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Abstract In this work, we study the viscous dissipation and thermal-diffusion effects on
natural convection from a vertical plate embedded in a fluid saturated non-Darcy porous
medium.Thenon-Newtonianbehaviour of fluid is characterizedby the generalizedpower-law
model. The governing partial differential equations are transformed into a system of ordinary
differential equations using a local non-similarity solution and the resulting boundary value
problem is solved using a novel successive linearisation method (SLM). The accuracy of the
SLM has been established by comparing the results with the shooting technique. The effects
of physical parameters on heat and mass transfer coefficients for the convective motion of
the power-law liquid are presented both qualitatively and quantitatively. The results show
that the Nusselt number is reduced by viscous dissipation and enhanced by the Soret number
but the Sherwood number increases with viscous dissipation and decreases with the Soret
number. An increasing viscosity enhances heat and mass transfer coefficients in both cases
of aiding buoyancy and opposing buoyancy.
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1 Introduction

Recent decades have seen a spike in the number of studies devoted to the study of natural
convection in fluid flows through porous media. This is an interesting and important subject
in the area of heat transfer with wide applications in various fields such as geophysics,
aerodynamic extrusion of polymer sheets, food processing and the manufacture of plastic
films. The problem of natural convection and heat transfer in porous media have been carried
out on vertical, inclined and horizontal surfaces by, among others, Chamkha and Khaled [4]
who investigated the heat and mass transfer through mixed convection from a vertical plate
embedded in a porous medium.

The problem of natural convection in a non-Newtonian fluid over a vertical surface in
porous media was studied by Chen and Chen [5]. This was extended to a horizontal cylinder
and a sphere in Chen and Chen [6]. Ching [9] studied heat and mass transfer from a vertical
plate with variable wall heat and mass fluxes in a porous medium saturated with a non-
Newtonian power-law fluid. El-Hakiem [16] investigated the problem of mixed convective
heat transfer from a horizontal surface with variable wall heat flux. The horizontal surface
was embedded in a porousmedium saturated with an Ostwald-de-Waele type non-Newtonian
fluid. Grosan et al. [17] investigated free convection from a vertical flat plate saturated with a
power-lowNewtonian fluid.Nakayama et al. [36] discussed the problemof natural convection
over a non-isothermal body of arbitrary shape embedded in a porousmediumfilledwith a non-
Newtonian fluid. Similarity and integral solutions were obtained by Nakayama and Koyama
[34,35] for free convection along a vertical platewhichwas immersed in a thermally stratified,
fluid-saturated porous medium with variable wall temperature. Review of the extensive work
in this area is available in books by Nield and Bejan [39], Ingham and Pop [21], Pop and
Igham [41].

The effect of Soret and/or Dufour numbers on heat and mass transfer in porous medium
with variable properties has been investigated by many researchers. Tsai and Huang [47]
obtained the solutions for heat and mass transfer coefficients for natural convection along a
vertical surface with variable heat fluxes embedded in a porous medium. Thermal-diffusion
(Soret) and diffusion-thermo (Dufour) effects were assumed to be significant. The effect of
Soret and Dufour on free convection from a vertical plate with variable wall heat and mass
fluxes in a porous medium saturated with a non-Newtonian power law fluid was investigated
by Ching [7]. Partha et al. [40] studied the Soret and Dufour effects in a non-Darcy porous
medium. Narayana and Murthy [37,38] investigated the Soret and Dufour effects on free
convection from a horizontal flat plate in doubly stratified Darcy porous media. Cheng [10]
investigated the effect of Soret and Dufour on heat and mass transfer from a vertical cone in a
porous medium with a constant wall temperature and concentration. Cheng [11] investigated
the effect of Soret and Dufour on free convection boundary layer flow over a vertical cylinder
in a porous medium with constant wall temperature and concentration. Khelifa et al. [2] used
a power law model to characterize the non-Newtonian fluid behavior for natural convection
in a porous cavity filled with a binary solution. Hajmohammadi andNourazar [18] studied the
insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids.
The effects of a thin gas layer exerts on the hydrodynamic aspects of power law liquid in a
radial Couette flow between two cylinders has been investigated by Hajmohammadi et al.
[19].

The semi analytical methods have been used and applied successfully to find exact and
approximate solutions of linear and non-linear differential equations. The efficiency of ADM
and DTM has been considered by Hajmohammadi and Nourazar [20] for solving a charac-
teristic value problem. They showed that DTM handles the solution very conveniently and

123



Natural convection from a vertical plate 1497

accurately. The conjugate forced convection heat transfer from a good conducting plate with
temperature-dependent thermal conductivity was studied byHajmohammadi et al. [20]. They
concluded that in case of the conjugate heat transfer, the temperature distribution of the plate
is flatter than the one in the nonconjugate case. The variational iteration method (VIM) has
been applied on Green’s functions and fixed point iterations perspective by Khuri and Sayfy
[24].

This study aims to investigate the viscous dissipation and the Soret effect on natural
convection from a vertical plate immersed in a non-Darcy porous medium saturated with
a non-Newtonian power-law fluid. The viscosity variation is modelled using Reynolds’ law
[29,42], which assumes that the viscosity decreases exponentially with temperature. Here we
have considered viscous dissipation non-Newtonianfluidwhen theflow is laminar because the
viscosity is high. The governing equations were solved using a novel successive linearisation
method (see Awad et al. [1], Makukula et al. [27], Motsa and Sibanda [31] and Motsa et
al. [32,33]). Makukula et al. [25] solved the classical von Karman equations governing
the boundary layer flow induced by a rotating disk using the spectral homotopy analysis
method and successive linearisation method (SLM). They showed that the SLM gives better
accuracy at lower orders than the spectral homotopy analysis method. Other studies such
as [26,28,43] used the SLM to solve different boundary value problems and showed by
comparison with numerical techniques that the successive linearisation method is accurate,
gives rapid convergence and is thus superior to some existing semi-analytical methods such
as the Adomian decomposition method, the Laplace transform decomposition technique, the
variational iteration method and the homotopy perturbation method. The SLM method can
be used in place of traditional numerical methods such as finite differences, Runge–Kutta
and shooting methods in solving non-linear boundary value problems.

2 Mathematical formulation

Consider two-dimensional steady boundary layer flow over a vertical plate embedded in a
non-Darcy porous medium saturated with a non-Newtonian power-law fluid with variable
viscosity. The x-coordinate is measured along the plate from its leading edge and the y-
coordinate normal to the plate. The plate is maintained at a constant temperature Tw and
concentration Cw. The ambient fluid temperature is T∞ and the concentration is C∞. The
governing equations of continuity, momentum, energy and concentration under the Boussi-
nesq approximations may be written as (see [44])

∂u

∂x
+ ∂v

∂y
= 0, (1)

∂un

∂y
+ ∂

∂y

(
ρ∞bK ∗

μ
u2

)
= ∂

∂y

(
ρ∞K ∗g

μ
[βT (T − T∞) + βC (C − C∞)]

)
(2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ μ

ρ∞K ∗cp
u

(
un + bρ∞K ∗

μ
u2

)
(3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ D1

∂2T

∂y2
, (4)

where u and v are the velocity components along the x and y-directions respectively, n
is the power-law index such that n < 1 describes a pseudoplastic, n = 1 represents a
Newtonian fluid and n > 1 is dilatant fluid, T and C are the fluid temperature and the
concentration respectively, ρ∞ is the reference density, g is the acceleration due to gravity,
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α is the effective thermal diffusivity, D is the effective solutal diffusivity, βT and βC are
the thermal and concentration expansion coefficients, respectively, cp is the specific heat
at constant pressure, D1 quantifies the contribution to the mass flux due to temperature
gradient, b is the empirical constant associated with the Forchheimer porous inertia term,
μ is the consistency index of power law fluid and K ∗ is the modified permeability of the
flow of the non-Newtonian power-law fluid. The modified permeability K ∗ is defined (see
Christopher and Middleman [12] and Dharmadhikari and Kale [13]) as;

K ∗ = 1

ct

(
nϕ

3n + 1

)n (
50K

3ϕ

) n+1
2

with K = ϕ3d2

150(1 − ϕ)2

where ϕ is the porosity of the medium, d is the particle size and the constant ct is given by

ct =
⎧⎨
⎩

25
12 Christopher and Middleman [12]

3
2

(
8n

9n+3

)n (
10n−3
6n+1

) (
75
16

)3(10n−3)/(10n+11)
Dharmadhikari and Kale [13]

For n = 1, ct = 25
12 .

The boundary conditions are

v = 0, T = Tw, C = Cw at y = 0,

u → 0, T → T∞, C → C∞ as y → ∞.

}
(5)

The system of non-similar partial differential equations can be simplified by using the stream
function ψ where

u = ∂ψ

∂y
and v = −∂ψ

∂x
, (6)

together with the following transformations

η = y

x
Ra1/2x ψ(ε, η) = αRa1/2x f (ε, η) θ(ε, η) = T−T∞

Tw−T∞
and φ(ε, η) = C − C∞

Cw − C∞
(7)

where Rax = ( x
α

) [ ρ∞K ∗gβT (Tw−T∞)
μ∞

]1/n is the local Rayleigh number and ε = gβT x
cp

is the
viscous dissipation parameter. The variation of viscosity with the dimensionless temperature
is written in the form (see [15,29])

μ(θ) = μ∞e−γ θ , (8)

where γ is a non-dimensional viscosity parameter that depends on the nature of the fluid, and
μ∞ is the ambient viscosity of the fluid. Using (7), the momentum, energy and concentration
Eqs. (2)–(4) reduce to the following system of equations;

n f ′n−1 f ′′ + Greγ θ
(
2 f ′ f ′′ + γ θ ′ f ′2) = eγ θ

[
θ ′(γ θ + 1) + (γ θ ′φ + φ′)

]
, (9)

θ ′′ + 1

2
f θ ′ + εe−γ θ f ′ ( f ′n + Greγ θ f ′2) = ε

(
f ′ ∂θ

∂ε
− θ ′ ∂ f

∂ε

)
, (10)

Le−1φ′′ + 1

2
f φ′ + Srθ ′′ = ε

(
f ′ ∂φ

∂ε
− φ′ ∂ f

∂ε

)
. (11)

The transformed boundary conditions are

f (ε, η) + 2ε ∂ f (ε,η)
∂ε

= 0, θ(ε, η) = 1, φ(ε, η) = 1 at η = 0

f ′(ε, η) → 0, θ(ε, η) → 0, φ(ε, η) → 0 as η → ∞

}
. (12)
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where Gr∗ = b
(
K ∗2ρ2∞[gβT (Tw−T∞)]2−n

μ2∞

)1/n
is the modified Grashof number, Le = α

D is the

Lewis number, Sr = D1(Tw−T∞)
α(Cw−C∞)

is the Soret number and  = βC (Cw−C∞)
βT (Tw−T∞)

is the buoyancy

term (where  > 0 represents aiding buoyancy and  < 0 represents opposing buoyancy).
The primes in Eqs. (9)–(11) represent differentiation with respect to the variable η.

Integrating Eq. (9) once and using the boundary conditions (12) gives

f ′n + Greγ θ f ′2 = (θ + φ)eγ θ . (13)

Substituting (13) in (9) and (10) we obtain
(
n f ′n−1 + 2Gr∗eγ θ f ′) f ′′ = (

θ ′ + φ′) eγ θ + γ θ ′ f ′n, (14)

θ ′′ + 1

2
f θ ′ + ε f ′(θ + φ) = ε

(
f ′ ∂θ

∂ε
− θ ′ ∂ f

∂ε

)
. (15)

The skin friction, heat and mass transfer coefficients can be respectively obtained from

Re2x
2Pr Ra3/2x

C f = f ′′(ε, 0)

Nux/Ra
1/2
x = −θ ′(ε, 0)

Shx/Ra
1/2
x = −φ′(ε, 0)

⎫⎪⎪⎬
⎪⎪⎭

. (16)

3 Method of solution

Equations (11), (14) and (15) are solved subject to the boundary conditions (12). We first
apply a local similarity and local non-similarity method (see [30,45]) and for the first level
of truncation, we neglect the terms multiplied by ε ∂

∂ε
. This is particularly appropriate when

ε � 1. Thus the system of equations obtained is given by:
(
n f ′n−1 + 2Gr∗eγ θ f ′) f ′′ = (

θ ′ + φ′) eγ θ + γ θ ′ f ′n, (17)

θ ′′ + 1

2
f θ ′ + ε f ′(θ + φ) = 0, (18)

Le−1φ′′ + 1

2
f φ′ + Srθ ′′ = 0. (19)

The corresponding boundary conditions are

f (ε, η) = 0, θ(ε, η) = 1, φ(ε, η) = 1 at η = 0,

f ′(ε, η) → 0, θ(ε, η) → 0, φ(ε, η) → 0 as η → ∞,

}
(20)

For the second level of truncations, we introduce the following auxiliary variables g = ∂ f
∂ε
,

h = ∂θ
∂ε

and k = ∂φ
∂ε

and recover the neglected terms at the first level of truncation. Thus, the
governing equations at the second level are given by

(
n f ′n−1 + 2Gr∗eγ θ f ′) f ′′ = (

θ ′ + φ′) eγ θ + γ θ ′ f ′n, (21)

θ ′′ + 1

2
f θ ′ + ε f ′(θ + φ) = ε( f ′h − θ ′g), (22)

Le−1φ′′ + 1

2
f φ′ + Srθ ′′ = ε( f ′k − φ′g), (23)
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and the corresponding boundary conditions are

f (ε, η) + 2ε ∂ f (ε,η)
∂ε

= 0, θ(ε, η) = 1, φ(ε, η) = 1 at η = 0,

f ′(ε, η) → 0, θ(ε, η) → 0, φ(ε, η) → 0 as η → ∞,

}
. (24)

The third level can be obtained by differentiating Eqs. (21)–(23) with respect to ε and
neglecting the terms ∂g

∂ε
, ∂h

∂ε
and ∂k

∂ε
to get the set of equations

(
n f ′n−1 + 2Gr∗eγ θ f ′) g′′ + [

n(n − 1) f ′n−2g′ + 2Gr∗eγ θ (g′ + γ h f ′)
]
f ′′

− [
γ h(θ ′ + φ′) + h′ + k′] eγ θ − γ

(
nθ ′g′ f ′n−1 + f ′nh′) = 0, (25)

h′′ + 1

2
( f h′ + 3gθ ′) − f ′h + ε f ′(h + k) + (θ + φ)(εg′ + f ′) + ε(h′g − g′h) = 0,

(26)

Le−1k′′ + 1

2
( f k′ + 3gφ′) − f ′k + Srh′′ + ε(k′g − g′k) = 0. (27)

The corresponding boundary conditions are

g(ε, η) = 0, h(ε, η) = 0, k(ε, η) = 0 at η = 0

g′(ε, η) → 0, h(ε, η) → 0, k(ε, η) → 0 as η → ∞

}
. (28)

The set of differential Eqs. (21)–(23) and (25)–(27) together with the boundary conditions
(24) and (28) were solved by means of the successive linearisation method (SLM). The SLM
algorithm starts with the assumption that the variables f (η), θ(η), φ(η), g(η), h(η) and k(η)

can be expressed as

f (η) = fi (η) + ∑i−1
m=0 Fm(η), θ(η) = θi (η) + ∑i−1

m=0 �m(η), φ(η) = φi (η) + ∑i−1
m=0 �m(η)

g(η) = gi (η) + ∑i−1
m=0 Gm(η), h(η) = hi (η) + ∑i−1

m=0 Hm(η), k(η) = ki (η) + ∑i−1
m=0 Km(η)

}
.

(29)
where fi , θi , φi , gi , hi and ki are unknown functions and Fm,�m,�m,Gm, Hm and Km ,
(m ≥ 1) are successive approximations which are obtained by recursively solving the linear
part of the equation system that results from substituting firstly Eq. (29) in Eqs. (21)–(23)
and (25)–(27). The main assumption of the SLM is that fi , θi , φi , gi , hi and ki become
increasingly smaller when i becomes large, that is

lim
i→∞ fi = lim

i→∞ θi = lim
i→∞ φi = lim

i→∞ gi = lim
i→∞ hi = lim

i→∞ ki = 0. (30)

The initial guesses F0(η),�0(η),�0(η),G0(η), H0(η) and K0(η) which are chosen to sat-
isfy the boundary conditions (24) and (28) which are taken to be

F0(η) = 1 − e−η, �0(η) = e−η, �0(η) = e−η G0(η) = 1 − e−η, H0(η) = ηe−η,

K0(η) = ηe−η. (31)

Thus, starting from the initial guesses, the subsequent solutions Fi ,�i ,�i ,Gi , Hi and Ki

(i ≥ 1) are obtained by successively solving the linearised form of the equations which
are obtained by substituting Eq. (29) in the governing Eqs. (21)–(23) and (25)–(27). The
linearised equations to be solved are
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a1,i−1F
′′
i + a2,i−1F

′
i + a3,i−1�

′
i + a4,i−1�i + a5,i−1�

′
i = r1,i−1, (32)

b1,i−1�
′′
i + b2,i−1�

′
i + b3,i−1�i + b4,i−1F

′
i + b5,i−1Fi + b6,i−1�i

+ b7,i−1Gi + b8,i−1Hi = r2,i−1, (33)

c1,i−1�
′′
i + c2,i−1�

′
i + c3,i−1F

′
i + c4,i−1Fi + c5,i−1�

′′
i + c6,i−1Gi

+ c7,i−1Ki = r3,i−1, (34)

d1,i−1G
′′
i + d2,i−1G

′
i + d3,i−1F

′′
i + d4,i−1F

′
i + d6,i−1�

′
i + d7,i−1�i + d8,i−1�i

+ b9,i−1H
′
i + b10,i−1Hi + b11,i−1K

′
i = r4,i−1, (35)

e1,i−1H
′′
i + e2,i−1H

′
i + e3,i−1Hi + e4,i−1F

′
i + e6,i−1Fi + e7,i−1�

′
i + e8,i−1�i

+ e9,i−1�i + e10,i−1G
′
i + e11,i−1Gi + e11,i−1Ki = r5,i−1, (36)

q1,i−1K
′′
i + q2,i−1K

′
i + q3,i−1Ki + q4,i−1F

′
i + q6,i−1Fi + q7,i−1�

′
i + q8,i−1G

′
i

+ q9,i−1Gi + q10,i−1H
′′
i = r6,i−1 (37)

subject to the boundary conditions

Fi (0) = F ′
i (∞) = �i (0) = �i (∞) = �i (0) = �i (∞)

Gi (0) = G ′
i (∞) = Hi (0) = Hi (∞) = Ki (0) = Ki (∞) = 0

}
. (38)

where the coefficients parameters ak,i−1, bk,i−1, ck,i−1, dk,i−1, ek,i−1, qk,i−1 and rk,i−1

depend on F0(η), �0(η), �0(η), G0(η), H0(η) and K0(η) and on their derivatives.
The solution for Fi , �i ,�i , Gi , Hi and Ki for i ≥ 1 has been found by iteratively solving

Eqs. (32)–(38) and finally after M iterations the solutions f (η), θ(η), g(η) and h(η) can be
written as

f (η) ≈ ∑M
m=0 Fm(η), θ(η) ≈ ∑M

m=0 �m(η), φ(η) ≈ ∑M
m=0 �m(η)

g(η) ≈ ∑M
m=0 Gm(η), h(η) ≈ ∑M

m=0 Hm(η), k(η) ≈ ∑M
m=0 Km(η)

}
. (39)

where M is termed the order of SLM approximations. Now we apply the Chebyshev spectral
collocation method (see [3,14,46]) to Eqs. (32)–(38). We apply the mapping

η

L
= ξ + 1

2
, −1 ≤ ξ ≤ 1, (40)

to transform the domain [0,∞) to [−1, 1]where L is used to invoke the boundary condition at
infinity.We discretize the domain [−1, 1] using the Gauss-Lobatto collocation points defined
by

ξ = cos
π j

N
, j = 0, 1, 2, . . . , N , (41)

where N is the number of collocation points. The functions Fi , �i , Gi and Hi for i ≥ 1 are
approximated at the collocation points as follows

Fi (ξ) ≈ ∑N
k=0 Fi (ξk)Tk(ξ j ),�i (ξ) ≈ ∑N

k=0 �i (ξk)Tk(ξ j ),�i (ξ) ≈ ∑N
k=0 �i (ξk)Tk (ξ j )

Gi (ξ) ≈ ∑N
k=0 Gi (ξk)Tk(ξ j ), Hi (ξ) ≈ ∑N

k=0 Hi (ξk)Tk(ξ j ), Ki (ξ) ≈ ∑N
k=0 Ki (ξk)Tk(ξ j )

⎫⎬
⎭ j = 0, 1, . . . , N ,

(42)
where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (43)
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Table 1 A comparison of f ′(η), θ(η) and φ(η) using the SLM and the shooting method for different values
of n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, ε = 0.2 and  = 0.1

Profile η n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η) 0.0 0.873428 0.873428 0.880874 0.880874 0.889552 0.889552

0.1 0.849364 0.849364 0.857830 0.857830 0.867668 0.867668

0.5 0.737032 0.737031 0.753227 0.753226 0.769738 0.769737

1.0 0.571454 0.571452 0.607662 0.607660 0.636666 0.636664

3.0 0.060470 0.060467 0.163331 0.163329 0.228299 0.228296

5.0 0.003483 0.003478 0.031220 0.031216 0.069212 0.069207

θ(η) 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.968618 0.968618 0.966471 0.966471 0.965157 0.965157

0.5 0.830564 0.830563 0.820001 0.820000 0.813463 0.813462

1.0 0.651715 0.651713 0.631992 0.631990 0.619698 0.619696

3.0 0.182389 0.182386 0.151355 0.151352 0.133811 0.133808

5.0 0.044543 0.044538 0.028006 0.028002 0.020251 0.020246

φ(η) 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.959835 0.959835 0.957614 0.957614 0.956246 0.956246

0.5 0.803541 0.803540 0.792688 0.792687 0.786026 0.786025

1.0 0.625532 0.625530 0.605186 0.605184 0.592815 0.592813

3.0 0.190722 0.190719 0.157410 0.157407 0.139087 0.139084

5.0 0.052304 0.052299 0.033314 0.033310 0.024326 0.024321

The derivatives of the variables at the collocation points are
dr Fi
dηr

= ∑N
k=0 Dr

k j Fi (ξk),
dr�i
dηr

= ∑N
k=0 Dr

k j�i (ξk),
dr�i
dηr

= ∑N
k=0 Dr

k j�i (ξk)

dr Gi
dηr

= ∑N
k=0 Dr

k j Gi (ξk),
dr Hi
dηr

= ∑N
k=0 Dr

k j Hi (ξk),
dr Ki
dηr

= ∑N
k=0 Dr

k j Ki (ξk)

⎫⎬
⎭ j = 0, 1, . . . , N ,

(44)
where r is the order of differentiation andD is the Chebyshev spectral differentiation matrix
whose entries are defined as [3,14,46]

D00 = 2N2+1
6 ,

D jk = c j
ck

(−1) j+k

ξ j−ξk
, j 
= k; j, k = 0, 1, . . . , N ,

Dkk = − ξk
2(1−ξ2k )

, k = 1, 2, . . . , N − 1,

DNN = − 2N2+1
6 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(45)

After applying the Chebyshev spectral method to (32)–(37) we get the matrix system of
equations

Ai−1Xi = Ri−1. (46)

subject to

Fi (ξN ) = ∑N
k=0 D0k Fi (ξk) = 0, �i (ξN ) = �i (ξ0) = 0, �i (ξN ) = �i (ξ0) = 0

Gi (ξN ) = ∑N
k=0 D0kGi (ξk) = 0, Hi (ξN ) = Hi (ξ0) = 0, Ki (ξN ) = Ki (ξ0) = 0

}

(47)
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Table 2 A comparison of f ′(η), θ(η) and φ(η) using the SLM and shooting method for different values of
n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, ε = 0.2 and  = −0.1

Profile η n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η) 0.0 0.764833 0.764833 0.782413 0.782413 0.798435 0.798435

0.1 0.743531 0.743531 0.762209 0.762209 0.779301 0.779301

0.5 0.645119 0.645120 0.671441 0.671442 0.694426 0.694427

1.0 0.501380 0.501382 0.546064 0.546065 0.579579 0.579581

3.0 0.059274 0.059277 0.156714 0.156717 0.218972 0.218975

5.0 0.004132 0.004137 0.032827 0.032831 0.070303 0.070308

θ(η) 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.969520 0.969520 0.966868 0.966868 0.965272 0.965272

0.5 0.838804 0.838805 0.825639 0.825640 0.817649 0.817650

1.0 0.672016 0.672018 0.647144 0.647146 0.632019 0.632021

3.0 0.215386 0.215389 0.174526 0.174529 0.152120 0.152124

5.0 0.060882 0.060888 0.037109 0.037114 0.026308 0.026314

φ(η) 0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.963281 0.963281 0.960520 0.960520 0.958848 0.958848

0.5 0.819788 0.819789 0.806293 0.806294 0.798146 0.798147

1.0 0.654319 0.654321 0.628954 0.628956 0.613793 0.613795

3.0 0.226430 0.226434 0.183431 0.183435 0.160206 0.160210

5.0 0.070796 0.070802 0.044052 0.044056 0.031686 0.031693

Table 3 Comparison of the local
Nusselt and Sherwood numbers
between the current results and
Cheng [8] for various values of 

and Le when n = 1, Gr∗ = 0,
γ = 0, Sr = 0, and ε = 0

 Le θ ′(0) φ′(0)

Cheng [8] Present Cheng [8] Present

4 1 0.9923 0.9923 0.9923 0.9923

4 4 0.7976 0.7976 2.055 2.0549

4 10 0.6811 0.681 3.2899 3.2897

4 100 0.5209 0.521 10.521 10.5222

1 4 0.5585 0.5585 1.3575 1.3575

2 4 0.6494 0.6495 1.6243 1.6244

3 4 0.7278 0.7277 1.8525 1.8524

In Eq. (46), Ai−1 is a (6N + 6)× (6N + 6) square matrix and Xi and Ri−1 are (6N + 6)× 1
column vectors and D = 2

LD. Finally the solution is obtained as

Xi = A−1
i−1Ri−1. (48)

4 Results and discussion

The governing nonlinear differential equations were solved by means of the successive lin-
earisation method. The value of L was suitably chosen so that the boundary conditions at the
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1504 A. A. Khidir et al.

outer edge of the boundary layer are satisfied. The results obtained are accurate up to the 5th
decimal place. In order to assess the accuracy of the solutions, we made a comparison with
the shooting technique. The comparison is given in Tables 1 and 2 for aiding and opposing
buoyancy respectively. The results are in good agreement pointing to the accuracy of the SLM
solutions. In addition, a comparison between the present results and Cheng [8] for various
buoyancy and Lewis numbers Le is given in Table 3. The comparison shows that the present
results are in excellent agreement with the similarity solutions reported by Cheng [8]. The
effect of the physical parameters on the temperature, concentration, heat and mass transfer
coefficients are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

4.1 Aiding buoyancy

Figure 1 shows the variation of the non-dimensional velocity profile f ′(η) for n = 0.5, n = 1
and n = 1.5 for two different values of Soret number Sr and for fixed values of γ , GR∗,
ε, Le and . We observe that the velocity increases with increased in Soret number for all
indices n.

Figure 2a shows the variation of the non-dimensional temperature distribution θ(η) for
n = 0.5, n = 1 and n = 1.5 for two different values of viscous dissipation ε and for fixed
values of γ , GR∗, Sr , Le and . We observe that the thermal boundary layer thickens with
increased in viscous dissipation for all indices n. The effects of n and ε on the concentration
profile φ(η) is shown in Fig. 2b. It is noted that increasing the viscous dissipation and power
law index n reduces the concentration boundary layer thickness.

The effect of Soret parameter on temperature and concentration profiles is shown in Fig. 3
for the aiding buoyancy case. It is clear that the Soret parameter reduces the thermal boundary
layer thickness while increasing the concentration boundary layer thickness.

The effect of the viscous dissipation parameter ε and the Soret number Sr on the skin
friction, Nusselt and Sherwood numbers are shown in Fig. 4 for n < 1, n = 1 and n > 1.
Increasing both the viscous dissipation and the power-law index reduced the heat transfer
coefficient while enhancing the skin friction and mass transfer coefficients. Consequently,
heat transfer is much more pronounced in a pseudoplastic as compared to both a Newtonian

Fig. 1 Variation of f ′(η) against η varying Sr and n when γ = 1,Gr∗ = 1, ε = 0.2, Le = 1 and  = 0.1
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and a dilatant fluid. The opposite is however true in the case of mass transfer. The variation
of the Nusselt and Sherwood numbers as a function of Sr is given in Fig. 5 for different
values of n and viscous dissipation parameter ε. Increasing the Soret number increases the
heat transfer rate for pseudoplastics, Newtonian and dilatant fluids while reducing the mass
transfer rate.

Figure 6 shows the variation of the Nusselt and Sherwood numbers with the viscosity
parameter γ . Increasing the viscosity parameter increases the rates of heat and mass transfer
for all values of ε and power low index n. Similar results were obtained by Jayanthi et al.
[22] and Kairi et al. [23].

4.2 Opposing buoyancy

Figure 7 shows the variation of the non-dimensional velocity profile f ′(η) for n = 0.5, n = 1
and n = 1.5 for two different values of Soret number Sr and for fixed values of γ ,GR∗, ε, Le
and . We observe that the velocity decreases with increased in Soret number for indices n.

Figure 8 shows the temperature and concentration distributions when n = 0.5, n = 1 and
n = 1.5 for ε = 0 and 0.2. Increasing ε reduces the thermal and concentration boundary
layer thickness profiles for all values of n.

In the opposing buoyancy case, the effect of the Soret parameter on the temperature and
concentration distributions in Fig. 9a, b for different values of the power-law index n and
ε. Both thermal and concentration boundary layer thicknesses decrease with increases in
Sr for all n. We note here that the effect of the Soret number on the concentration profiles
in the case of opposing buoyancy is opposite to that of aiding buoyancy. In Fig. 10, the
variation of f ′′(ε, 0), Nux/Ra

1/2
x and Shx/Ra

1/2
x as a function of ε are shown for different

types of power-law fluids and two values of Sr while the other parameters are fixed. We
note that, as in the case of aiding buoyancy, an increase in both ε and n reduces Nux/Ra

1/2
x

while f ′′(ε, 0) and Shx/Ra
1/2
x increases with the Soret effect. The variation of the Nusselt

and Sherwood numbers as a functions of Sr is displayed in Fig. 11 for different values of
n and ε. We observed that both Nusselt and Sherwood numbers increased with the Soret
number.

Fig. 7 Variation of f ′(η) against η varying Sr and n when γ = 1,Gr∗ = 1, ε = 0.2, Le = 1 and  = −0.1
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Increasing the viscosity parameter γ enhances the rates of heat and mass transfer for all
types of power-law fluids n as shown in Fig. 12. This is also in line with the findings by
Jayanthi et al. [22] and Kairi et al. [23].

5 Conclusions

In this paper, viscous dissipation and the Soret effects on natural convection from a vertical
plate immersed in a non-Darcy porous medium saturated with a non-Newtonian power-law
fluid has been studied. The governing equations are transformed into ordinary differential
equations and solved using the successive linearisation method. Qualitative results were
presented showing the effects of various physical parameters on the fluid properties and the
rates of heat and mass transfer. Velocity and temperature profiles are significantly effected
by viscous dissipation, Soret number and variable viscosity parameters. The Nusselt number
is reduced by viscous dissipation and enhanced by the Soret number for both the aiding and
opposing buoyancy cases. The Sherwood number increases with viscous dissipation for both
the aiding and opposing buoyancy cases and decreases with the Soret number in the case of
aiding buoyancy. Increasing viscosity enhances heat and mass transfer coefficients in both
cases of aiding buoyancy and opposing buoyancy. Heat transfer is much pronounced in the
case of a pseudoplastic as compared to both a Newtonian and a dilatant fluids. Mass transfer
is however greater in the case of Newtonian and dilatant fluids than for pseudoplastics.
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