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Abstract In this paper, we consider the modified epidemiological model for computer
viruses (SAIR) proposed byPiqueira andAraujo (ApplMathComput 2(213):355–360, 2009).
The multi-step homotopy analysis method (MHAM) is employed to compute an approxima-
tion to the solution of the model of fractional order. The fractional derivatives are described in
the Caputo sense. Figurative comparisons between theMHAM and the classical fourth-order
Runge-Kutta method reveal that this method is very effective. The solutions obtained are also
presented graphically.

Keywords Fractional differential equations · Caputo fractional derivative · Multi-step
homotopy analysis · Epidemiological model · Computer viruses
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1 Introduction

Computer viruses have cost billions of dollars since their invention in the 1980s. Actual
figures are somewhat speculative, but have been reported to be $12.1 billion in 1999, $17.1
billion in 2000 and $10.7 billion for the first three quarters of 2001 [1]. Thus, methods to
analyze, track, model, and protect against viruses are of considerable interest. Similar to
the biological virus, there are two ways to study this problem: microscopic and macroscopic
models. Following amacroscopic approach, since [10,11] took thefirst step towardsmodeling
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the spread behavior of computer virus, much effort has been done in the area of developing
a mathematical model for the computer virus propagation [3,8,19,22,24].

Epidemic models for computer virus spread have been investigated since at least 1988.
Murray [17] appears to be the first to suggest the relationship between epidemiology and
computer viruses. Although he did not propose any specific models, he pointed out analogies
to some public health epidemiological defense strategies. Gleissner [7] examined a model of
computer virus spread on a multi-user system, but no allowance was made for the detection
and removal of viruses or alerting other users to the presence of viruses.More recently, a group
at IBM Watson Research Center [9–12] has investigated susceptible-infected- susceptible
(SIS) models for computer virus spread. In [10], they formulated a directed random graph
model and studied its behavior via deterministic approximation, stochastic approximation,
and simulation. Piqueira and Araujo [19] suggested a modified epidemiological model for
computer viruses.

Nowadays several researchers work on the fractional order differential equations because
of best presentation of many phenomena. Fractional calculus has been used tomodel physical
and engineering processes, which are found to be best described by fractional differential
equations. It is worth noting that the standard mathematical models of integer-order deriv-
atives, including nonlinear models, do not work adequately in many cases. In the recent
years, fractional calculus has played a very important role in various fields such as mechan-
ics, electricity, chemistry, biology, economics, notably control theory, and signal and image
processing see for example [6,15,16]. In this paper, we investigate the applicability and effec-
tiveness of the homotopy analysis method (HAM)when treated as an algorithm in a sequence
of intervals (i.e. time step) for finding accurate approximate solutions to the epidemiological
model for computer viruses. This modified method is named as the multi-step homotopy
analysis method. It can be found that the corresponding numerical solutions obtained by
using HAM are valid only for a short time. While the ones obtained by using multi-step
homotopy analysis method (MHAM) are more valid and accurate during a long time [2].
In this paper, we intend to obtain the approximate solution of the fractional-order Model
for computer viruses via the multi-step homotopy analysis method. Finally we compare our
numerical results with fourth-order Runge-Kutta method.

2 Model description

In this paper, we consider the model presented by Piqueira and Araujo [19]. In this model,
they considered that the total population T is divided into four groups: S of non-infected
computers subjected to possible infection; A of noninfected computers equipped with anti-
virus; I of infected computers; and R of removed ones due to infection or not. The influx
and mortality parameters of the model are defined as:

N : influx rate, representing the incorporation of new computers to the network;
μ: proportion coefficient for the mortality rate, not due to the virus.
The susceptible population S is infected with a rate that is related to the probability of

susceptible computers to establish effective communications with infected ones. Therefore,
this rate is proportional to the product SI , with proportion factor represented byβ. Conversion
of susceptible into antidotal is proportional do the product SA and is controlled by αSA,
that is an operational parameter defined by the anti-virus distribution strategy of the network
administration. Infected computers can be fixed by using anti-virus programs being converted
into antidotal ones with a rate proportional to AI , with a proportion factor given by αI A,
or become useless and removed with a rate controlled by δ. Removed computers can be
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The multi-step homotopy analysis method 587

restored and converted into susceptible with a proportion factor σ . This model represents
the dynamics of the propagation of the infection of a known virus and, consequently, the
conversion of antidotal into infected is not considered. Therefore, by using this model, a
vaccination strategy can be defined, providing an economical use of the anti-virus programs.

Considering these facts, the model can be described by:

dS

dt
= N − αSASA − βSI − μS + σ R,

d I

dt
= βSI − αI A AI − δ I − μI,

dR

dt
= δ I − σ R − μR,

d A

dt
= αSASA + αI A AI − μA.

(2.1)

Here the influx rate is considered to be N = 0, representing that there are no incorporation
of new computers in the network during the propagation of the considered virus, because its
action is faster than the network expansion. The same reason justifies the choice of μ = 0,
considering that the machines obsolescence time is larger than the time of the virus action.

Consequently, the equation system (2.1) is simplified to:

dS

dt
= −αSASA − βSI + σ R,

d I

dt
= βSI − αI A AI − δ I,

dR

dt
= δ I − σ R,

d A

dt
= αSASA + αI A AI.

(2.2)

with S(0) = S0, I (0) = I0, R(0) = R0, A(0) = A0.

Here the total population of the network T = S + I + R + A remains constant.

3 Fractional calculus

In this section, we give some basic definitions and properties of the fractional calculus theory
which are used further in this paper.

Definition 3.1 A function f (x) (x > 0) is said to be in the space Cα (α ∈ R) if it can be
written as f (x) = x p f1(x) for some p > α where f1(x) is continuous in [0,∞), and it is
said to be in the space Cm

α if f (m) ∈ Cα, m ∈ N.

Definition 3.2 The Riemann–Liouville integral operator of order α with a ≥ 0 is defined as

(Jα
a f )(x) = 1

�(α)

x∫

a

(x − t)α−1 f (t) dt, x > a, (3.1)

(J 0a f )(x) = f (x). (3.2)

Properties of the operator can be found in [14,16,18,20,23]. We only need here the
following: For f ∈ Cα, α, β > 0, a ≥ 0, c ∈ R, γ > −1, we have
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(Jα
a Jβ

a f ) (x) = (Jβ
a Jα

a f ) (x) = (Jα+β
a f ) (x), (3.3)

Jα
a xγ = xγ+α

�(α)
B x−a

x
(α, γ + 1), (3.4)

where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =
τ∫

0

tα−1(1 − t)γ dt, (3.5)

Jα
a e

cx = eac(x − a)α
∞∑

k = 0

[c(x − a)]k
�(α + k + 1)

. (3.6)

The Riemann–Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operator Dα

a proposed by Caputo in his work on the theory
of viscoelasticity.

Definition 3.3 The Caputo fractional derivative of f (x) of order α > 0 with a ≥ 0 is
defined as

(Dα
a f )(x) = (Jm−α

a f (m)) (x) = 1

�(m − α)

x∫

a

f (m)(t)

(x − t)α+1−m
dt, (3.7)

for m − 1 < α ≤ m, m ∈ N, x ≥ a, f ∈ Cm−1.

The Caputo fractional derivative was investigated by many authors, for m − 1 < α ≤ m,

f (x) ∈ Cm
α and α ≥ −1, we have

(Jα
a Dα

a f ) (x) = JmDm f (x) = f (x) −
m − 1∑
k = 0

f (k)(a)
(x − a)k

k ! . (3.8)

For mathematical properties of fractional derivatives and integrals one can consult the
mentioned references.

4 Multi-step homotopy analysis method

The HAM is used to provide approximate solutions for a wide class of nonlinear problems
in terms of convergent series with easily computable components, it has some drawbacks:
the series solution always converges in a very small region and it has slow convergent rate in
the wider region [2,4,13,21,25,26]. To overcome the shortcoming, we present the multi-step
homotopy analysis method that we have developed for the numerical solution of the system
of fractional differential equations

Dα1 S(t) = −αSA S(t)A(t) − β S(t)I (t) + σ R(t),

Dα2 I (t) = βS(t)I (t) − αI A A(t)I (t) − δ I (t),

Dα3 R(t) = δ I (t) − σ R(t),

Dα4 A(t) = αSA S(t)A(t) + αI A A(t)I (t). (4.1)

It is only a simple modification of the standard HAM and can ensure the validity of the
approximate solutions for large time. Although the MHAM is used to provide approximate
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solutions for nonlinear problem in terms of convergent series with easily computable compo-
nents, it has been shown that the approximated solution obtained are not valid for large t. To
extend this solution over the interval [0, t], we divide the interval [0, t] into n -subintervals
of equal length 	t, [t0, t1), [t1, t2), [t2, t3), ..., [tn−1, tn] with t0 = 0, tn = t. Let t∗ be
the initial value for each subintervals and let S j , I j , R j and A j be approximate solutions in
each subinterval [t j−1, t j ], j = 1, 2, ..., n, with initial guesses

S1(t
∗) = 3, S, j (t

∗) = s j (t j−1) = s j−1(t j−1),

I1(t
∗) = 95, I, j (t

∗) = i j (t j−1) = i j−1(t j−1),

R1(t
∗) = 1, R, j (t

∗) = r j (t j−1) = r j−1(t j−1), j = 2, 3, ..., n

A1(t
∗) = 1, A, j (t

∗) = a j (t j−1) = a j−1(t j−1).

(4.2)

Now, we can construct the so-called zeroth-order deformation equations of the system
(4.1) by

(1 − q)L[φ1, j (t; q) − S j (t
∗)] = qh[Dα1φ1, j (t; q) + αSAφ1, j (t; q)φ4, j (t; q)

+βφ1, j (t; q)φ2, j (t; q) − σφ3, j (t; q)],
(1 − q)L[φ2, j (t; q) − I j (t

∗)] = qh[Dα2φ2, j (t; q) − βφ1, j (t; q)φ2, j (t; q)

+αI Aφ2, j (t; q)φ4, j (t; q) + δφ2, j (t; q)],
(1 − q)L[φ3, j (t; q) − R j (t

∗)] = qh[Dα3φ3, j (t; q) − δφ2, j (t; q) + σφ3, j (t; q)], (4.3)

(1 − q)L[φ4, j (t; q) − A j (t
∗)] = qh[Dα4φ4, j (t; q) − αSAφ1, j (t; q)φ4, j (t; q)

−αI Aφ2, j (t; q)φ4, j (t; q)],
j = 1, 2, ..., n,

where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear operator, h �= 0 is an
auxiliary parameter and φi, j (t; q), i = 1, 2, 3, 4, j = 1, 2, ..., n, are unknown functions.
Obviously, when q = 0, we have

φ1,1(t; 0) = 3, φ1, j (t; 0) = S j−1(t j−1),

φ2,1(t; 0) = 95, φ2, j (t; 0) = I j−1(t j−1),

φ3,1(t; 0) = 1, φ3, j (t; 0) = R j−1(t j−1), j = 2, 3, ..., n,

φ4,1(t; 0) = 1, φ4, j (t; 0) = A j−1(t j−1),

and when q = 1, we have

φ1, j (t; 1) = S j (t),

φ2, j (t; 1) = I j (t),

φ3, j (t; 1) = R j (t), j = 2, 3, ..., n,

φ4, j (t; 1) = A j (t),

Expanding φi, j (t; q), i = 1, 2, 3, 4, j = 1, 2, ..., n, in Taylor series with respect to q, we
get

φ1, j (t; q) = S j (t
∗) +

∞∑
m=1

S j,m(t)qm,

φ2, j (t; q) = I j (t
∗) +

∞∑
m=1

I j,m(t)qm,
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φ3, j (t; q) = R j (t
∗) +

∞∑
m=1

R j,m(t)qm, j = 1, 2, ..., n, (4.4)

φ4, j (t; q) = A j (t
∗) +

∞∑
m=1

A j,m(t)qm,

where

S j,m(t) = 1

m!
∂mφ1, j (t; q)

∂qm
|q=0,

I j,m(t) = 1

m!
∂mφ2, j (t; q)

∂qm
|q=0,

R j,m(t) = 1

m!
∂mφ3, j (t; q)

∂qm
|q=0, j = 1, 2, ..., n,

A j,m(t) = 1

m!
∂mφ4, j (t; q)

∂qm
|q=0,

(4.5)

If the initial guesses S j (t∗), I j (t∗), R j (t∗), A j (t∗), the auxiliary linear operator L and
the nonzero auxiliary parameter h are properly chosen so that the power series (4.4) converges
at q = 1, one has

S j (t) = φ1, j (t; 1) = S j (t
∗) +

∞∑
m=1

S j,m(t),

I j (t) = φ2, j (t; 1) = I j (t
∗) +

∞∑
m=1

I j,m(t),

R j (t) = φ3, j (t; 1) = R j (t
∗) +

∞∑
m=1

R j,m(t), j = 1, 2, ..., n,

S j (t) = φ4, j (t; 1) = A j (t
∗) +

∞∑
m=1

A j,m(t).

(4.6)

Define the vectors
−→
S j,m(t) = {S j,0(t), S j,1(t), . . . , S j,m(t)},
−→
I j,m(t) = {I j,0(t), I j,1(t), . . . , I j,m(t)},

−→
R j,m(t) = {R j,0(t), R j,1(t), . . . R j,m(t)},
−→
A j,m(t) = {A j,0(t), A j,1(t), . . . , A j,m(t)}.

Differentiating the zero-order deformation Eq. (4.3) m times with respective to q, then
setting q = 0 and dividing them by m!, finally using (4.5), we have the so-called high-order
deformation equations

L[S j,m(t) − χmSj,m−1(t)] = h 	1
j,m(

−→
S j,m−1(t)),

L[I j,m(t) − χm I j,m−1(t)] = h 	2
j,m(

−→
I j,m−1(t)),

L[R j,m(t) − χm R j,m−1(t)] = h 	3
j,m(

−→
R j,m−1(t)),

L[A j,m(t) − χm A j,m−1(t)] = h 	4
j,m(

−→
A j,m−1(t)),

(4.7)
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The multi-step homotopy analysis method 591

subject to the initial conditions

S j,m(0) = I j,m(0) = R j,m(0) = A j,m(0) = 0, j = 1, 2, . . . , n, m = 1, 2, ...

where

	1
j,m(

−→
S j,m−1(t)) = Dα1 S j,m−1(t) + αSA

m−1∑
i=0

S j,i (t)A j,m−i−1(t)

+β

m−1∑
i=0

S j,i (t)I j,m−i−1(t) − σ R j,m−1(t),

	2
j,m(

−→
I j,m−1(t)) = Dα2 I j,m−1(t) − β

m−1∑
i=0

S j,i (t)I j,m−i−1(t)

+αI A

m−1∑
i=0

A j,i (t)I j,m−i−1(t) + δ I j,m−1(t),

	3
j,m(

−→
R j,m−1(t)) = Dα3 R j,m−1(t) − δ I j,m−1(t) + σ R j,m−1(t), (4.8)

	4
j,m(

−→
A j,m−1(t)) = Dα4 A j,m−1(t) − αSA

m−1∑
i=0

S j,i (t)A j,m−i−1(t)

−αI A

m−1∑
i=0

A j,i (t)I j,m−i−1(t) j = 1, 2, . . . , n,

and

χm =
{
0, m ≤ 1
1, m > 1

(4.9)

Select the auxiliary linear operator L = Dαi , i = 1, 2, 3, 4, then the mth-order deformation
Eq. (4.7) can be written in the form

S j,m(t) = χmSj,m−1(t) + h Jα1 [	1
j,m(

−→
S j,m−1(t))],

I j,m(t) = χm I j,m−1(t) + h Jα2 [	2
j,m(

−→
I j,m−1(t))],

R j,m(t) = χm R j,m−1(t) + h Jα3 [	3
j,m(

−→
R j,m−1(t))],

A j,m(t) = χm A j,m−1(t) + h Jα4 [	4
j,m(

−→
A j,m−1(t))],

(4.10)

The solutions of system (4.1) in each subinterval [t j−1, t j ], j = 1, 2, ..., n, has the form

s j (t) =
∞∑

m=0

S j,m(t − t j−1),

i j (t) =
∞∑

m=0

I j,m(t − t j−1),

r j (t) =
∞∑

m=0

R j,m(t − t j−1),

a j (t) =
∞∑

m=0

A j,m(t − t j−1), j = 1, 2, ..., n,

(4.11)
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and the solution of system (4.1) for [0, T ] is given by

S(t) =
n∑
j=1

χr s j (t),

I (t) =
n∑
j=1

χr i j (t),

R(t) =
n∑
j=1

χr r j (t),

A(t) =
n∑
j=1

χr a j (t), i = 1, 2, . . . ,m

(4.12)

where

χr =
{
1, t ∈ [t j−1, t j ]
0, t /∈ [t j−1, t j ]

5 Numerical results

In this work, we carefully propose the MHAM, a reliable modification of the HAM, that
improves the convergence of the series solution. The method provides immediate and visible
symbolic terms of analytic solutions, as well as numerical approximate solutions to both
linear and nonlinear differential equations. We apply the proposed algorithm on the interval
[0, 25]. We choose the auxiliary parameter h = −1 and divide the interval [0, 25] into
subintervals with time step	t = 0.1, and we get HAM series solution of order k = 6 at each
subinterval. So in this case we have to satisfy the initial condition at each of the subintervals.

We consider the set of parameters values as αSA = 0.025, αI A = 0.25, β = 0.1, σ = 0.8,
δ = 9. From the graphical results in Fig. 1, it can be seen the results obtained using the
MHAM match the results of the RK4 very well. Figure 1 shows non-infected computers,
infected computers and removed ones due to infection or not are vanish, while the noninfected
computers equipped with anti-virus, in the long term, is in a good operational state. Figures
2 and 3 show the phase portrait for the classical SAIR models using the MHAM and the
fourth-order RK4, which implies that the MHAM can predict the behavior of these variables
accurately for the region under consideration. Figures 4 and 5 show the phase portrait for
the fractional SAIR models of modified epidemiological system using the MHAM. From
the numerical results in Figs. 4 and 5, it is clear that the approximate solutions depend
continuously on the time-fractional derivative αi , i = 1, 2, 3, 4.The effective dimension

∑
of the system (4.1) is defined as the sum of orders α1 + α2 + α3 + α4 = ∑

. Also we can
see that the chaos exists in the fractional-order modified SAIR models of epidemics system
with order as low as 3.8.

6 Conclusions

The analytical approximations to the solutions of the modified epidemiological model for
computer viruses are reliable and confirm the power and ability of the MHAM as an easy
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The multi-step homotopy analysis method 593

Fig. 1 The displacement for modified epidemiological model for computer viruses when α1 = α2 = α3 =
α4 = 1 solid line RK4 method solution, dotted line MHAM solution

Fig. 2 Phase plot of S(t), I (t) and R(t) versus time, with α1 = α2 = α3 = α4 = 1. Left MHAM, right RK4

device for computing the solution of nonlinear problems. In this paper, a fractional order
differential SAIRmodel is studied and its approximate solution is presented using aMHAM.
The approximate solutions obtained by MHAM are highly accurate and valid for a long
time. The reliability of the method and the reduction in the size of computational domain
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594 A. A. Freihat et al.

Fig. 3 Phase plot of S(t), I (t) and A(t) versus time, with α1 = α2 = α3 = α4 = 1. Left MHAM, right RK4

Fig. 4 Left phase plot of S(t), I (t) and R(t) versus time, with α1 = α2 = α3 = α4 = 0.97; right phase
plot of S(t), I (t) and A(t) versus time, with α1 = α2 = α3 = α4 = 0.97
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The multi-step homotopy analysis method 595

Fig. 5 Left phase plot of S(t), I (t) and R(t) versus time, with α1 = 0.95, α2 = 0.96, α3 = 0.95, α4 = 0.94;
right phase plot of S(t), I (t) and A(t) versus time, with α1 = 0.95, α2 = 0.96, α3 = 0.95, α4 = 0.94

give this method a wider applicability. Finally, the recent appearance of nonlinear fractional
differential equations as models in some fields such as models in science and engineering
makes it is necessary to investigate the method of solutions for such equations. and we hope
that this work is a step in this direction.
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