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Abstract In this paper, we use an interior points method of projective type for calculate the
initial dual solution of the convex nonlinear programming using the Ye Lustig variant applied
to linear programming, as a result we propose a modification in this algorithm to reduce the
number of iterations and the computing time of this algorithm. The numerical tests confirm
that the modified algorithm is robust.
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1 Introduction

The nonlinear programming (NLP) is a model which traduces many real applications. It can
be found in control theory, combinatory optimization. In term of research, it is one of subject
treated with fervour, in particular the problem of initialization in problem of optimization
[1–8].

Choice of starting primal and dual point is an important practical issue with a significant
effect on the robustness of the algorithm. A poor choice (x0, y0, s0) satisfying only the
minimal conditions x0 > 0 , s0 > 0. In interior point methods, the successive iterates should
be strictly feasible. In consequence, a major concern is to find an initial primal feasible
solution x0 [7,9]. The object of this paper is the dual problem (y0, s0).
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14 E. A. Djeffal et al.

A nonlinear program in its standard form is of type:

(CNLP)

⎧
⎨

⎩

min f (x)
s.t

Ax = b, x ≥ 0

where f (x) is a reel nonlinear function, A ∈ R
m×n with rg(A) = m < n, c, x ∈ R

n and
y, b ∈ R

m, and its dual problem

(CNLD)

⎧
⎨

⎩

max L(x, y, s)
s.t
At y + s = ∇ f (x), s ≥ 0, y ∈ �m .

where L(x, y, s) is a lagrangian function, s ∈ R
n, y ∈ R

m are the vectors.
Some notations are used throughout the paper and they are as follows. �n , �n+ and �n++

denote the set of vectors with n components, the set of nonnegative vectors and the set of
positive vectors, respectively. �n × n denotes the set of n × n real matrices.‖.‖2 denote the
Euclidean norm, e = (1, . . . , 1)t is the vector of ones in �n .

2 Presentation of the problem

The strict dual feasibility problem associated to the problem (CNLD) is to find a vector (y, s)
such that:

[
(y, s) ∈ �m+n : At y + s = ∇ f (x), s > 0

]
(DF)

We poses y = y+ − y−, where y+ > 0, y− > 0.
The problem (DF) is equivalent to the following problem

[
(y, s) ∈ �m+n : At y+ − At y− + s = ∇ f (x), y+ > 0, y− > 0, s > 0

]
(DF)

One way to solve a strictly dual feasible problem consists in introducing an additional
variable ξ as follows:

(Pξ )

⎧
⎪⎪⎨

⎪⎪⎩

min ξ

s.t
Dd + ξ(∇ f (x) − Da) = ∇ f (x)

d > 0, ξ > 0

where D is the (n)×(n+2m)matrix defined by D = (At , − At , I ), a ∈ �n+2m++ is arbitrary
and d = (y+, y−, s) ∈ �n+2m++

The problem (Pξ ) can be written as a following linear program:

(LPξ )

⎧
⎪⎪⎨

⎪⎪⎩

min c′′tl
s.t

D′l = ∇ f (x)
l > 0

where c′′ ∈ �n+2m+1 is the vector defined by:

c′′[i] =
{
1, if i = n + 2m + 1
0, otherwise
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D′ is the (n)×(n+2m+1)matrix defined by D′ = (D, ∇ f (x) − Da) and l ∈ �n+2m+1

is vector such that l = (d, ξ) .

For solving the problem (LPξ ), we use the Ye Lustig variant of projective interior point
method [5].

Lemma 1 [5] x∗ is a solution of problem (PF) if and only if (d∗, ξ) is an optimal solution
of problem (LPξ )with d ∈ �n+2m++ and ξ sufficiently small.

To compute the optimal solution of problem (LPξ ) , we use only the second phase of the
projective interior point method. The corresponding algorithm is:

3 Algorithm for solving (LP
ξ
)

Description of the algorithm
(a) Initialization: ε > 0 is fixed, d0 = e, ξ0 = 1 and k = 0

If ‖Dd − ∇ f (x)‖2 < ε, Stop: dk is an ε-approximate solution of (DF).
If not go to (b).

(b) If ξk < ε, Stop: dk is an ε -approximate solution of (DF).
If not go to (c).

(c) Step k

Determinate:

Gk = diag(lk), D = [D, ∇ f (x) − Da] , r = 1√
(n+2m+1)(n+2m+2)

,

Ck =
[
D

′
Gk, − ∇ f (x)

]

Pk = [
I − Ct

k(CkCt
k)

−1Ck
] [
Gkc′′t, − c′′tlk

]t

Compute:

zk+1 = en+2m+2
n+2m+2 − αkr

Pk‖Pk‖2
lk+1 = 1

zk+1[n+2m+2]
Gkzk+1 [n + 2m + 1]

Take:

ξk = lk+1 [n + 2m] , and go to (b)

4 Modified algorithm

At iteration k, the original algorithm gives a strictly feasible solution (dk, ξ k). To find the
next iteration (dk+1, ξ k+1), we search a vector wk such that the vector dk + wk is a solution
of problem (FD), i.e

D(dk + wk) = ∇ f (x) (1)

and

dk + wk > 0 (2)

(1) is equivalent to Ddk = ∇ f (x) − ξkq, where

Dwk = ξkq (3)
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16 E. A. Djeffal et al.

(3) is equivalent to the following convex quadratic optimization problem

(COP)

⎧
⎨

⎩

min
∥
∥wk

∥
∥2

s.t
Dwk = ξkq

By optimality condition, we obtain the follwing system
⎧
⎨

⎩

Dwk = ξkq (a)

wk + Dtθ = 0 (b)
Dwk + DDtθ = 0 (c)

we obtain
θ = −(DDt )−1ξkq
deduce
wk = −Dtθ = Dt (DDt )−1ξkq .
The calculation of wk requires the calculation of the inverse of the matrix (DDt ), which

is undesirable in practice, to correct, we proceed as follows, let

uk = (DDt )−1ξkq

equivalent to the follwing linear symetric definite positive system

DDtuk = ξkq

Proposition 1 For all (dk, ξk) is a strict feasible solution of (Pξ ),
if max

∣
∣vki

∣
∣ < 1 then:

dk + wk > 0 and D(dk + wk) = ∇ f (x)

where

vk = −diag
( 1

dk

)
Dtuk and wk is a solution of (COP)

Proof 1. D(dk + wk) = ∇ f (x)
let, wk is a solution of (COP), we have
wk = Dtuk and uk = ξku0

D(dk + wk) = D(dk + Dtuk)

= Ddk + DDtuk

= ∇ f (x) − ξk
(∇ f (x) − Da

) + ξk DDku0

= ∇ f (x) − ξk
(∇ f (x) − Da

) + ξkξ0
(∇ f (x) − Da

)

= ∇ f (x).

2. dk + wk > 0
we have

D(dk + wk) = ∇ f (x)

so, D(diag(dk)en+2m + wk) = ∇ f (x)
then,

Ddiag(dk)
(
en+2m + diag

[
(dk)

]−1
wk

)
= ∇ f (x)
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Finding a strict feasible dual solution of a convex optimization problem 17

as dk > 0 then,

en+2m + diag
[
(dk)

]−1
wk > 0

for dk + wk > 0,
let:

vk = −diag
( 1

dk

)
wk = −diag

( 1

dk

)
Dtuk

we have, en+2m + diag
[
(dk)

]−1
wk > 0 then

en+2m − vk > 0, giving:
max

∣
∣vki

∣
∣ < 1

therefore, we have: dk + wk > 0. 
�
4.1 The modified algorithm

Description of the algorithm
(a′) Initialization: ε > 0 is fixed, d0 = e, ξ0 = 1 and k = 0
If

∥
∥Dd0 − ∇ f (x)

∥
∥
2 < ε, Stop: dk is an ε-approximate solution of (DF).

else
calculated u0 solution of the linear system

DDtu0 = ξ0(∇ f (x) − Da).

(b′)
If ξk < ε

Stop: dk is an ε-approximate solution of (DF).
else
Compute

uk = ξku
0

vk = −diag
( 1

dk
)
Dtuk

If max
∣
∣vki

∣
∣ < 1, stop: dk + Dtuk is an ε-approximate solution of (DF).

else
go to (c′)
(c′) is identical to (c) of the algorithm original.
(d′) take k = k + 1 and go to (b′).

5 Numerical tests

The algorithm has been tested on some benchmark problems issued from the paper [7,9].The
implementation is manipulated in DEV C++, We have taken ε = 10−8.

Example 1 [9]
⎧
⎨

⎩

min 1
2 x

t Qx + ct x
s.t
Ax = b, x ≥ 0
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18 E. A. Djeffal et al.

Table 1 Numerical results Algorithm Number of iteration Time (s)

Ye-Lustig variant algorithm 11 0.03

Modified algorithm 6 0.01

Table 2 Numerical results Algorithm Number of iteration Time (s)

Ye-Lustig variant algorithm 9 0.02

Modified algorithm 1 0.01

where

A =
⎛

⎝
1 1.2 1 1.8 0
3 −1 1.5 −2 1

−1 2 −3 4 2

⎞

⎠ , c = (
1 −1.5 2 1.5 3

)t
, b =

⎛

⎝
9.31
5.45
6.60

⎞

⎠

Q =

⎛

⎜
⎜
⎜
⎜
⎝

20 1.2 0.5 0.5 −1
1.2 32 1 1 1
0.5 1 14 1 1
0.5 1 1 15 1
−1 1 1 1 16

⎞

⎟
⎟
⎟
⎟
⎠

In this example, we find the dual initial point (s0, y0)
s0 = (29.824284 10.732446 0.544773 1.013929 0.488309)t

y0 = (20.822601 5.717161 3.343051)
The experiment results see Table 1.

Example 2 [7]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x21 + 0.5x22 + x23 + 0.5x24 − x1x3 + x3x4 − x1 − 3x2 + x3 − x4
s.t
x1 + 2x2 + x3 + x4 + x5 = 5
3x1 + x2 + 2x3 − x4 + x6 = 4
−x1 − x4 + x7 = −1.5
−x1 + x8 = 0
−x2 + x9 = 0
−x3 + x10 = 0
x4 + x11 = 0

In this example, we find the dual initial point (s0, y0)

s0 =
(
1.364487 0.047156 0.332105 0.068909 0.888686 0.021166
0.209226 0.250756 0.044618 0.069522 0.201388

)t

y0 =
(−0.888686 − 0.021166 − 0.209226 − 0.250756 − 0.044618

−0.069522 − 0.201388

)

The experiment results see Table 2.
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Finding a strict feasible dual solution of a convex optimization problem 19

Example 3 [9]

⎧
⎨

⎩

min 1
2 x

t Qx + ct x
s.t
Ax = b, x ≥ 0

where

A =
⎛

⎝
1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05
1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1
1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1

⎞

⎠ ,

b =
⎛

⎝
11.651
16.672
21.295

⎞

⎠ , c = (−0.5 −1 0 0 −0.5 0 0 −1 −0.5 −1
)t

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

30 1 1 1 1 1 1 1 1 1
1 21 0 1 −1 1 0 1 0.5 1
1 0 15 −0.5 −2 1 0 1 1 1
1 1 −0.5 30 3 −1 1 −1 0.5 1
1 −1 −2 3 27 1 0.5 1 1 1
1 1 1 −1 1 16 −0.5 0.5 0 1
1 0 0 1 0.5 −0.5 8 1 1 1
1 1 1 −1 1 0.5 1 24 1 1
1 0.5 1 0.5 1 0 1 1 39 1
1 1 1 1 1 1 1 1 1 11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In this example, we find the dual initial point (s0, y0)

s0 =
(
20.514528 7.457094 1.792312 10.121809 14.555866
0.601053 3.827566 2.716075 18.527227 0.800151

)t

y0 = (3.9721091 8.084740 4.420401)

The experiment results see Table 3.

Example 4 (Erikson’s problem 1980)
We consider the following convex problem

⎧
⎪⎪⎨

⎪⎪⎩

min f (x) = ∑n
i=1 xi ln

xi
ai

s.t
xi + xi+m = bi , i = 1, . . . ,m, n = 2m

x ≥ 0

where ai ∈ �++ and bi ∈ � are fixed. We have tested this example for different value of
n, ai and bi .

Table 3 Numerical results Algorithm Number of iteration Time (s)

Ye-Lustig variant algorithm 10 0.02

Modified algorithm 6 0.01

123



20 E. A. Djeffal et al.

Algorithm Number of iteration Time (s)

ai = 1 , bi = 6
n = 10
Ye-Lustig variant algorithm 32 0.03
Modified algorithm 23 0.02

n = 100
Ye-Lustig variant algorithm 29 0.02
Modified algorithm 21 0.02

n = 300
Ye-Lustig variant algorithm 27 0.02
Modified algorithm 20 0.01

n = 500
Ye-Lustig variant algorithm 26 0.01
Modified algorithm 17 0.01

ai = 2 , bi = 4
n = 10
Ye-Lustig variant algorithm 28 0.03
Modified algorithm 17 0.02

n = 100
Ye-Lustig variant algorithm 25 0.03
Modified algorithm 15 0.01

n = 300
Ye-Lustig variant algorithm 23 0.02
Modified algorithm 13 0.01

n = 500
Ye-Lustig variant algorithm 21 0.02
Modified algorithm 11 0.01

ai = 10 , bi = 1
n = 10
Ye-Lustig variant algorithm 32 0.04
Modified algorithm 25 0.02

n = 100
Ye-Lustig variant algorithm 31 0.03
Modified algorithm 23 0.01

n = 300
Ye-Lustig variant algorithm 31 0.03
Modified algorithm 23 0.01

n = 500
Ye-Lustig variant algorithm 28 0.02
Modified algorithm 16 0.01

6 Conclusion

Our modification, we have improved the numerical behavior of the algorithm, reducing the
number of iterations corresponding to the search of an initial strictly feasible dual solution
of the problem (CNLP). It is also possible to applied this idea to the search of an optimal
solution of the (CNLP) problem.
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