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Abstract In this paper, we introduce a concept of semicontinuity on a subset with respect to
the whole space and obtain that upper and lower semicontinuity are not needed in the whole
space when solving equilibrium problems. The well-known Ky Fan’s minimax inequality
theorem is extended and applications to regularization methods for pseudomonotone bilevel
equilibrium problems are given.
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1 Introduction

Let C be a nonempty closed and convex subset of Rn and let φ,ψ : C × C −→ R be two
bifunctions satisfying φ (x, x) = ψ (x, x) = 0, for every x ∈ C . Such bifunctions φ and ψ

are called equilibrium bifunctions. We consider the following bilevel equilibrium problem

find x∗ ∈ S (C, ψ) such that φ
(
x∗, y

) ≥ 0 ∀y ∈ S (C, ψ) BEP

where S (C, ψ) is the solution set of the following equilibrium problem

find x ∈ C such that ψ (x, y) ≥ 0 ∀y ∈ C EP (C, ψ)

This problem encompasses several problems including variational inequalities, mathe-
matical programming, Nash equilibrium, optimization andmany other problems in nonlinear
analysis.
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1638 B. Alleche

Regularization methods which are widely used in convex optimization and variational
inequalities have been recently applied to equilibrium problems. The proximal point method
which is a fundamental regularization technique for handling ill-posed problems has been
recently applied in [22] to monotone bilevel equilibrium problems. Auxiliary problem prin-
ciple and penalty function method as well as many other methods have also been considered
for solving bilevel equilibrium problems, see for example, [8,10,12,16,19,21–23] and the
references therein.

In this paper, we apply a penalty function method for solving pseudomonotone bilevel
equilibrium problems under weak conditions of semicontinuity. First, we deal with results
on existence of solutions for equilibrium problems. Some approaches introduced in [1–3]
concerning continuity of bifunctions will be developed here and adapted to the notion of
semicontinuity. We introduce the notions of upper and lowed semicontinuity on a subset
with respect to the whole space. These notions allow us to state that both upper and lower
semicontinuity in the first and second variable of equilibriumbifunctions are not needed in the
whole space when solving equilibrium problems. This yields generalizations of some results
on the existence of solutions of equilibrium problems including the well-known Ky Fan’s
minimax inequality theorem and the theorem of Bianchi and Schaible for pseudomonotone
equilibrium problems.

In last part of this paper, we give applications of our approach to a penalty functionmethod
for bilevel equilibrium problems and provide an example of a bilevel equilibrium problem
involving a strictly pseudomonotone bifunctionwhich is not stronglymonotone and not upper
semicontinuous in the second variable on the whole space and a pseudomonotone bifunction
which is not strictly pseudomonotone and not upper semicontinuous in the first variable on
the whole space.

2 On semicontinuity of equilibrium bifunctions

In this section, we introduce the notions of lower and upper semicontinuity of bifunctions on
subsets and apply them to obtain generalizations of some old existing results on the existence
of solutions of equilibrium problems.

Let A be a subset of C . We say that a function f : C −→ R is

1. Upper semicontinuous on A with respect to C if for every x ∈ A and every sequence
(xn)n in C converging to x , we have

f (x) ≥ lim sup
n→+∞

f (xn)

where lim supn→+∞ f (xn) = infn supk≥n f (xk).
2. Lower semicontinuous on A with respect to C if for every x ∈ A and every sequence

(xn)n of C converging to x , we have

f (x) ≤ lim inf
n→+∞ f (xn)

where lim infn→+∞ f (xn) = supn infk≥n f (xk).

The following result provides us with sufficient conditions for semicontinuity on a subset
with respect to the whole space and brings to light some tools for constructing examples, see
Example 1 in next section.
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Semicontinuity of bifunctions and applications 1639

Proposition 1 Let f : C −→ R be a function and let A be a subset of C. If every point of A
has a neighborhood in C on which the restriction of f is upper (resp. lower) semicontinuous,
then f is upper (resp. lower) semicontinuous on A with respect to X.

Corollary 1 Let f : C −→ R be a function and let A be a subset of C. If the restriction of
f to an open set in C containing A is upper (resp. lower) semicontinuous, then any extension
of f to the space C is a upper (resp. lower) semicontinuous function on A with respect to C.

Corollary 2 Let f : C −→ R be a function and let A be a subset of C. If f is a upper
(resp. lower) semicontinuous function on A with respect to C, then it is upper (resp. lower)
semicontinuous on every subset of A with respect to C.

The following lemma provides us with some properties of semicontinuous functions on
a subset with respect to the whole space. Also, it shows the role played by this concept of
semicontinuity and it will be used later for solving equilibrium problems.

Lemma 1 Let f : C −→ R be a function, A a subset of C and a ∈ R.

1. If f is a upper semicontinuous function on A with respect to C, then

{x ∈ C | f (x) ≥ a} ∩ A = {x ∈ A | f (x) ≥ a} .

In particular, the traces on A of upper level sets of f are closed in A.
2. If f is a lower semicontinuous function on A with respect to C, then

{x ∈ C | f (x) ≤ a} ∩ A = {x ∈ A | f (x) ≤ a} .

In particular, the traces on A of lower level sets of f are closed in A.

Proof The second statement being similar to the first, we prove only the case of upper
semicontinuity. Let

x∗ ∈ {x ∈ C | f (x) ≥ a} ∩ A.

Let (xn)n be a sequence in the set {x ∈ C | f (x) ≥ a} converging to x∗. Since x∗ ∈ A, then
by upper semicontinuity of f on A with respect to C , we have

f
(
x∗) ≥ lim sup

n→+∞
f (xn) ≥ a.

Thus, x∗ ∈ {x ∈ A | f (x) ≥ a}. The converse holds from the fact that

{x ∈ A | f (x) ≥ a} = {x ∈ C | f (x) ≥ a} ∩ A

which is obvious.

In the sequel, for a bifunction θ : C ×C −→ R and y ∈ C , we define the following sets:

θ+ (y) = {x ∈ C | θ (x, y) ≥ 0} and θ− (y) = {x ∈ C | θ (y, x) ≤ 0} .

Clearly, x∗ ∈ C is a solution of the equilibrium problem

find x∗ ∈ C such that θ
(
x∗, y

) ≥ 0 ∀y ∈ C EP (C, θ)

if and only if x∗ ∈
⋂

y∈C θ+ (y).

The following result extends the well-known Ky Fan’s minimax inequality theorem (see
[15,18,20]) for upper semicontinuous bifunctions on the compact subset of coercivity prop-
erty with respect to C .

123



1640 B. Alleche

Theorem 1 Let θ : C × C −→ R be an equilibrium bifunction and suppose the following
assumptions hold:

1. θ (x, x) = 0, for every x ∈ C;
2. θ is quasiconvex in its second variable on C;
3. there exists a compact subset K of C and y0 ∈ K such that

θ (x, y0) < 0 ∀x ∈ C\K ;
4. θ is upper semicontinuous in its first variable on K with respect to C.

Then, the equilibrium problem

find x∗ ∈ C such that θ
(
x∗, y

) ≥ 0 ∀y ∈ C

has a solution.

Proof By quasiconvexity of θ in its second variable and since θ+ (y0) is contained in the

compact K , then the conditions of Ky Fan Lemma are satisfied for the family
(
θ+ (y)

)

y∈C
(see for example, [2,3,6,14,15,17,18]). That is, for every y ∈ C , θ+ (y) are nonempty and
closed, θ+ (y) is compact and the convex hull of every finite subset {y1, . . . , yn} of C is
contained in

⋃n
n=1 θ+ (y). Then, we have

⋂

y∈C
θ+ (y) 
= ∅.

In the other hand, we have

⋂

y∈C
θ+ (y) =

⎛

⎝
⋂

y∈C
θ+ (y)

⎞

⎠ ∩ K =
⋂

y∈C

(
θ+ (y) ∩ K

)
.

By Lemma 1, we have

θ+ (y) ∩ K = θ+ (y) ∩ K ∀y ∈ C.

Thus,
⋂

y∈C
θ+ (y) =

⋂

y∈C
θ+ (y) 
= ∅

which completes the proof.

Remark 1 The condition (3) in the above theorem is known in the literature under the name
of coercivity property.

The Minty Lemma for equilibrium problems deals in particular with properties such as
compactness and convexity of the solution sets of equilibrium problems (see for example,
[20]).

It is easily seen that under assumptions of Theorem 1, the solution set S (C, θ) of the
equilibrium problem (EP (C, θ)) is a nonempty compact set. For additional properties, let
us recall the following concepts of monotonicity for bifunctions.

A bifunction θ : C × C −→ R is called

1. strongly monotone on C with modulus β if

θ (x, y) + θ (y, x) ≤ −β‖x − y‖2, ∀x, y ∈ C,

123



Semicontinuity of bifunctions and applications 1641

2. monotone on C if

θ (x, y) + θ (y, x) ≤ 0, ∀x, y ∈ C,

3. strictly pseudomonotone on C if

θ (x, y) ≥ 0 ⇒ θ (y, x) < 0, ∀x, y ∈ C, x 
= y,

4. pseudomonotone on C if

θ (x, y) ≥ 0 ⇒ θ (y, x) ≤ 0, ∀x, y ∈ C.

Every strongly monotone bifunction is both monotone and strictly pseudomonotone and
every strictly pseudomonotone bifunction θ is pseudomonotone provided that θ (x, x) =
0,∀x ∈ C .

Remark 2 If θ : C×C −→ R is a strictly pseudomonotone bifunction, then for every subset
A of C , the following equilibrium problem

find x∗ ∈ A such that θ
(
x∗, y

) ≥ 0 ∀y ∈ A

has at most one solution (see [6, Theorem 4.2]).

Proposition 2 Under assumptions of Theorem 1, and if in addition

1. θ is pseudomonotone on C and
2. θ is explicitly quasiconvex in its second variable on C,

then

⋂

y∈C
θ+ (y) =

⎛

⎝
⋂

y∈C
θ− (y)

⎞

⎠ ∩ K .

Thus, if in addition K is convex, then the solution set S (C, θ) is convex.

Proof By pseudomonotonicity, we have

θ+ (y) ⊂ θ− (y) .

Since
⋂

y∈C θ+ (y) ⊂ K , then

⋂

y∈C
θ+ (y) ⊂

⎛

⎝
⋂

y∈C
θ− (y)

⎞

⎠ ∩ K .

Now, by explicit quasiconvexity (see [3]), we obtain
⎛

⎝
⋂

y∈C
θ− (y)

⎞

⎠ ∩ K ⊂
⋂

y∈C
θ+ (y) .

Finally, by quasiconvexity, the set θ− (y) is convex, for every y. Thus, the solution set S (C, θ)

is convex whenever K is convex.
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1642 B. Alleche

As well-known in the literature, the equilibrium problem (EP (C, θ)) can be also solved
when the bifunction θ is not upper semicontinuous on its first variable. In this case some
additional conditions are needed. The following result extends (under the settings of Rn)
some results of [3,6] on existence of solutions for pseudomontone equilibrium problems.
Our restriction to R

n is motivated by the fact that the proof of Lemma 1 is based on the
Fréchet-Urysohn property which is of course verified by R

n . A space verifies the Fréchet-
Urysohn property if a point is in the closure of a subset if and only if it is a limit of a sequence
in the subset (see [4,13]).

Following [2,3], recall that a function f : C −→ R is said to be upper hemicontinuous
on A with respect to C if for every x ∈ C and x ∈ A, there exists a sequence (xn)n in the
segment between x and x such that limn→+∞ xn = x and

f (x) ≥ lim sup
n→+∞

f (xn).

Theorem 2 Let θ : C × C −→ R be an equilibrium bifunction and suppose the following
assumptions hold:

1. θ (x, x) = 0, for every x ∈ C;
2. θ is pseudomonotone on C;
3. there exists a compact subset K of C and y0 ∈ K such that

θ (x, y0) < 0 ∀x ∈ C\K ;
4. θ is upper hemicontinuous in its first variable on K with respect to C;
5. θ is explicitly quasiconvex in its second variable on C;
6. θ is lower semicontinuous in its second variable on K with respect to C.

Then, the equilibrium problem

find x∗ ∈ C such that θ
(
x∗, y

) ≥ 0 ∀y ∈ C

has a solution.

Proof By Ky Fan Lemma, we have
⋂

y∈C
θ+ (y) 
= ∅

and since θ+ (y0) is contained in the compact K , then
⋂

y∈C
θ+ (y) =

⋂

y∈C

(
θ+ (y) ∩ K

)
.

Since θ is lower semicontinuous in its second variable on K with respect to C , then by
applying Lemma 1, the set θ− (y)∩K is closed, for every y ∈ C . From pseudomonotonicity,
we have θ+ (y) ⊂ θ− (y), for every y ∈ C . It follows that

⋂

y∈C

(
θ+ (y) ∩ K

)
⊂

⋂

y∈C

(
θ− (y) ∩ K

)
.

By [3, Lemma 1.3], we have
⋂

y∈C

(
θ− (y) ∩ K

) ⊂
⋂

y∈C
θ+ (y) .
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Semicontinuity of bifunctions and applications 1643

This yields,
⋂

y∈C
θ+ (y) =

⋂

y∈C
θ+ (y)

and completes the proof.

As in Proposition 2, let us point out the following result concerning the solution sets of
equilibrium problems.

Proposition 3 Under assumptions of Theorem 2, the solution set S (C, θ) of the equilibrium
problem (EP (C, θ)) is a nonempty compact set. If in addition K is convex, then S (C, θ) is
convex.

Before closing this section, let us point out that among various generalizations of the
notion of semicontinuity, there exists the notion of transfer semicontinuity introduced in [24]
and used by several authors. The notion of transfer semicontinuity plays an important role
in the existence of solutions of different kinds of equilibrium problems, see for example
[3,17,24] and the references therein.

Here is a discussion in order to compare our notion of semicontinuity on a subset with
respect to the whole space with that of transfer semicontinuity.

Let X andY be twoHausdorff topological spaces. Recall that a bifunction θ : X×Y −→ R

is said to be transfer lower semicontinuous in its second variable if, for every x, y ∈ X × Y
with θ (x, y) > 0, there exist x ′ ∈ X and a neighborhood V (y) of y in Y such that

�
(
x ′, z

)
> 0 ∀z ∈ V (y) .

A bifunction θ : X × Y −→ R is said to be transfer upper semicontinuous in its second
variable if −θ is transfer lower semicontinuous in its second variable.

It is well-known and easy to see that every upper (resp. . lower) semicontinuous bifunction
in the second variable is a transfer upper (resp. . lower) semicontinuous bifunction in the
second variable.

As a punctual definition, we say that θ : X ×Y −→ R is a transfer lower semicontinuous
bifunction in its second variable at a point y ∈ Y if for every x ∈ X with θ (x, y) > 0, there
exist x ′ ∈ X and a neighborhood V (y) of y in Y such that

�
(
x ′, z

)
> 0 ∀z ∈ V (y) .

We say that a bifunction θ : X × Y −→ R is transfer upper semicontinuous in its second
variable at a point y ∈ Y if −θ is transfer lower semicontinuous in its second variable at
y ∈ Y .

It is easily seen that θ : X × Y −→ R is a transfer upper (resp. . lower) semicontinuous
bifunction in its second variable if and only if it is a transfer upper (resp. . lower) semicon-
tinuous bifunction in its second variable at every point y ∈ Y .

Now, we consider our settings of X = Y = C , a nonempty closed and convex subset of
R
n , and let A be a subset of C . By analogy, we say that θ : C ×C −→ R is a transfer upper

(resp. . lower) semicontinuous bifunction in its second variable on A with respect to C if it
is a transfer upper (resp. . lower) semicontinuous bifunction in its second variable at every
point y ∈ A.

By using standard arguments as in Lemma 1, we can easily prove that if θ : C ×C −→ R

is a upper (resp. . lower) semicontinuous bifunction in its second variable on A with respect
toC , then θ is a transfer upper (resp. . lower) semicontinuous bifunction in its second variable
on A with respect to C .
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1644 B. Alleche

Note that there exists in the literature a notion of transfer semicontinuity on a subset
which has been introduced in [17] (see also [3, Theorem 2.4]) as follows. A bifunction
θ : C × C −→ R is said to be a transfer upper (resp. . lower) semicontinuous bifunction
in its second variable on a subset A of C if the restriction bifunction θ : A × A −→ R is
transfer upper (resp. . lower) semicontinuous in the second variable.

Curiously, the notion of transfer semicontinuity seems to be not hereditary by restriction,
that is, if θ : C × C −→ R is a transfer upper (resp. . lower) semicontinuous bifunction
in its second variable, then nothing can guarantee that θ : A × A −→ R is transfer upper
(resp. . lower) semicontinuous in its second variable. This is because x ′ which is required
in A may exist only in X . It follows that the notions of being transfer upper (resp. . lower)
semicontinuous in the second variable on a subset with respect to the whole space is dif-
ferent from that of being a transfer upper (resp. . lower) semicontinuous bifunction in the
second variable as a restriction bifunction. Also, the notions of being a upper (resp. . lower)
semicontinuous bifunction in the second variable on a subset with respect to the whole space
and that of being a transfer upper (resp. . lower) semicontinuous bifunction in the second
variable as a restriction bifunction are different and both are important when dealing with
existence of solutions of equilibrium problems, see [3,17,24]. See also [9, Lemma 2] and
[11, Lemma 2.3] for further related results.

To our opinion, more investigations are necessary in order to bring to light the exact role
played in the various results concerning existence of solutions of equilibrium problems by
each one of these two notions of semicontinuity on a subset with respect to the whole space
and that of transfer semicontinuity on a subset. Although, these two notions seem to be similar
but different, maybe they include a common property which is the key tool for existence of
solutions of equilibrium problems.

3 A penalty function method for bilevel equilibrium problems

In this section, we use a penalty function method for solving bilevel equilibrium problems
involving upper semicontinuous bifunctions in their first variable on a subset of coercivity
property with respect to C .

For ε > 0, define the bifunction ϕε : C × C −→ R by

ϕε (x, y) = ψ (x, y) + εφ (x, y) .

Let (εn)n be a sequence of positive numbers. For every n, we consider the penalized
equilibrium problem PEP

(
C, ϕεn

)
defined by

find x∗
n ∈ C such that ϕεn

(
x∗
n , y

) ≥ 0 ∀y ∈ C
(
PEP

(
C, ϕεn

))

where its set of solutions is denoted by S
(
C, ϕεn

)
. Note that whenφ orψ is pseudomonotone,

the penalized equilibrium problem
(
PEP

(
C, ϕεn

))
, in general, does not inherit any

monotonicity property from φ andψ . Thus, Theorem 1 is more adapted for solving penalized
equilibrium problems.

The following result has been proved in [12] under some additional conditions including
strongmonotonicity of the bifunctionφ, upper semicontinuity ofφ andψ in their first variable
on C and lower semicontinuity of φ and ψ in their second variable on C .

Theorem 3 Let K be a subset of C and (εn)n is a sequence of positive numbers such that
limn→+∞ εn = 0. Suppose that the following assumptions hold:

1. φ and ψ are pseudomonotone on C;
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Semicontinuity of bifunctions and applications 1645

2. φ and ψ are convex in the second variable on C;
3. φ and ψ are upper semicontinuous in the first variable on K with respect to C.

Then any cluster point x∗ ∈ K of a sequence (xn)n with xn ∈ S
(
C, ϕεn

)
for every n, is

a solution to the original bilevel equilibrium problem (BEP). If in addition, the following
assumptions hold:

1. φ is strictly pseudomonotone;
2. K is compact and there exists y0 ∈ C such that φ (x, y0) < 0, for every x ∈ C\K;
3. there exists A ⊂ K such that ψ (x, y0) < 0, for every x ∈ C\A.
Then for every n, the penalized problem

(
PEP

(
C, ϕεn

))
is solvable, and any sequence (xn)n

with xn ∈ S
(
C, ϕεn

)
for every n, converges to the unique solution of the bilevel equilibrium

problem (BEP).

Proof Let (xn)n be a sequence such that xn ∈ S
(
C, ϕεn

)
admitting x∗ ∈ K as a cluster point.

Without loss of generality, we may assume that (xn)n converges to x∗. Then for every n, we
have

ψ (xn, y) + εnφ (xn, y) ≥ 0 ∀y ∈ C.

Let z ∈ S (C, ψ). By pseudomonotonicity of ψ , we have ψ (xn, z) ≤ 0. Since

ψ (xn, z) + εnφ (xn, z) ≥ 0,

we have,

εnφ (xn, z) ≥ −ψ (xn, z) ≥ 0

which implies that φ (xn, z) ≥ 0. Letting n go to +∞, we obtain by upper semicontinuity of
φ in its first variable on K with respect to C that φ (x∗, z) ≥ 0. Thus,

φ
(
x∗, z

) ≥ 0 ∀z ∈ S (C, ψ) .

To complete the first part of the theorem, it remains to prove that x∗ ∈ S (C, ψ). Again by
upper semicontinuity of φ and ψ in their first variable on K with respect to C and since

ψ (xn, y) + εnφ (xn, y) ≥ 0 ∀y ∈ C,

we have

ψ
(
x∗, y

) ≥ 0 ∀y ∈ C.

Now, we prove the second part of the theorem. Note that for every n,

ψ (xn, y0) + εnφ (xn, y0) < 0 ∀x ∈ C\K .

Thus, by Theorem1, the problem
(
PEP

(
C, ϕεn

))
is solvable and its set of solutions S

(
C, ϕεn

)

is contained in K , for every n. Let (xn)n be a sequence such that xn ∈ S
(
C, ϕεn

)
, for every n.

Then, the sequence (xn)n has a cluster point x
∗ ∈ K and by the first part of the theorem, x∗ is

a solution to the bilevel equilibrium problem (BEP). Since φ is strictly pseudomonotone, the
bilevel equilibrium problem (BEP) has a unique solution. It follows that every subsequence
of the sequence (xn)n admits x∗ as a cluster point. Thus, the sequence (xn)n converges to the
unique solution x∗ of the bilevel equilibrium problem (BEP).
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1646 B. Alleche

Remark 3 When φ is strongly monotone on C , and convex and lower semicontinuous in its
second variable, then by [12, Lemma 2.6], there exists a compact subset A such that

ϕεn (x, y0) < 0, ∀x ∈ C\(K ∪ A),∀n.

In this case, we need φ and ψ in the above theorem to be upper semicontinuous on K ∪ A
with respect to C .

Let us point out in this section that techniques related to different kinds of regularization
methods for solving equilibrium problems abound in the literature. In this direction, we men-
tion that the approach of penalty function method for solving bilevel equilibrium problems
used in Theorem 3 has been considered earlier in [8, Sect. 6] under the name of Viscosity
Principle for Equilibrium Problems with ψ is monotone and φ is not necessarily strictly
pseudomonotone. In this case, the bilevel equilibrium problem (BEP) may not be uniquely
solvable.

As well-known, the monotonicity is an important concept which is stronger than
pseudomontonicity and then, the other conditions involved for existence of solutions of equi-
librium problems can be weaker in the presence of monotonicity than those in the presence
of pseudomonotonicity. As a comparison with [8, Theorem 6.1 and Theorem 6.2], not only
Theorem 3 is obtained under weakened conditions of semicontinuity on subsets with respect
to the whole space, but also we avoid some conditions such as the lower semicontinuity in
the second variable. However, the intriguing presence of upper hemicontinuity in the first
variable of the bifunctionψ in [8, Theorem 6.1] rather than upper semicontinuity is very inter-
esting to investigate. By similar techniques as in Theorem 2, it could be possible to replace
upper hemicontinuity in the first variable of the bifunction ψ in [8, Theorem 6.1] by upper
hemicontinuity in the first variable on the set of coercivity property which is introduced in [8,
Theorem 6.1] with respect to the whole space. On the other hand, it is not clear whether upper
hemicontinuity can be replaced by upper hemicontinuity on the subset of coercivity property
with respect to the whole space in [8, Theorem 4.4] which is useful to obtain existence of
solutions of the associated penalized equilibrium problems called approximate problems in
[8].

As a conclusion of this short discussion, it seems that our approach based on the notion
of semicontinuity on a subset with respect to the whole space can be used with different
techniques employed in the literature for solving equilibriumproblems. Further investigations
are necessary to know all these techniques where our approach of weakening semicontinuity
can be applied jointly. TheViscosity Principle for EquilibriumProblems studied in [8] reveals
a priority interest to these investigations since it is stated under the more general setting of
real topological Hausdorff vector spaces.

Now, we turn to constructing examples in relation with our techniques of weakening
semicontinuity. There are in the literature some well-known examples of pseudomonotone
equilibrium bifunctions, see for example, [3,5–7] and the references therein. With slight
modification of them, we construct here the following bilevel equilibrium problem which
provides us with two bifunctions φ and ψ satisfying all the conditions of Theorem 3 without
being upper semicontinuous in their first variable on the whole space C .

Example 1 Let C = R, K = [−1,+1] and y0 = 0.

– Define the bifunction φ : C × C −→ R by

φ (x, y) =
{

y4−x4

65 if x = 2,

y4 − x4 otherwise.
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Semicontinuity of bifunctions and applications 1647

Clearlyφ is strictly pseudomonotone onC ,φ (x, x) = 0, for every x ∈ C andφ (x, 0) < 0,
for every x /∈ [−1,+1].

To see that φ is convex in its second variable, let x ∈ C be fixed.

1. If x = 2, then φ (2, y) = y4−16
65 , for every y ∈ C . The function y �→ y4−16

65 is convex on
C .

2. If x 
= 2, then φ (x, y) = y4 − x4, for every y ∈ C . The function y �→ y4 − x4 is convex
on C .

To see that φ is upper semicontinuous in its first variable on [−1,+1] with respect to C ,
let y ∈ C be fixed and denote by f : C −→ R the function defined by

f (x) = φ (x, y) .

The restriction f|U of f to the open set U = ]−∞, 2[ containing [−1,+1] is defined
by f|U (x) = y4 − x4 which is continuous on U and then by Proposition 1, f is upper
semicontinuous on [−1,+1] with respect to C .

Finally, the bifunction φ is not upper semicontinuous in its first variable on C . Indeed,
consider y = 3 for example. Let (xn)n be a converging sequence to 2 such that xn 
= 2, for
every n. We have

φ (2, 3) = 1 < 65 = lim sup
n→+∞

φ (xn, 3).

– Now, define the bifunction ψ : C × C −→ R by

ψ(x, y) =

⎧
⎪⎨

⎪⎩

(x + 2)(y − x) if x ∈] − ∞,−2[,
(x + 1)(y − x) if x ∈ [−2,−1[,
max(x, 0)(y − x) otherwise.

Clearly, ψ (x, x) = 0, for every x ∈ C and ψ (x, 0) < 0, for every x /∈ [−1,+1].
To verify that ψ is pseudomonotone on C , let x, y ∈ C be such that ψ (x, y) ≥ 0.

1. If x ∈ ]−∞,−2[, then ψ (x, y) = (x + 2) (y − x). It follows that y − x ≤ 0 and then
y < −2. Thus ψ (y, x) = (y + 2) (x − y) ≤ 0.

2. If x ∈ [−2,−1[, then y − x ≤ 0 and then y < −1. If y ∈ [−2,−1[, then ψ (y, x) =
(y + 1) (x − y) ≤ 0, and if y ∈ ]−∞,−2[, then ψ (y, x) = (y + 2) (x − y) ≤ 0.

3. If x ≥ −1, then y ≥ x . It follows that y ≥ −1 and thenψ (y, x) = max (y, 0) (x − y) ≤
0.

Clearly ψ is convex in its second variable on C and upper semicontinuous in its first
variable on [−1,+1] with respect to C .

To see that ψ is not upper semicontinuous in its first variable on C , consider y > −2 and
take a sequence (xn)n in ]−∞,−2[ converging to −2. We have

ψ (−2, y) = − (y + 2) < 0 = lim sup
n→+∞

(xn + 2) (y + 2) = lim sup
n→+∞

ψ (xn, y).

Note that ψ is not lower semicontinuous in its first variable on C too. To see this fact,
consider y < −2 and take a sequence (xn)n in ]−∞,−2[ converging to −2. We have

ψ (−2, y) = − (y + 2) > 0 = lim inf
n→+∞ (xn + 2) (y + 2) = lim inf

n→+∞ ψ (xn, y).

Finally, let us point out that ψ is not strictly pseudomonotone on C since ψ (x, y) =
ψ (y, x) = 0 whenever x, y ∈ [−1, 0].

123



1648 B. Alleche

In conclusion, the results and characterizations obtained in this paper about the notion of
semicontinuity on a subset with respect to the whole space provides us with some tools to
verify and construct examples of bifunctions which are upper (resp. . lower) semicontinu-
ous on a subset with respect to the whole space without being upper (resp. . lower) on the
whole space. On the other hand, the last example shows explicitly that even under additional
conditions such as monotonicity and convexity, we can construct bifunctions which are semi-
continuous on a subset with respect to the whole space without being semicontinuous on the
whole space.

In this paper, we have also investigated equilibrium problems and obtained generalizations
of some old existing results of Ky Fan, and Bianchi and Schaible about existence of solutions
of equilibrium problems. As an application, we have stated in the last section of this paper that
our techniques of weakening semicontinuity to the subset of coercivity property with respect
to the whole space can be applied to regularization methods for solving bilevel equilibrium
problems.
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