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Abstract A subgroup H of a group G is called c∗-normal in G if there exists a normal
subgroup N of G such that G = HN and H ∩ N is S-quasinormally embedded in G. A
subgroup K of G is said to be s-semipermutable if it is permutable with every Sylow p-
subgroup of G with (p, |K |) = 1. In this article, we investigate the influence of c∗-normality
and s-semipermutability of subgroups on the structure of finite groups and generalize some
known results.
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1 Introduction

Throughout only finite groups are considered. Terminologies and notations employed agree
with standard usage, as in Robinson [8].

Two subgroups H and K of a group G are said to be permutable if HK = K H . The
subgroup H is said to be S-quasinormal inG if H permuteswith every Sylow subgroups ofG,
i.e., HP = PH for any Sylow subgroup P ofG. This concept was introduced byKegel in [7]
andhas been studiedwidely bymanyauthors, such as [2,9].Recently,There is a generalization
of S-quasinormality in [14]. The subgroup H is called s-semipermutable in G if H permutes
with every Sylow p-subgroup of G with (|H |, p) = 1. An s-semipermutable subgroup is no
need to be an S-quasinormal subgroup. S3 is a counter-example. On the other hand, Wang
[10] introduced the concept of c-normal subgroups. The subgroup H is said to be c-normal in
G if there exists a normal subgroupU ofG such thatG = HU and H∩U is contained in HG ,
where HG is the maximal normal subgroup of G which is contained in H . The c-normality is
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a generalization of the normality. Applying the c-normality of subgroups,Wang obtained new
criteria for supersolvability of groups. In 2007, Wei and Wang [11] introduced the concept
of c∗-normal subgroups which is both c-normality and S-quasinormal embedding and used
the c∗-normality of maximal subgroups to give some necessary and sufficient conditions
for a group to be p-nilpotent, p-supersolvable or supersolvable. Based on the observation
above concepts, we note that c∗-normal subgroups and s-semipermutable subgroups are two
different concepts. There are examples to show that s-semipermutable subgroups are not
c∗-normal subgroups and in general the converse is also false. In this paper, we investigate
s-semipermutable and c∗-normal subgroups of G and give criteria for a group belonging to
F . Some interesting results are obtained and known results on this topic are generalized.

2 Preliminaries

Lemma 2.1 [11, Lemma 2.3] Let H be a subgroup of a group G.

(1) If H is c∗-normal in G and H ≤ M ≤ G, then H is c∗-normal in M.
(2) Let N � G and N ≤ H. Then H is c∗-normal in G if and only if H/N is c∗-normal

in G/N.
(3) Let π be a set of primes, H a π -subgroup of G and N a normal π ′-subgroup of G.

If H is c∗-normal in G, then HN/N is c∗-normal in G/N.

Lemma 2.2 [14, Property] Suppose that H is an s-semipermutable subgroup of G. Then

(1) If H ≤ K ≤ G, then H is s-semipermutable in K .
(2) Let N be a normal subgroup of G. If H is a p-group for some prime p ∈ π(G), then

HN/N is s-semipermutable in G/N.
(3) If H ≤ Op(G), then H is S-quasinormal in G.

Lemma 2.3 [9,11] Suppose that U is S-quasinormally embedded in a group G, and that
H ≤ G and K � G.

(1) If U ≤ H, then U is S-quasinormally embedded in H.
(2) UK is S-quasinormally embedded in G and UK/K is S-quasinormally embedded

in G/K.
(3) If K ≤ H and H/K is S-quasinormally embedded in G/K, then H is S-

quasinormally embedded in G.
(4) A p-subgroup H of G is S-quasinormal in G if and only if NG(H) ≥ O p(G) for

some prime p ∈ π(G).

Lemma 2.4 [11, Lemma 2.8] Let G be a group and let p be a prime number dividing |G|
with (|G|, p − 1) = 1.Then

(1) If N is normal in G of order p, then N lies in Z(G);
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;
(3) If M is a subgroup of G with index p, then M is normal in G.

Lemma 2.5 [1, A, Lemma 1.2] Let U, V and W be subgroups of a group G. The following
statements are equivalent.

(1) U ∩ VW = (U ∩ V )(U ∩ W ).
(2) UV ∩UW = U (V ∩ W ).
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Lemma 2.6 [4, 6.4.8] Let H, K be subgroups of the group G such that

(|G : H |, |G : K |) = 1.

Then G = HK and |G : H ∩ K | = |G : H ||G : K |.

Lemma 2.7 [11, Lemma 2.5] Let G be a group, K an S-quasinormal subgroup of G and P
a Sylow p-subgroup of K , where p is a prime. If KG = 1, then P is S-quasinormal in G.

Lemma 2.8 [11, Theorem 4.1] LetF be a saturated formation containingU . Suppose that
G is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of
any Sylow subgroup of H are c∗-normal in G, then G ∈ F .

Lemma 2.9 [11, Theorem 4.3] LetF be a saturated formation containingU . Suppose that
G is a group with a normal subgroup H such that G/H ∈ F . If all maxim al subgroups of
any Sylow subgroup of F ∗(H) are c∗-normal in G, then G ∈ F .

Lemma 2.10 [5, X, 13] Let G be a group. If F∗(G) is solvable, then F∗(G) = F(G).

Lemma 2.11 [5, IV, Satz 4.7] If P is a Sylow p-subgroup of G and N � G such that
P ∩ N ≤ �(P), then N is p-nilpotent.

3 Main results

Theorem 3.1 Let G be a group and P a Sylow p-subgroup of G, where p is the smallest
prime dividing |G|. If every maximal subgroup of P is either s-semipermutable or c∗-normal
in G, then G is p-nilpotent.

Proof Asuume that the theorem is false and G is a counterexample with minimal order. We
will consider the following steps.

(1) G has a uniqueminimal normal subgroup N such thatG/N is p-nilpotent and�(G) = 1.
Let N be aminimal normal subgroup ofG.We have to showG/N satisfies the hypotheses
of the theorem. Let M/N be a maximal subgroup of PN/N . We can see M = P1N for
some maximal subgroup P1 of P . By the hypotheses, P1 is either s-semipermutable
or c∗-normal in G. If P1 is c∗-normal in G, then there is a normal subgroup K1 of G
such that G = P1K1 and P1 ∩ K1 is S-quasinormally embedded in G. Then G/N =
M/N · K1N/N = P1N/N · K1N/N . It is easy to see that K1N/N is normal in G/N .
Since (|N : P1∩N |, |N : K1∩N |) = 1, (P1∩N )(K1∩N ) = N = N∩G = N∩(P1K1)

by Lemma 2.6. Now using Lemma 2.5, (P1N ) ∩ (K1N ) = (P1 ∩ K1)N . It follows that
(P1N )/N ∩ (K1N )/N = (P1 ∩ K1)N/N is S-quasinormally embedded in G/N by
Lemma 2.3. Thus M/N is c∗-normal in G/N . If P1 is s-semipermutable in G, then
M/N = P1N/N is s-semipermutable in G/N by Lemma 2.2. Consequently, G/N
satisfies the hypotheses of the theorem. The choice of G yields that G/N is p-nilpotent.
The uniqueness of N and �(G) = 1 are obvious.

(2) Op′(G) = 1.
If Op′(G) �= 1, then N ≤ Op′(G) by (1). By Lemmas 2.1 and 2.2, G/N satisfies
the hypotheses, hence G/N is p-nilpotent. Now the p-nilpotency of G/N implies the
p-nilpotency of G, a contradiction.
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(3) Op(G) = 1 and G is not solvable.
If Op(G) �= 1, (1) yields N ≤ Op(G) and �(Op(G)) ≤ �(G) = 1. Hence, G has
a maximal subgroup M such that G = MN and M ∩ N = 1. Since Op(G) ∩ M is
normalized by N and M , Op(G) ∩ M is normal in G. The uniqueness of N yields
N = Op(G). Obviously P = NMp = N (P ∩ M). Since P ∩ M < P , we can take
a maximal subgroup P1 of P such that P ∩ M ≤ P1 < ·P . Then P = N P1 and
P ∩ M = P1 ∩ M . By the hypotheses of theorem, P1 is either s-semipermutable or
c∗-normal in G. If P1 is c∗-normal in G, then there is a normal subgroup K1 such
that G = P1K1 and P1 ∩ K1 is S-quasinormally embedded in G. Thus P1 ∩ K1 is
a Sylow p-subgroup of some S-quasinormal subgroup K of G. If KG �= 1, by (1)
we have that N ≤ KG . Hence, P = N P1 ≤ P1, a contradiction. If KG = 1, by
Lemma 2.7 we have that P1 ∩ K1 is S-quasinormal in G. It follows that P1 ∩ K1 is
normalized by P and O p(G). Now we know P1 ∩ K1 � G. If (P1 ∩ K1)M = G, then
P1M = PM = G and so P1 = P , a contradiction. Thus (P1 ∩ K1)M = M and so
(P1 ∩ K1) ≤ M . On the other hand, P1 ∩ K1 ≤ N . We know P1 ∩ K1 ≤ N ∩ M .
Hence, P1 ∩ K1 = 1 and so |P ∩ K1| = p. So |K |p = p. By the uniqueness of
N , we have that N ≤ K1, of course, N is a cyclic group of order p. By Lemma 2.4,
N ≤ Z(G). Since G/N is p-nilpotent, G is also p-nilpotent, a contradiction. Now
suppose that P1 is s-semipermutable in G. Then P1Mq is a group for q �= p. Therefore,
P1 < Mp, Mq |q ∈ π(M), q �= p >= P1M is a group. Then P1M = M or G by
maximality of M . If P1M = G, then P = P ∩ P1M = P1(P ∩ M) = P1, which is
a contradiction. If P1M = M , then P1 ≤ M . Hence, P1 ∩ N = 1 and N is of prime
order. Then the p-nilpotency of G/N implies the p-nilpotency of G, a contradiction.
Combining this with (2), it is easy to see that G is not solvable, now thus (3) holds.

(4) For any q �= p, PGq < G, where Gq is a Sylow q-subgroup of G. That is to say, PGq

is p-nilpotent.
At first, we have N P = G. In fact, if N P < G, then N P is p-nilpotent since N P
satisfies the hypotheses of theorem. Hence, N is p-nilpotent and by (1) we know N is a
nontrivial p-group, but this is a contradiction with (3). So we have that N P = G. If for
all P1 < ·P , we have that N P1 < G. Then (P ∩ N )P1 < P and so P ∩ N ≤ P1. Hence,
P ∩ N ≤ �(P) and N is p-nilpotent by Lemma 2.11, a contradiction. So there exists
P1 < ·P such that G = N P1. By the hypotheses, if P1 is c∗-normal in G, then there is a
normal subgroup K such that G = P1K1 and P1 ∩ K1 is S-quasinormally embedded in
G. So P1 ∩ K1 ∈ Sylp(K ), where K is S-quasinormal in G. If KG �= 1, then N ≤ KG .
It follows that P1 ∩ K1 ∩ N ∈ Sylp(N ). Now by G = N P1 we get P1 ∈ Sylp(G),
a contradiction. So KG = 1. By Lemma 2.7 we have that P1 ∩ K1 is S-quasinormal
in G, so P1 ∩ K1 ≤ Op(G) = 1 and P1 ∩ K1 = 1. Moreover, |P ∩ K1| = p and so
|K1|p = p. By Lemma 2.4 we know K1 is p-nilpotent. Of course, N is also p-nilpotent,
a contradiction. From [5, IV, Satz 2.8], it follows that P is non-cyclic. We could take
a maximal subgroup P2 of P satisfying G = N P2. By the same argument, we know
that P2 cannot be c∗-normal in G. Now suppose that Pi is s-semipermutable in G and
PiGq is a group, i = 1, 2, where Gq is a Sylow q-subgroup of G. Thus we have P1, P2
such that P = P1P2. Hence PGq is a group. By (3) and the famous paqb-theorem we
infer PGq is a proper subgroup of G. Therefore, PGq is p-nilpotent by the minimality
of G.

(5) The final contradiction.

By (4) we have [P,Gq ] ≤ Gq for any q �= p. Suppose that S1 is an arbitrary subgroup
of P . Let NG(S1) = N1. Since [S1, (N1)q ] ≤ S1 ∩ Gq = 1, S1 is centralized by (N1)p′ .
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Thus G is p-nilpotent by the famous Frobenius Theorem [8, 10.3.2], which is the final
contradiction. 	

Corollary 3.2 Suppose that G is a group and P a Sylow subgroup of G. If every maximal
subgroup of P is either s-semipermutable or c∗-normal in G, then G has a Sylow tower of
supersolvable type.

Proof Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. By
hypothesis, every maximal subgroup of P is either s-semipermutable or c∗-normal in G.
In particular, G satisfies the condition of Theorem 3.1, so G is p-nilpotent. Let U be the
normal p-complement of G. By Lemmas 2.1 and 2.2, U satisfies the hypothesis. It follows
by induction thatU , and hence G possesses the Sylow tower property of supersolvable type.

	

Corollary 3.3 [6, Theorem 3.1] Let G be a group and P = Gp a Sylow p-subgroup of
G, where p is the smallest prime dividing |G|. If every maximal subgroup of P is either
s-semipermutable or c-normal in G, then G is p-nilpotent.

Corollary 3.4 Suppose that G is a group and P a Sylow subgroup of G. If every maximal
subgroup of P is either s-semipermutable or c-normal in G, then G has a Sylow tower of
supersolvable type.

We are now in a position to unify and generalize Theorem 4.1 and Theorem 4.3 in [11].

Theorem 3.5 LetF be a saturated formation containingU . Suppose that G is a group with
a normal subgroup H such that G/H ∈ F . If all maximal subgroups of any Sylow subgroup
of H are either c∗-normal or s-semipermutable in G, then G ∈ F .

Proof Suppose that P is a Sylow p-subgroup of H , ∀p ∈ π(H). Since every maximal
subgroups of P are either c∗-normal or s-semipermutable in G, thus in H by Lemmas 2.1
and 2.2. By Corollary 3.2 we konw that H has a Sylow tower of supersolvable type. Let q be
themaximal prime divisor of |H | and Q ∈ Sylq(H). Then Q char H�G. Since (G/Q, H/Q)

satisfies the hypotheses of the theorem, by induction, G/Q ∈ F . Since Q ≤ Oq(G), every
maximal subgroups of Q are either S-quasinormal or c∗-normal in G by Lemma 2.2, in
particular, c∗-normal in G. So G ∈ F by Lemma 2.8. 	

Theorem 3.6 LetF be a saturated formation containingU . Suppose that G is a group with
a normal subgroup H such that G/H ∈ F . If all maxim al subgroups of any Sylow subgroup
of F∗(H) are either c∗-normal or s-semipermutable in G, then G ∈ F .

Proof Suppose that P is a Sylow p-subgroup of F∗(H) , ∀p ∈ π(F∗(H)). Since every
maximal subgroups of P are either c∗-normal or s-semipermutable in G, thus in F∗(H)

by Lemmas 2.1 and 2.2. By Corollary 3.2 we konw that F∗(H) has a Sylow tower of
supersolvable type, in particular, F∗(H) is Solvable. By Lemma 2.10 we have that F∗(H) =
F(H). Since F∗(H)p = F(H)p , ∀p ∈ (H), every maximal subgroups of P are either
c∗-normal or S-quasinormal in G by Lemma 2.2, in particular, c∗-normal in G. Applying
Lemma 2.9 we get that G ∈ F . 	

Corollary 3.7 [12, Theorem 3.1] Let F be a saturated formation containing U . Suppose
that G is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups
of every Sylow subgroup of F∗(H) are c-normal in G, then G ∈ F .
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Corollary 3.8 [14, Theorem 1] LetF be a saturated formation containingU . Suppose that
G is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of
any Sylow subgroup of H are s-semipermutable in G, then G ∈ F .

Corollary 3.9 [14, Theorem 2] LetF be a saturated formation containingU . Suppose that
G is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of
any Sylow subgroup of F∗(H) are s-semipermutable in G, then G ∈ F .
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