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Abstract This paper is concerned with Sobolev-type inequalities and upper bound for the
fundamental solution to the heat-type equation defined on compact manifold whose metric
evolves by the generalized geometric flow. It turns out that the pointwise estimates obtained
in this paper depend on the constants in the uniform Sobolev inequalities for the flow or
the best constants in the euclidean Sobolev embedding. We give various illustrations to
show that our results are valid in many contexts of geometric flow, where we may not need
explicit curvature constraint. Moreover, our approach here also demonstrates equivalence
of Sobolev inequalities, log-Sobolev inequalities, ultracontractive estimates and heat kernel
upper bounds.
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Ricci flow
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1 Introduction

Let M be an n-dimensional compact Riemannian manifold endowed with metric g(x, t)
evolving by the geometric flow in the interval 0 ≤ t ≤ T , T < Tε , where Tε is the time where
there is (possibly) a blow-up of the curvature, so we do not need to deal with singularities.
Let u(x, t) be a positive solution to a heat-type equation on M × [0, T ], we consider the
following coupled system
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170 A. Abolarinwa

{
∂t gi j (x, t) = −2hi j (x, t), (x, t) ∈ M × [0, T ]
(−∂t − �g + H(x, t))u(x, t) = 0, (x, t) ∈ M × [0, T ], (1.1)

where hi j is a general time-dependent symmetric (0, 2)-tensor,H = gi j hi j , the metric trace
of 2-tensor hi j , is a C∞-function H : M × [0, T ] → R and �g is the usual Laplace–
Beltrami operator acting on functions in space with respect to metric g(t) in time. The first
in the system (1.1) is the generalized geometric flow equation, that is, the flow of metric by
tensor with respect to abstract time. In practice, the geometric flow deforms and smoothens
out irregularities in the metric to give a “nicer” form and thus, provides useful geometric and
topological information on themanifold. For example if hi j = Ri j , the Ricci curvature tensor,
we then have the famous Hamilton Ricci flow [18], which has proven to be of fundamental
importance in the global analysis on manifolds. The second equation is a heat-type-conjugate
equation on M whose positive solution is a smooth function, at least C2 in x and C1 in t ,
u(x, t) = u ∈ C2,1(M × [0, T ]). In this paper we study the behaviour of the fundamental
(minimal positive) solution to the associated heat-type equation along the geometric flow.
Let U, V : M × [0, T ) → (0,∞) satisfy

�U = (∂t − �g)U = 0 and �∗V = (−∂t − �g + H)V = 0

with ∫ T

0

∫
M

�UVdμgdt =
∫ T

0

∫
M
U�∗Vdμgdt. (1.2)

We say U and V are respectively solutions to the heat equation and heat-type-conjugate
equation. An application of this is to solve geometric flow forward in time and solve the
heat-type-conjugate equation backward in time. A very good example is the conjugate heat
equation �∗u = (�g − ∂t + gi j Ri j )u(x, t) = 0 (i.e., adjoint to the heat operator � =
(�g − ∂t ), where gi j Ri j = R, the scalar curvature), which was introduced in a fundamental
paper [25], there Perelman obtained Li–Yau Harnack estimates for the minimal positive
solution to this equation among many results. The author also studied this in [1] under both
forward and backward in time Ricci flow. The case hi j = −Ri j (resp. Ri j ) is precisely when
the manifold is being evolved with respect to forward (resp. backward) Ricci flow. In fact,
one of the motivations to study this subject arises from the question; is there any merit or
demerit of flowing Riemannian manifold by the Ricci flow? The readers who are interested
more in this question can find any of the following books [9–11] and [30]. See also our short
note [2] on Ricci flow on a closed manifold with positive Euler characteristics and [3] for
further details.

Coupling geometric flow to the heat equation can be associated with some physical inter-
pretation in terms of heat conduction process. Precisely, the manifold M with initial metric
g(x, 0) can be thought of as having the temperature distribution u(x, 0) at t = 0. If we now
allow the manifold to evolve under the geometric flow and simultaneously allow the heat
to diffuse on M , then, the solution u(x, t) will represent the space-time temperature on M .
Moreover, if u(x, t) approaches δ-function at the initial time, we know that u(x, t) > 0,
this gives another physical interpretation that temperature is always positive, whence we can
consider the potential f = log u as an entropy or unit mass of heat supplied and the local

production entropy is given by |∇ f |2 = |∇u|2
u2

. Suffice to say that heat kernel governs the
evolution of temperature on a manifold with certain amount of heat energy prescribed at the
initial time.

In this paper, we obtain Sobolev-type inequalities and some upper bounds for the funda-
mental solution (Heat kernel) to the heat-type equation defined on compact manifold whose
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metric is evolving by the geometric flow. Notice that the system (1.1) above is associated
to Perelman’s monotonicity formula [25], which has been a vital tool in the analysis of the
Ricci flow. Perelman proved a lower bound for the heat kernel satisfying the conjugate heat
equation with application of the maximum principle and his reduced distance, an outstanding
feature of the estimate is that it does not require explicit assumption on metric curvature, the
information is being embedded in the reduced distance. In the present too, the bound obtained
in this paper needs no explicit curvature assumptions, it rather depends on the Sobolev-type
constants similar to those of Zhang–Ricci–Sobolev [29], which in turn depends on the best
constant in the usual Sobolev embedding controlled by the infimum of the Ricci curvature
and the injectivity radius of the underlying manifold. The motivation for this was Zhang’s
result in [28], where he obtained upper bounds for conjugate heat kernel under backward
Ricci flow, such bounds depend on Yamabe constant or Euclidean Sobolev embedding con-
stant. He further showed that this type of heat kernel upper bounds are proper extension of
an on-diagonal upper bound in the case of a fixed manifold, where one obtains a bound of
the form

F(x, t; y, s) ≤ C(n)max

{
1

(t − s)
n
2
, 1

}
(1.3)

with C(n) > 0 depending on n for all t > s and x, y ∈ M. We also give a special case
H(x, t) is nonnegative to support the above assertion. Recently, Bǎileşteanu [6] has adopted
Zhang’s approach to obtain similar estimate for the fundamental solution of the heat equation
coupled to Ricci flow. Our calculation is based on the ideas of both papers [6] and [28] cited
above, (see also [7]). We remark that the similarity in our results is a justification of the fact
that heat diffusion on a bounded geometry with either static or evolving metric behaves like
heat diffusion in Euclidean space, many a times, their estimates even coincide. A result of
Cheeger and Yau [8] has revealed that the heat kernel of a complete manifold with bounded
Ricci curvature can be compared with that of the space form whose curvature determines the
lower bound for the manifold’s Ricci curvature.

2 Preliminaries and examples of geometric flow

2.1 Technical details

Throughout this paper,M is assumed tobe a compactRiemannianmanifoldwithout boundary.
We denote the fundamental solution (heat kernel) to the heat-type equation by F(x, t; y, s) ∈
(M × [0, T ] × M × [0, T ]) and partial differential operator with respect to time by ∂t . We
now give a formal definition and some important properties of heat kernel.

Definition 1 We say that F(x, t; y, s) is a fundamental solution to the heat-type equation
centred at (y, σ ) for x, y ∈ M, s < t ∈ [0, T ], if it satisfies the following system{

(−∂t − �(x,t) + H(x, t))F(x, t; y, s) = 0

lim
t→s

F(x, t; y, s) = δy(x)
(2.1)

for any x ∈ M, where δy(·) is the dirac-delta function concentrated at some point y.

Thus, F(x, t; y, s) is the unique minimal positive solution to the equation which from hence-
forth we refer to as the heat kernel.

Lemma 1 The heat kernel satisfies the following properties.
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1.
∫
M F(x, t; y, s)dμ(g(x, t)) = 1

2. F(x, t; y, 0) = ∫
M F(x, t; z, t

2 )F(z, t
2 ; y, 0)dμ(g(z, t

2 )) (Semigroup property)
3. F(x, t; y, s) is also the fundamental solution to the heat equation in (y, s)-variables i.e,{

(∂s − �(y,s))F(x, t; y, s) = 0

lim
s→t

F(x, t; y, s) = δx (y).
(2.2)

4.
∫
M F(x, t; y, s)dμ(g(y, s)) ≤ 1.

Other important properties of heat kernel such as existence, uniqueness, smoothness, sym-
metry have been studied by many authors, Guenther in [17] and Garofalo and Lanconelli in
[14] for examples.

Interestingly, when a manifold is being evolved under a geometric flow all the associated
quantities also evolve along the flow. For examples, the Riemannian volume measure dμ of
(M, g) evolves by

∂t dμ = −Hdμ

and H by
∂tH = gi j∂t hi j + 2|hi j |2

where gi j is the inverse of the metric gi j and |hi j |2 = gikg jlhi j hkl . Denote β := gi j∂t hi j ,
in particular, under the Ricci flow, where hi j = Ri j and H = R, we have β = �R. Here in
this paper we will assume that

β − �H ≥ 0. (2.3)

This is motivated by an error term appearing in a result of Müller [22, Lemma 1.6]. For our
case the error term reads; for any time-dependent vector field X on M

D(X) := 2(Ri j − hi j )(X, X) + 2〈2div h − ∇H, X〉 + ∂tH − �H − 2|hi j |2, (2.4)

where div is the divergence operator, i.e., (div h)k = gi j∇i h jk . Clearly the last three terms in
(2.4) above is the same as the quantity β −�H. It does make sense to assume (2.3) whenever
D(X) is nonnegative. The application of this is that we are on a steady or shrinking soliton
(self-similar solution to the geometric flow) if the equality in (2.3) holds. Note that we can
also express |hi j |2 ≥ 1

nH2 since |gi j hi j |2 = H2. Using the condition that β − �H ≥ 0, we
have a governing differential inequality for the evolution of H as follows

∂

∂t
H ≥ �H + 2

n
H2. (2.5)

SupposeH ≥ Hmin, we can apply the maximum principle by comparing the solution of the
differential inequality with that of the following ordinary differential equation⎧⎨

⎩
dψ(t)

dt
= 2

n
(ψ(t))2

ψ(0) = Hmin(0),
(2.6)

which is solved to

ψ(t) = Hmin(0)

1 − 2
nHmin(0)t

.

Therefore

Hg(t) ≥ ψ(t) = Hmin(0)

1 − 2
nHmin(0)t

(2.7)

for all t ≥ 0 as long as the flow exists.
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2.2 Examples of geometric flow

In the following, we give some examples of geometric flows where our results are valid. We
remark that in these cases the error term D and the quantity β − �H are nonnegative. More
examples can be found in [22, Section 2].

2.2.1 Hamilton’s Ricci flow [18]

Let (M, g(t)) be a solution to the Ricci flow. This is the case where hi j = Ri j is the Ricci
tensor and H = R is the scalar curvature on M . Here, the scalar curvature evolves by

∂t R = �R + 2|Ri j |2.
By twice contracted second Bianchi identity gi j∇i R jk = 1

2∇k R, the quantityD(X) vanishes
identically and β − �R ≡ 0.

2.2.2 Ricci-harmonic map flow [23]

Let (M, g) and (N , ξ) be compact (without boundary) Riemannian manifolds of dimensions
m and n respectively. Let a smoothmap ϕ : M → N be a critical point of the Dirichlet energy
integral E(ϕ) = ∫

M |∇ϕ|2dμg , where N is isometrically embedded in R
d , d ≥ n, by the

Nash embedding theorem. The configuration (g(x, t), ϕ(x, t)), t ∈ [0, T ) of a one parameter
family of Riemannian metrics g(x, t) and a family of smooth maps ϕ(x, t) is defined to be
Ricci-harmonic map flow if it satisfies the coupled system of nonlinear parabolic equations⎧⎪⎨

⎪⎩
∂

∂t
g(x, t) = −2Rc(x, t) + 2α∇ϕ(x, t) ⊗ ∇ϕ(x, t)

∂

∂t
ϕ(x, t) = τgϕ(x, t),

(2.8)

where Rc(x, t) is the Ricci curvature tensor for the metric g, α(t) ≡ α > 0 is a time-
dependent coupling constant, τgϕ is the intrinsic Laplacian of ϕ, which denotes the tension
field of map ϕ and ∇ϕ ⊗ ∇ϕ = ϕ∗ξ is the pullback of the metric ξ on N via the map ϕ. See
List [21] when the target manifold is one dimensional. Here hi j = Ri j −α∇iϕ⊗∇ jϕ =: Si j ,
H = R − α|∇ϕ|2 =: S and

∂tS = �S + 2|Si j |2 + 2α|τgϕ|2 − 2α̇|∇ϕ|2. (2.9)

Using the twice contracted second Bianchi identity, we have(
gi j∇iS jk − 1

2
∇kS

)
X j = −ατgϕ∇ jϕX

j . (2.10)

Then, D(Si j , X) = 2|τgϕ − 〈∇ϕ, X〉|2 − 2α̇|∇ϕ|2 and β − �S = 2α|τgϕ|2 − α̇|∇ϕ|2 for
all X on M . Thus both D and β − �S are nonnegative as long as α(t) is nonincreasing in
time. (See [4] for more results in this direction.)

2.3 Lorentzian mean curvature flow

Let Mn(t) ⊂ Ln+1 be a family of space-like hypersurfaces in ambient Lorentzian manifold
evolving by Lorentzian mean curvature flow. Then, the induced metric evolves by

∂t gi j = 2H
i j ,
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174 A. Abolarinwa

where
i j denotes the components of the second fundamental form
 onM and H = gi j
i j

denotes the mean curvature of M . In this case hi j = −H
i j and H = −H2. Also ∂t H =
�H − H(|
|2 + R̃c(ν, ν), β − �H = 2H2|
|2 + |∇H |2 + 2H R̃c(ν, ν) and

DX = 2|∇H − 
(X, ·)|2 + 2̃(Hν − X, Hν − X) + 2〈R̃m(X, ν)ν, X〉, (2.11)

where R̃c and R̃m denote the Ricci and Riemman curvature tensor of Ln+1 respectively. ν
denotes future-oriented timelike unit normal vector onM . Obviously bothD(X) and β−�H
are nonnegative when assuming nonnegativity on sectional curvature of Ln+1.

3 Sobolev-type inequalities along the flow

In this section, we give a brief discussion on the version of Sobolev embedding that will
be used in the proof of the main theorems. The main ingredients used here are logarithmic
Sobolev inequalities and ultracontractivity property of the heat semigroup. It is well known
that Gross logarithmic Sobolev inequality [15] is equivalent to Nelson’s hypercontractive
inequality [24], both of which may imply ultracontractivity of the heat semigroup (see also
[12,13]).

3.1 The Sobolev embedding

Let (M, g) be an n-dimensional (n ≥ 3) Riemannian manifold without boundary, it is well
known that when M is compact the Sobolev space Hq

1 (M) is continuously embedded in
Lq∗

(M) for any 1 ≤ q < n and 1
q∗ = 1

q − 1
n . Here Hq

1 (M) is the completion of C∞(M)

with respect to the standard norm

‖u‖q =
(∫

M
|∇u|qdμ(g)

) 1
q +

(∫
M

|u|qdμ(g)

) 1
q

(3.1)

and the embedding of Hq
1 (M) in Lq∗

(M) is critical. Similarly, the following Sobolev embed-
ding inequality holds true; there exists a positive constant Bq depending on q such that for
any u ∈ Hq

1 (M)

(∫
M

|u|q∗
dμ(g)

) 1
q∗

≤ K (n, q)

(∫
M

|∇u|qdμ(g)

) 1
q + Bq)

(∫
M

|u|qdμ(g)

) 1
q

, (3.2)

where K (n, q), an explicit constant depending on n and q is the smallest constant having
this property, K (n, q) is the best constant in the Sobolev embedding for Rn). See Aubin [5]
and Hebey [19] and Talenti [26]. In other words, there exist positive constants A and B such
that for all u ∈ W 1,2(M, g), we have(∫

M
u

2n
n−2 dμ(g)

) n−2
n ≤ A

∫
M

|∇u|2dμ(g) + B
∫
M
u2dμ(g). (3.3)

On the compact manifold whose metric evolves along the Ricci flow, Zhang, [29], Hsu
[20] and Ye [27] have adopted PerelmanW-entropy monotonicity formula to derive various
Sobolev embedding that holds for the case n ≥ 3. In this sectionwe shall make use of Zhang’s
version to prove the following:

Theorem 1 Let (M, g) be a compact Riemannian manifold with dimension n ≥ 3 whose
metric evolves by the geometric flow in the interval t ∈ [0, T ]. Let there exist positive
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constants A and B for the initial metric g0 such that the following Sobolev inequality holds
for any u ∈ W 1,2(M, g0)

(∫
M
u

2n
n−2 dμ(g0)

) n−2
n ≤ A

∫
M

|∇u|2dμ(g0) + B
∫
M
u2dμ(g0). (3.4)

Then, there exist positive functions of time A(t) and B(t) depending only on the initial metric
g0 and t such that for u ∈ W 1,2(M, g(t)), t > 0, it holds that

(∫
M
u

2n
n−2 dμ(g(t))

) n−2
n ≤ A(t)

∫
M

(
|∇u|2 + 1

4
Hu2

)
dμ(g(t)) + B(t)

∫
M
u2dμ(g(t)),

(3.5)
Moreover, if H(x, 0) > 0, then A(t) and B(t) are in independent of t .

Here we take u = u(x, t) as an L2(M)-solution of the heat type equation and then prove the
above theorem using ultracontractive estimates for heat kernel semigroup. Note that we have
from the Sobolev embedding for 1 ≤ q < n that W 1,q(M) can be continuously embedded
in Lq∗

(M), i.e, there exists a constant C = C(n, q), such that

‖u‖Lq∗
(M) ≤ C(n, q)‖u‖W 1,q (M)

for all u ∈ W 1,q(M). So by Holder’s inequality we have (p ≥ q)

∫
M

|u|pdμ =
∫
M

|u|q |u|p−q ≤
(∫

M
|u| qn

n−q dμ

) n−q
n

(∫
M

|u| nq (p−q)dμ

) q
n

. (3.6)

This is reduced to (from the interpolation inequality)

∫
M
u2dμ ≤

(∫
M
u

2n
n−2 dμ

) n−2
n+2

(∫
M
udμ

) 4
n+2

(3.7)

for the case q = 2 and n ≥ 3. Then by Sobolev inequality for manifold evolving by the Ricci
flow we have∫

M
u2dμ ≤

(
A(t)

∫
M

(
|∇u|2 + 1

4
Hu2

)
dμ(g(t)) + B(t)

∫
M
u2dμ(g(t))

) n
n+2

×
(∫

M
udμ(g(t))

) 4
n+2

.

Let h(t) :=
( ∫

M udμ(g(t))
) 4

n+2
, the last inequality becomes

∫
M

|∇u|2dμ(g(t)) ≥ 1

A(t)

(
h−1(t)

∫
M
u2dμ(g(t))

) n+2
n

− B(t)

A(t)

∫
M
u2μ(g(t)) − 1

4

∫
M
Hu2μ(g(t)). (3.8)

Thus, we have proved the following by using the bound on the scalar curvature (2.7) as
discussed in the Sect. 1.
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Lemma 2 With the hypothesis of Theorem 1 the following inequality holds

∫
M

|∇u|2dμ(g(t)) ≥ 1
A(t)

(
h−1(t)

∫
M u2dμ(g(t))

) n+2
n

−
(
B(t)

A(t)
+ ψ(t)

4

) ∫
M
u2dμ(g(t))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.9)

where ψ(t) is as defined in (2.7).

3.2 Log-Sobolev inequalities and ultracontractive estimates

By the results cited above. Let there exist positive constants A0, B0 < ∞ such that for all
u ∈ W 1,2(M, g0),

‖u‖ 2n
n−2

≤ A0‖∇u‖2 + B0‖u‖2, (3.10)

where A0 and B0 depends only on n, g0, lower bound for the Ricci curvature and injectivity
radius. We can then write (3.10) as

( ∫
M
u

2n
n−2 dμg0

) n−2
n

≤ A
∫
M

(4|∇u|2 + Hgu
2)dμg0 + B

∫
M
u2dμg0 , (3.11)

where

A = 1

4
A0, and B = 1

4
A0 supH−

g (·, 0) + B0

since Hg(x, 0) + supH−
g (·, 0) = H+

g (x, 0) − H−
g (x, 0). We will assume that (3.11) holds

uniformly for g(t), t > 0 and different A and B in order to prove the logarithmic Sobolev
inequalities.

The usual way of deriving logarithmic Sobolev inequality follows from a careful applica-
tion of Hölder’s and Jensen’s inequalities, since log v is a concave function in which case∫

u2 ln uq−2dμ ≤ ln
∫

uqdμ

with the assumption that
∫
u2dμ = 1, then

∫
u2 ln u dμ ≤ q

q − 2
ln

( ∫
uqdμ

) 1
q

.

Taking q = 2n
n−2 , we have

∫
u2 ln u dμ ≤ n

2
ln

( ∫
u

2n
n−2 dμ

) n−2
2n

,

multiplying both sides by 2 we obtain the following

Lemma 3 For any u ∈ W 1,2(M, g0) with ‖u‖2 = 1∫
M
u2 ln u2dμg0 ≤ n

2
ln

(
A

∫
M

(4|∇u|2 + Hgu
2)dμg0 + B

)
. (3.12)
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See [20,27,29] for similar proofs. Inequalities in (3.12) are usually estimated further by the
application of an elementary inequality of the form ln y ≤ θy−ln θ −1, θ, y,≥ 0. Precisely,
taking y = A

∫
M (4|∇u|2 + Hgu2)dμg0 + B in (3.12) gives us∫

M
u2 ln u2dμg0 ≤ nθ

2

{
A

∫
M

(4|∇u|2 + Hgu
2)dμg0 + B

}
− n

2
(1 + ln θ) (3.13)

It is well known that log Sobolev inequalities and ultracontractivity are equivalent and
both may imply sharp upper bound for the heat kernel, see Gross [15,16] and Davies [12].
We now use the ultracontractive estimates on heat semigroup to prove Theorem 1.

Proof of Theorem 1

This section discusses howone obtains a uniformSobolev-type inequality formglobal bounds
on the heat kernel along the geometric flow. The proof of this type is standard as contained
in [12, Chapter 2], the same procedures have been adapted in [29] for Kähler–Ricci flow, See
also [27] and [20]. For completeness we give the summary of the approach.

For any t ∈ [0, T ) we define the operator

A := −�g + Hg + supM H−
g

4
. (3.14)

Since Hg(·, τ ) ≥ − supM Hg(·, τ ), we know that � = 1
4 (Hg + supM H−

g ) ≥ 0, � ∈
L∞(M), then A ≥ 0 and essentially a self-adjoint operator on L2(M) with the associated
quadratic form

Q(u) =
∫
M

(|∇u|2 + �u2)dμg, ∀u ∈ W 1,2(M). (3.15)

By the heat kernel convolution property we have

e−tAw0 =
∫
M
F(x, t; y)w0(y)dμg(y), (3.16)

where e−tA is a self-adjoint positivity preserving semigroup for all t ≥ 0. It is also a
contraction on L∞(M) and L1(M) for all t ≥ 0, then

‖e−tAw0‖∞ ≤ C0t
− n

2 ‖w0‖1. (3.17)

The next is to apply a theorem in [12] which we state below as a lemma.

Lemma 4 If n ≥ 2, then a bound of the form

‖e−tAw0‖∞ ≤ C1t
− n

4 ‖w0‖2. (3.18)

for all t > 0 and all w0 ∈ L2(M) is equivalent to a bound of the form

‖w0‖22n
n−2

≤ C2Q(w0) ∀ w0 ∈ W 1,2(M). (3.19)

By Lemma 4 we can prove that

( ∫
M
u

2n
n−2 dμg

) n−2
2

≤ A0

∫
M

(
|∇u|2 + 1

4

(
Hg + sup

M
H−

g

)
u2

)
dμg (3.20)

using the estimate of the form (3.22) below. The only thing remaining for us to show is that
estimate (3.17) and (3.18) are equivalent. We do this via the following lemma and Hölder
inequality.
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Lemma 5 Suppose n ≥ 2 and T < ∞. Let C1 > 0 be the same as C1 in (3.18), then we
have

‖e−tAw0‖2 ≤ C1t
− n

4 ‖w0‖1 ∀ w0 ∈ L1(M). (3.21)

Now write e−tAw0 = e− 1
2 tAe− 1

2 tAw0 and by assuming (3.18) we have

‖e−tAw0‖∞ ≤ C1t
− n

4 ‖e− 1
2 tAw0‖2 ≤ C2

1 t
− n

2 ‖w0‖1.
Similarly, combining the fact that e−tA is a contraction on L∞(M) with bound (3.17) gives
us (3.18). Indeed,

‖e−tAw0‖∞ =
∣∣∣∣
∫
M
F(x, t; y)w0(y)dμg(y)

∣∣∣∣
≤

( ∫
M
Fq ′

(x, t; y)dμg(y)

) 1
q′ ( ∫

M
w

q
0dμg(y)

) 1
q

=
( ∫

M
Fq ′−1Fdμg(y)

) 1
q′ ( ∫

M
w

q
0dμg(y)

) 1
q

≤
(
C0t

− n
2 (q ′−1)

∫
M
Fdμg(y)

) 1
q′ ( ∫

M
w

q
0dμg(y)

) 1
q

≤ Ct−
n
2q ‖w0‖q ,

∀ w0 ∈ Lq(M) with 1/q = 1− 1/q ′ and
∫
M F(x, t : y)dμg ≤ 1. Here, we take q to satisfy

1 ≤ q < n for obvious reason (though, by Riez–Thorin interpolation theorem, the above
holds for any 1 ≤ q < ∞ since e−tA is a contraction on L1(M) and L∞(M)).

The main point here is the following

Theorem 2 With the condition of Theorem 1 we claim that estimate of the form

F(x, T ; y) ≤ CT− n
2 (3.22)

where C depends on n, t, T, A0, B0 and supHg(·, 0), implies the uniform Sobolev inequality
(3.11) which is essential the same as (3.5) which we wanted to proof.

Proof Based on the previous argument and modification of the calculation in [29] we define
the operator Ã = A + 1, which also has all the properties of A (Ã ≥ 0 and generates a
symmetric Markov semigroup). Then for any positive constant c depending on n, T , a lower
bound for Hg0 and upper bound for A0, such that for all t ∈ [0, T ) and v ∈ Dom(Ã) ⊆
W 1,q(M), there holds for n ≥ 3

‖Ã− 1
2 w‖ nq

n−q
≤ c‖w‖q ∀ w ∈ W 1,2

0 (M). (3.23)

Since Ã− 1
2 is of weak type (p, q), p = nq

n−q for any 1 < q < n, a simple analysis and the

Marcinkiewicz interpolation theorem tell us that Ã− 1
2 is a bounded operator from Lq to L p

and that (3.23) holds true.
Define u(x, t) = Ã− 1

2 w(x, t) which implies w(x, t) = Ã 1
2 u(x, t). Taking q = 2 we

have

‖w‖22 =
∫
M
Ã 1

2 u Ã 1
2 u dμg =

∫
M

(Ãu)u dμg =
∫
M

((A + 1)u)u dμg.
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Combining with (3.23) and (3.19) we obtain the Sobolev inequality

‖u‖22n
n−2

≤ c · C2

(
Q(u) +

∫
M
u2μg

)
, (3.24)

whereby (3.5) follows with A = c · C2 and B = 1
4c · C2(supM Hg + 1).

Remark 1 Fixing t0 during geometric flow, it is clear that H̃ = e−1H is the heat kernel
generated by Ã and that∫

M
F̃(x, t; y)dμg(y) ≤

∫
M
F(x, t; y)dμg(y) ≤ 1.

By the upper bound for F , we are sure that F̃ obeys global upper bound

F̃(x, t; y)dμg(y) ≤ C̃t−
n
2 , t > 0,

where C̃ depends on n, A0, B0, t0 and T . Similarly

‖e−tÃw‖∞ = ‖e−t e−tAw‖∞ ≤ e−tCt−
n
2 ‖w‖1 = C̃t−

n
2 ‖w‖1.

4 Pointwise upper bound with Sobolev inequality

In this section, we prove an upper estimate on the heat kernel of the manifold evolving by the
geometric flow, it turns out that the estimate depends on the best constants in Sobolev-type
inequalities (3.5) for the geometric flow and the bound on the metric trace of hi j . The main
result of this section is the following

Theorem 3 Let (M, g(x, t)), t ∈ [0, T ] be a solution to the geometric flow with n ≥ 3 and
F(x, t; y, s) be the fundamental solution to the heat-type equation. Then for a constant Cn

depending on n only, the following estimate holds

F(x, t; y, s) ≤ Cn( ∫ t+s
2

s
e
2
n P(τ )

α(τ )A(τ )
dτ · ∫ s

t+s
2

e− 2
n P(τ )

A(τ )
dτ

) n
4

(4.1)

for 0 ≤ s < t ≤ T , where α(τ) = ρ−1− 2
n τ

ρ−1 ,H(g0) ≥ ρ being the infimum of the metric trace

of hi j at the initial time, P(τ ) = ∫ t
s (B(τ )A−1(τ ) − 1

2φ(τ))dτ , with A(t) and B(t) being
positive constants in the Zhang–Ricci–Sobolev inequality and φ(t) is the lower bound for
the scalar curvature.

4.1 Proof of Theorem 3

Proof We suppose here and thereafter that s = 0 without loss of generality. Since
F(x, t; y, s) is the fundamental solution, it then follows from its semigroup property and
Cauchy–Schwarz inequality that

F(x, t; y, 0) =
∫
M
F

(
x, t; z, t

2

)
F

(
z,

t

2
; y, 0

)
dμ(g(z, t))

≤
( ∫

M
F2

(
x, t; z, t

2

)
dμ

(
g

(
z,

t

2

))) 1
2
( ∫

M
F2

(
z,

t

2
; y, 0

)
dμ

(
g

(
z,

1

2

))) 1
2

.
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Traditionally, deriving an upper bound for each of the terms in the right hand side of the last
inequality suffices to settle the proof, the nature of the bound to obtain depends largely upon
the ingredient. In the present, we rely on estimates from Sobolev embedding theorems on
the manifold evolving by the geometric flow. Now denote, say

V (t) =
∫
M
F2(x, t; y, s)dμ(g(x, t))

W (t) =
∫
M
F2(x, t; y, s)dμ(g(y, s)).

Thus, the pointwise estimate on the quantities V (t) andW (t) will determine an upper bound
for the fundamental solution F(x, t; y, s). Approaches to obtaining bound for each of the
quantities V (t) and W (t) differ slightly due to the interpolation of the heat kernel between
the heat-type equation in the variables (x, t) and the heat equation in the variables (y, s), i.e.,

(−∂t − �x + H(x, t))F(x, t; ·, ·) = 0

(∂s − �)F(·, ·; y, s) = 0.

We first treat the case when F(x, t; y, s) solves the heat-type equation, that is, we want to
estimate V (t). The idea is to find an inequality involving V (t). Hence

V ′(t) =
∫
M

(2F∂t F − HF2)dμ(x, t)

=
∫
M
2F(−�F + HF)dμ(x, t) −

∫
M
HF2dμ(x, t)

= 2
∫
M

|∇F |2dμ(x, t) +
∫
M
HF2dμ(x, t).

Using Lemma 2, we arrive at

V ′(t) ≥ 2A−1(t)

(
h−1(t)

∫
M
F2dμ(x, t)

) n+2
n

− 2

(
B(t)A−1(t) + 1

4
ψ(t)

) ∫
M
F2dμ(x, t)

+ ψ(t)
∫
M
F2dμ(x, t)

= 2A−1(t)

(
h−1(t)

∫
M
F2dμ(x, t)

) n+2
n

−
(
2B(t)A−1(t)−1

2
ψ(t)

) ∫
M
F2dμ(x, t).

The problem is reduced to solving the following ODE

V ′(t) + q(t)V (t) ≥ 2A−1(t)V (t)
n+2
n , (4.2)

where q(t) = 2B(t)A−1(t) − 1
2ψ(t). Equation (4.2) is due to the fact that under variables

(x, t), the fundamental solution F satisfies∫
M
F(x, t; y, s)dμ(x, t) = 1

and consequently then

h(t) =
( ∫

M
Fdμ

) 4
n+2

= 1.
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Notice that the resulting ODE (4.2) is true for any τ ∈ [s, t], we then solve it by using
integrating factormethod. Denote Q(τ ) = ∫

q(τ )dτ , the integrating factor is eQ(τ ), therefore
we have

(eQ(τ )V (τ ))′ ≥ 2A−1(τ )(eQ(τ )V (τ ))
n+2
n e− 2

n Q(τ )

integrating from s to t since it is true for all τ ∈ [s, t], with the facts that

∫ t

s

(eQ(τ )V (τ ))′

(eQ(τ )V (τ ))
n+2
n

dτ = −n

2
(eQ(τ )V (τ ))−

2
n

∣∣∣∣
t

s

and

lim
τ↘s

V (t) =
∫
M
lim
τ↘s

F2(x, t; y, s)dμ(x, t) =
∫
M

δ2y(x)dμ(x, t) = 0

we obtain the bound as follows

V (t) ≤

(
2
n

) n
2

e−Q(t)

(
2

∫ t
s

e− 2
n Q(τ )

A(τ )
dτ

) n
2

=

(
1
n

) n
2

e−Q(t)

( ∫ t
s

e− 2
n Q(τ )

A(τ )
dτ

) n
2
.

Taking Cn :=
(
1
n

) n
2
, we arrive at

∫
M
F2(x, t; y, s)dμ(x, t) = V (t) ≤ Cne−Q(t)( ∫ t

s A−1(τ )e− 2
n Q(τ )dτ

) n
2
. (4.3)

The next is to estimate

W (s) =
∫
M
F2(x, t; y, s)dμ(y, s).

Due to the asymmetry of the equation, the computation is slightly different. We recall that
F(x, t; y, s) satisfies the heat equation in the variables (y, s), then we similarly have

W ′(s) =
∫
M

(2F∂s F − HF2)dμ(y, s)

=
∫
M
2F(�F) − HF2dμ(y, s)

= −2
∫
M

|∇F |2dμ(y, s) −
∫
M
HF2dμ(y, s).
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Using Lemma 2 again we arrive at

W ′(s) ≤ −2A−1(s)

(
h−1(s)

∫
M
F2dμ(y, s)

) n+2
n

+ 2

(
B(s)A−1(s) + 1

4
ψ(s)

)
∫
M
F2dμ(y, s) − ψ(t)

∫
M
F2dμ(y, s)

= −2A−1(s)

(
h−1(s)

∫
M
F2dμ(y, s)

) n+2
n

+
(
2B(s)A−1(t) − 1

2
ψ(s)

) ∫
M
F2dμ(y, s). (4.4)

We can further estimate the quantity h(s) = (
∫
M Fdμ)

4
n+2 . Notice that contrary to what was

obtainable in the variable (x, t),
∫
M F(x, t; y, s)dμ(y, s) �= 1, since the coordinate (x, t)

are kept fixed here and we only integrate in (y, s). Therefore

λ′(s) = d

ds

( ∫
M
F(x, t; y, s)dμ(y, s)

)

=
∫
M

∂s F(x, t; y, s)dμ(y, s) −
∫
M
H(y, s)Fdμ(y, s)

=
∫
M

�y,s F(x, t; y, s)dμ(y, s) −
∫
M
H(y, s)F(x, t; y, s)dμ(y, s)

≤ −ψ(s)
∫
M
F(x, t; y, s)dμ(y, s).

The last inequality is due to the fact that we are on compact manifold, where
∫
M �Fdμ = 0

and by the lower bound on quantityH due to the maximum principle. Now for any τ ∈ [s, t]
and by lower bound (2.7)

λ′(τ ) ≤ −ψ(τ)λ(τ)

λ′(τ )

λ(τ)
≤ −ψ(τ) = − 1

ρ−1 − 2
n τ

,

integrating this from s to t we get

ln λ(t) − ln λ(s) ≤ n

2
ln(ρ−1 − 2

n
τ)

∣∣∣∣
t

s

λ(t)

λ(s)
≤

(
ρ−1 − 2

n t

ρ−1 − 2
n s

) n
2

�⇒ λ(t) ≤
(

ρ−1 − 2
n t

ρ−1 − 2
n s

) n
2

λ(s),

we can show that λ(s) ≡ 1 as follows

λ(s) = lim
t→s

∫
M
F(x, t; y, s)dμ(y, s) =

∫
M
lim
t→s

F(x, t; y, s)dμ(y, s)

=
∫
M

δx (y) = 1,
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combining these we have

h(t) =
(

ρ−1 − 2
n t

ρ−1 − 2
n s

) n
2 · 4

n+2

=
(

ρ−1 − 2
n t

ρ−1 − 2
n s

) 2n
n+2

=: α
2n
n+2 .

By this (4.4) is now reduced to the following

W (s) ≤ −2A−1(s)α−2(s)

( ∫
M
F2dμ(y, s)

) n+2
n

(4.5)

+
(
2B(s)A−1(s) − 1

2
ψ(s)

) ∫
M
F2dμ(y, s),

we are then to solve the following ODE

W ′(s) ≤ −2A−1α−2W (s)
n+2
n + r(s)W (s), (4.6)

where r(s) = 2B(s)A−1(s) − 1
2ψ(s). In the similar vein to the previous estimate, we also

solve (4.6) using integrating factor method. Denote R(τ ) = ∫
r(τ )dτ , the integrating factor

is e−R(τ ). Therefore we have

(e−R(τ )W (τ ))′ ≤ −2A−1α−2(e−R(τ )W (τ ))
n+2
n e

2
n R(τ ),

integrating from s to t since it is true for any τ ∈ [s, t] we have immediately

W ′(s) ≤

(
2
n

) n
2

eR(s)

(
2

∫ t
s

e
2
n R(τ )

α2(τ )A(τ )
dτ

) n
2

=

(
1
n

) n
2

eR(s)

( ∫ t
s α−2(τ )A−1(τ )e

2
n R(τ )dτ

) n
2
,

hence ∫
M
F2(x, t; y, s)dμ(y, s) = W (s) ≤ CneR(s)( ∫ t

s α−2(τ )A−1(τ )e
2
n R(τ )dτ

) n
2
. (4.7)

We can then see from the computation above that

V

(
t

2

)
=

∫
M
F2

(
x, t; z, t

2

)
dμ

(
z,

t

2

)
= Cne−Q( t

2 )( ∫ t
s A−1(τ )e− 2

n Q(τ )dτ

) n
2

and

W

(
t

2

)
=

∫
M
F2

(
z,

t

2
; y, 0

)
dμ

(
z,

t

2

)
= CneR(

t
2 )( ∫ t

s

(
ρ−1− 2

n τ

ρ−1

)−2

A−1(τ )e
2
n R(τ )dτ

) n
2
.

Here we choose

P

(
t

2

)
=

∫ t
2

0

[
B(τ )A−1(τ ) − 1

2
φ(τ)

]
dτ = Q

(
t

2

)
= R

(
t

2

)

wi th φ(t) := 1

ρ−1 − 2
n t

.
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Finally we obtain the bound

F(x, t; y, s) ≤ Cn( ∫ t+s
2

s

(
ρ−1− 2

n τ

ρ−1

)−2

A−1(τ )e
2
n P(τ ) · ∫ s

t+s
2

A−1(τ )e− 2
n P(τ )dτ

) n
4
. (4.8)

The required estimate follows immediately.

4.2 The special case of nonnegative H(x, t)

Note that if H(x, 0) ≥ 0, the maximum principle shows that it remains so as long as the
geometric flow exists. For this case we obtain a Sobolev type embedding from Lemma 2

∫
M

|∇u|2dμ(g(t)) ≥ 1

A

( ∫
M
u2dμ(g(t))

) n+2
2

− B

A

∫
M
u2dμ(g(t)), (4.9)

where A and B are absolute constant independent of time, in fact A = K (n, 2)2 is the best
constant in Euclidean Sobolev embedding and B can be taken to be equivalent to zero when
H(x, 0) = 0.

In the case H(x, 0) > 0, we have λ′(s) ≤ 0 showing that λ(s) is decreasing, that is
λ(s) ≤ λ(t). This implies that h(s) ≤ h(t) = 1, then (4.6) becomes

W ′(s) ≤ −2A−1W (s)
n+2
n + r(s)W (s)

with r̃ = 2B
A and we obtain the estimate

W (s) ≤ CneR̃(s)

A−1

( ∫ t
s (τ )e

2
n R(τ )dτ

) n
2
,

similarly

V (t) ≤ Cne−R̃(t)

A−1

( ∫ t
s (τ )e− 2

n R(τ )dτ

) n
2
.

Putting these together we have a counterpart estimate to (4.8) as follows

F(x, t; y, s) ≤ Cn[
A−2

( ∫ t+s
2

s e
2
n R̃(τ )dτ · ∫ s

t+s
2
e− 2

n R̃(τ )dτ

)] n
4
. (4.10)

Here, the denominator in the right hand side of the inequality (4.10) is simplified to[
A−2

( ∫ t+s
2

s
e

2
n R̃(τ )dτ ·

∫ s

t+s
2

e− 2
n R̃(τ )dτ

)] n
4

=
[

n2

16B2

(
e
4B
nA · t+s

2 − e
4B
nA ·s

)(
e− 4B

nA · t+s
2 − e− 4B

nA ·t
)] n

4

=
[

n2

16B2

(
1 − e− 4B

nA · t−s
2

)2] n
4

.
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Therefore

F(x, t; y, s) ≤ Cn[
n
4B

(
1 − e− 4B

nA · t−s
2

)] n
2

≤ C̃n

(t − s)
n
2

by Taylor series expansion (i.e., 1 − e−z � z), where C̃n = Cn · (2A)
n
2 .

In the case H(x, 0) = 0, B(t) ≡ 0, R̃(t) = B
A t ≡ 0 and

F(x, t; y, s) ≤ Cn[
A−2
0

( ∫ t+s
2

s dτ · ∫ s
t+s
2
dτ

)] n
4

= Cn[
A−1
0

(
t−s
2

)] n
2

= C̃n

(t − s)
n
2
, (4.11)

where C̃n = Cn · (2A0)
n
2 = ( 2n k(n, 2))

n
2 .

5 Conclusion

We have obtained uniform Sobolev-type inequalities which are valid on a compact Rie-
mannian manifold whose metric solves the abstract geometric flow. The input of these
inequalities are taken to be W 1,2(M)-solutions of the heat-type equation and as a conse-
quence we derive upper bound for the minimal positive solution (heat kernel) without any
explicit restriction on the curvature of the underlying manifold. The semigroup property of
the heat kernel plays a crucial role in this result. However, the estimates hold for any positive
solution with some normalization condition. In application, the heat-type equation could be
an adjoint heat equation which needs to be solved backward in time as the geometric flow
is being solved forward in time. This will allow us gain some control on singularities as we
reach maximum time T, since the fundamental solution will tend to δ-function as t tends to T .
The examples of geometric flows mentioned in Sect. 2 show that our results are more general
and valid in various cases. As a by-product of our approach in this paper, we have established
the equivalence of Sobolev inequalities, log-Sobolev inequalities, contractive estimates and
heat kernel upper bounds.
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