-Lipschitzian, we have

UTyn = yall < 1 Tyn = Tyl + 1Ty = Ty |
T gt = Yugt I+ yng1 = Yl
< Lllyn = T"yall + (L + DlYns1 = Yl + 1T yugs = yugall
< Lllyn = T"yull + (L + DAYt = Yall + 1T yusr = yusal.
(3.17)

By using lim,,— o0 || yn+1 — yull = 0 and lim,,— o6 ||yn — T"y,|| = 0 in (3.17), we obtain
[lyn = Tynll = 0,n — oo. (3.18)

Using the fact thatu,; — z € Hyand||up—yu|| = 0, n — oo, wehavethaty,, — z € H.
Similarly, un; =~z € H since ||u, — x,|| = 0, n — oo. Using Lemma 2.4 and (3.18),
we have that z € F(T). Therefore, z € ' N F(T).

From (2.2), we have

Xns1 = X*I1* = [[(1 = Ba)yn + BuT" vy — x*||?
= 1(1 = B) O — X™) + Bu(T" 3 — x|
= (1= B)2lyn — x* 1> + BT  yu — x*||?
+2B:(1 = Bp)(yn — X* T"yp — x¥)
< (1= B)?llyn — X*I1* + Brlllyn — x| + kllyn — T"yull*]
+ B2 1tnd (130 — X*11) + BEEn + 282 (1 = B)[lyn — x*|I

1—k
—Tnyn—r”ynnz]

= (1 =284 + BDIlyn — x*1* + Billlyn — x| + kllyn — T"yull*]
+2Bullyn — X1 = 2B211yn — x*11* = Bu(1 = B) (A = K130 — T"yull?
+ Brin(M + Mollyn — x*|1) + Brén

= llyn — x*I17 4+ 182k — Bu(1 — B) (A = K)1l1yn — T"yul
+ BE1n (M + Mollyn — x*|1) + Bi&n

= {lyn — x*[1> + Balk + Bu — Ullyn — T"yull?

< llyn — X1 + B21n(M + Molly, — x*|*) + B2&,

= llyu — x*|1* + ay, (3.19)

where a, = B21n (M + Mollyn — x*|*) + B2&,.
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Now, from (3.1), (3.19) and Lemma 2.3 (ii), we have
xnet — X117 <y — x* 11> + an < llun — x*|1> + an
= [1(1 — &) (xn — x*) — aux™[|* + an
< (1= ap)|lxn — x*1* = 20 {1y — x*, X*) + ay. (3.20)
It is clear that

limsup — 2{(u,, — x*, x*) = lim — 2{u,, — x*, x*) = 2(z — x*, x*) <0,
- J
n—o00 J >0
since {u, } converges weakly to z and x* is the minimum-norm solution (i.e., x* = Prnr(r)0).
Also, we observe that ZZ’;I a, < 0o0.Now, using Lemma2.6in (3.20), we have ||x,, —x*|| —
0. That is, x, — x*, n — oo.

Case 2
Assume that {||x, —x™*||} is not monotonically decreasing sequence. SetI';, = ||x, —x
and let T : N — N be a mapping for all n > ng (for some ng large enough)by

*”2

t(n) :=max{k e N: k <n, 'y < T4}

Clearly, 7 is a non decreasing sequence such that 7(n) — oo as n — oo and
l—‘r(n)+1 - 1—‘r(n) >0, Vn > ny.
From (3.18), it is easy to see that
nllngouyr(n) - T)’r(n)H =0.

Furthermore, we can show that

lim A(x¢()) =0 and lim [(x¢(,)) = 0.

n— 00 n—oo

By similar argument as above in Case 1, we conclude immediately that x; (), yr(n) and u; ()
weakly converge to z as 7(n) — oo. At the same time, from (3.20), we note that, for all
n = nog,

0 < [1xeamys1 — X*|1P = |lxray — x*I17
< Qe[ =20y — X%, %) = [xe(ny) — ¥ 1121 + @y,
which implies
X0y — X*[12 < —2(ur(m) — x*, X*) + drny.-

Hence, we deduce that

lim ||x7¢y — x| = 0.

n—oo
Therefore,

Jm_ P = i Fropsr =0

Furthermore, for n > ny, itis easy to see that I'; ;) < I'r(y)41if n # t(n) (thatis t(n) < n),
because I'; > ' for T(n) + 1 < j < n. As a consequence, we obtain for all n > ny,

0<TI, < maX{Fr(n), I‘r(n)+l} =Temy+1-

Hence, lim I";, = 0, that is, {x,} converges strongly to x*. This completes the proof. O
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4 Applications

Applying Theorem 3.1 to the case where f = éc, ¢ = ¢ the indicator functions of two
nonempty, closed and convex sets C, Q of H; and H, respectively, we have the following
result.

Theorem 4.1 Let C, Q be nonempty, closed and convex subset of real Hilbert spaces
Hy and H» respectively. Let T : C — C is a uniformly L-Lipschitzian continuous and
(k, {in}, {&n}, @)-total asymptotically strict pseudocontractive mapping such that F(T) #
(. Assume that problem (1.2) is consistent (i.e., I' = @) and I’ N F(T) # O. Let {a,} and
{Bn} be sequences in (0, 1). If the parameters satisfy the following conditions

oo o0
(@) 2 pn <005 2 &y < 00;
n=1 n=1
. o0
(b) n = 0(ay); &y = 0(ay); lim y =05 D ¢y = 00;
n—o0 n=1
4h(u, _
(c) e <py < m — € for some € > 0;

(d) 0 <liminfB, <limsupfB, <1 —k;
n—o00

n—oo

(e) there exist constants Mo > 0, K| > 0 such that ¢ (t) < Mot*,Vt > Ky;
then sequence {x,} generated by

up = (I —ap)xy,
Yn = Pc(up — tA*(I — Pg)Aupy), “.1)
Xnt1 = (1= B)yn + BuT"yu, n>1,

converges strongly to x* € T' N F(T) which is also the minimum-norm solution (i.e., x* €
I'NF(T) and ||x*|| = min{||x|| : x € T N F(T)}).

Proof Take f = 8¢ and g = §¢ in Theorem 3.1. Then we have prox, , = Pc and prox;, =
Py . Furthermore, we see that algorithm reduces to (2.2) reduces to (4.1) and the conclusion
of Theorem 4.1. ]

We next apply our results to split equilibrium problem and fixed point problem. Let C, Q
be nonempty, closed and convex subsets of H; and H, respectively. Let f be a bifunction of
C x C into R and g a bifunction of Q x Q into R. Suppose A : H; — H; is a bounded
linear operator. Let us consider the following split equilibrium problem. The split equilibrium
problem is to find x* € C such that

f&x*,y) >0, VyeC 4.2)
and
g(Ax*,y) >0, Vy e Q. 4.3)

We shall denote the solutions set of (4.2)-(4.3) by I'. In order to solve the split equilibrium
problem for a bifunctions f : C x C — Rand g : Q x O — R, let us assume that f and g
satisfy the following conditions:

(Al) f(x,x)=0forallx € C and g(x,x) =0forall x € Q;
(A2) f and g are monotone, i.e., f(x,y) + f(y,x) < O forall x,y,e C and g(x, y) +
g(y,x) <Oforallx,y, € Q;
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(A3) for each x,y € C, lim—o f(tz+ (1 —t)x,y) < f(x,y) and for each x,y €
0, limogtz+ (1 —1t)x,y) < gx,y);

(A4) foreach x € C, y — f(x,y) is convex and lower semicontinuous and for each
x € Q, yr> g(x,y)isconvex and lower semicontinuous.

The following lemma follows from [8].

Lemma 4.2 (Combettes and Hirstoaga, [8]) Let C, Q be nonempty, closed and convex sub-
sets of Hy and Hj respectively. Assume that f, g satisfy (Al)-(A4). Forr > 0, define mappings
T,f Hy —> CandT? : H, — Q as follows:

T/(x)y={zeC: f(z,y)+%<y—z,z—X> >0,Vy e C}
and

Tf(x)={z€ 0 :g(zy) + ;(y—z,z—x) >0,VYy € C}.
Then, the following assertions:

1. Trf and TF are single-valued;
2. T,f and T# are firmly nonexpansive-type mapping, i.e., for any x, y € Hj,

W x =T/ yI? < (T x =Ty, x — y);

3. F(T)) = EP(f) and F(Tf) = EP(g);
4. EP(f)and EP(g) are closed and convex.

Now, we prove the following theorem.

Theorem 4.3 Let T : C — C is a uniformly L-Lipschitzian continuous and (k, {i,},
{&,}, )-total asymptotically strict pseudocontractive mapping such that F(T) # (. Let f be
a bifunction from C x C and g a bifunction from Q x Q both satisfying (A1) — (A4) such
thatTU # @) and T' N F(T) # 0. Let {«, } and {B,} be sequences in (0, 1). If the parameters
satisfy the following conditions

o0 o0
(@) > pn <00; > &y < 00;
n=1 n=1
. o0
(b) pn = o(ay); & = o(ay); lim oy =0; > oy = 00;
n—o0 n=1

(c) €< pp < %—e]‘orsomee > 0;

(d) 0 <liminfg, <limsupB, <1 —k;
n—oo

n—oo

(e) there exist constants My > 0, K1 > 0 such that ¢ (t) < Mot2, Vi > Ki;

then sequence {x,} generated by x| € C;

Uy = (1 - Oln)-xnv
Yo =T 0y — © A* (I — TF) Auy), (4.4)
Xpi1 = (1= By + BuTyn 0> 1,

converges strongly to x* € T’ N F(T) which is also the minimum-norm solution (i.e., x* €
I'NF(T) and ||x*|| = min{||x|| : x € T N F(T)}).
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Proof Replace the proximal mappings of the convex functions f and g in Theorem 3.1 by
the resolvent operators associated to the two monotone equilibrium bifunctions Trf and T%.
Hence, we have the desired result. ]

Remark 1 The following are our contributions in this paper.

1. We obtain strong convergence result concerning convex split feasibility problem and fixed
point problem in real Hilbert spaces. We recall that Moudafi and Thakur [13] obtained
weak convergence result for split feasibility problem alone and thus our result improves
on and extends the results of Moudafi and Thakur [13].

2. Itis worth mentioning here that our result in this paper is more applicable than the result of
Moudafi and Thakur [13] in the sense that our result can be applied to finding an approx-
imate common solution to proximal split feasibility problem and fixed point problem for
a uniformly L-Lipschitzian continuous and (k, {,}, {&,}, ¢)-total asymptotically strict
pseudocontractive mapping.

3. In all our results in this paper, our iterative scheme is proposed with a way of selecting
the step-size such that the implementation of our algorithm does not need any prior
information about the operator norm || A|| because the calculation or at least an estimate
of the operator norm || A|] is very difficult, if not an impossible task. Therefore, improved
on the results of Chang et al. [6], Yang et al. [22], Cholamjiak and Shehu [7] and other
related works.

4. Our iterative algorithm in this paper appears more efficient and implementable. Our
algorithm appears simpler than the “CQ” algorithm used [10] and other related papers
for similar problems. Furthermore, our iterative scheme gives strong convergence without
imposing any extra compactness type condition ( like semi-compactness) on the mapping
T. This compactness condition appears strong as only few mappings are semi-compact.
Therefore, we improved on the results of Chang et al. [6], Qin et al. [14], Ding and Quan
[9] and other related results.
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