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Abstract A mathematical model to assess the impact of temperature on malaria transmission
dynamics is explored and analysed. Threshold quantities of the model are determined and
analysed. The model is shown to exhibit backward bifurcation. Analysis of the reproduction
number suggests that increase in temperature to about 32 ◦C has the potential to increase
the epidemic. The burden of the disease increases with increase in temperature with an
optimal temperature window of 30–32 ◦C for malaria transmission. However as temperatures
approach 40 ◦C, infected human and mosquito populations decline to asymptotically low
levels.
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1 Introduction

Malaria is a major cause of morbidity and mortality, with an estimated 216 million cases
worldwide and at least 655,000 deaths in 2011 [1]. Understanding the role of temperature in
malaria transmission is of particular importance in light of climate change. The global mean
temperature has increased by 0.7 ◦C during the past 100 years and is predicted to increase by an
additional 1.1–6.4 ◦C during the twenty-first century [2]. This additional warming is likely to
affect malaria transmission because temperature changes can alter vector development rates,
shift their geographical distribution and alter transmission dynamics.

Temperature is known to play a major role in the life cycle of the malaria vector. The devel-
opment of the three aquatic stages and their emergence to adulthood are strongly dependent on
temperature. It takes 1, 3 and 10 days for eggs of some mosquitoes to hatch at temperatures of
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30, 20 and 10 ◦C, respectively and water temperature regulates the speed of mosquito breed-
ing [3]. The development of the parasite within the mosquito (sporogonic cycle) depends
on temperature. It takes about 9–10 days at temperatures of 28 ◦C, but stops at tempera-
tures below 16 ◦C [4]. The minimum temperature for parasite development of P. falciparum
approximates 18 ◦C and the daily survival of the vector is dependent on temperature. At
temperatures between 16 and 36 ◦C, the daily survival is about 90 % [4].

Incorporating climate effects into models of disease dynamics is now very crucial as
the evidence for climate impacts on disease transmission and potential vector distribution
increases. Climate change is known to affect several parameters in the epidemiology of
malaria and hence predicting climate change effects on disease transmission requires a frame-
work that specifically incorporates the role of each climate sensitive parameter. Some models
examining the contribution of climate change have been explored [5–9]. However, this study
incorporates the juvenile stage of the mosquito into malaria transmission dynamics.

We begin by formulating the model and illustrating some of its basic properties in Sect. 2.
The equilibria points are determined and stability analysis performed. The effect of temper-
ature on the dynamics of malaria is presented. A discussion of the results is presented in
Sect. 3.

2 Model description

In developing a framework for understanding the impact of temperature on malaria dynam-
ics, a deterministic transmission model is developed. The human population is subdivided
into four classes: susceptible (SH ), exposed or incubating EH , infectious (IH ) and recov-
ered individuals who become partially immune (RH ). The rate of infection of a susceptible
individual is dependent on the mosquito’s biting rate a(T ) and the proportion of bites by
infectious mosquitoes on susceptible humans that produce infection bH . Blood meal taken
by an infectious female anopheles mosquito on a susceptible human will cause sporozoites
to be injected into the human bloodstream and will be carried to the liver.

Upon infection, individuals will then move to the exposed class EH , where parasites
in their bodies are still in the asexual stages. We assume that exposed individuals are not
capable of transmitting the disease to susceptible mosquitoes as they do not have gametocytes.
Exposed humans progress at a rate κH to the infectious class, in which they now have
gametocytes in their bloodstream making them capable of infecting the susceptible anopheles
mosquitoes. Treated individuals recover at a rate α. A proportion p recovers with temporary
immunity and the compliment (1 − p) recovers with no temporary immunity. Temporarily
immune individuals lose immunity at a rate γ . Infected individuals who do not seek treatment
die from infection at a rate η. The birth rate for humans is θ and individuals die naturally at
a rate μH . Both human and mosquito infections take time to develop into an infectious state.
Within host parasite dynamics are weather independent, but within vector parasite dynamics,
as well as the mosquito life cycle are weather dependent.

The mosquito population is divided into the juvenile (JM (t)) and adult population of which
the adult population is subdivided into three classes: susceptible (SM (t)), exposed EM (t) and
infectious (IM (t)). The juvenile stages describe the development of the aquatic stages which
mature to become susceptible adult mosquitoes at a rate βM . The rate of infecting a susceptible
mosquito depends on the mosquitoes’ biting rate a and the proportion of bites by susceptible
mosquitoes on infected humans that produce infection bM . Susceptible mosquitoes that feed
on infectious humans will take gametocytes in blood meals, but as they do not have sporozoites
in their salivary glands, they enter into the exposed class. After fertilisation, sporozoites are
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Fig. 1 Mosquito–human model of malaria dynamics

produced and migrate to the salivary glands ready to infect any susceptible host, the vector is
then considered as infectious. Mosquitoes die at a rate μM which is independent of infection
status. Infected mosquitoes are not harmed by the infection, never clear their infection and
the infective period of the mosquito ends with its death.

A coupled mosquito–human compartmental model of malaria dynamics is presented in
Fig. 1.

The following system of differential equations describe the model.

S′
H = θ − λH (T )SH − μH SH + pα IH + γ RH

E ′
H = λH (T )SH − (κH + μh)EH

I ′
H = κ EH − (μH + α + η)IH

R′
H = (1 − p)α IH − (γ + μH )RH

J ′
M = [βJ (T )NM − μJ (T ) JM ]

(
1 − JM

K

)
− βM (T )JM

S′
M = βM (T )JM − λM (T )SM − μM (T )SM

E ′
M = λM (T )SM − (κM (T ) + μM (T ))EM

I ′
M = κM (T )EM − μM (T )IM (1)

where λH = a(T )bH IM
NM

and λM = a(T )bM IH
NH

.
All parameters and state variables for model system (1) are assumed to be non-negative to

be consistent with human and mosquito juvenile and adult populations. All feasible solutions
of model system (1) are positive and eventually enter the invariant attracting region

	 =
{
(SH , EH , IH , RH ) ∈ R

4+, JM ∈ R+, (SM , EM , IM ) ∈ R
3+ :

NH ≤ θ

μH
; JM ≤ K (βJ βM − μJ μM − βMμM )

βJ βM −μJ μM
, NM ≤ βM K (βJ βM − μJ μM −βMμM )

μM (βJ βM − μJ μM ))

}

Predicting the effect of climate change on malaria dynamics requires a framework that specif-
ically incorporates the role of each climate sensitive parameter. The functional forms of
temperature dependent parameters are presented in Table 1.
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Table 1 Parameters of the basic malaria model in Eq. (1)

Description Symbol Value Source

Mosquito biting rate a(T ) 0.000203T (T − 11.7)
√

42.3 − T [10]

Birth rate of juveniles βJ (T ) 2.325a(T ) [11]

Adult mosquito birth rate βM (T )
βJ
10 [11]

Juvenille mosquito death rate μJ (T ) 0.0025T 2 − 0.094T + 1.0257 [11]

Adult mosquito death rate μM (T ) − ln ρ(T ) [12]

ρ(T ) e
−1

−0.03T 2+1.31T −4.4 [12]

Progression rate of mosquitoes κM
T −Tmin

DD [13]

Recruitment rate of humans θ 0.028 [14]

Proportion of bites by infectious mosquitoes
on susceptible humans that produce
infection

bH 0.09 [9]

Proportion of bites by susceptible
mosquitoes on infected humans that
produce infection

bM 0.04 [9]

Per capita natural death rate for humans μH 0.00004 [14]

Progression rate of humans from
the exposed state to infectious

κH 1/14 [14]

Recovery rate of humans α 0.005 [14]

Per capita disease induced death rate η 0.0004 [14]

Per capita rate of loss of immunity γ 1
20∗365 [15]

Carrying capacity of larvae K 1000000 Est

Proportion of humans recovering
with temporary immunity

p 0.25 Est

2.1 Disease-free equilibrium and stability analysis

The disease-free equilibrium of model 1 is given by,

E0 =
(

S0
H , E0

H , I 0
H , R0

H , J 0
M , S0

M , E0
M , I 0

M

)

=
(

θ

μH
, 0, 0, 0,

K (βJ βM − μJ μM − βMμM )

βJ βM − μJ μM
,

KβM (βJ βM − μJ μM − βMμM )

μM (βJ βM − μJ μM )
, 0, 0

)
.

(2)

The next generation operator approach as described by Diekmann 1990 is used to define the
basic reproductive number, Rm , as the number of new infections (in mosquitoes or humans)
from one infectious individual (human or mosquito) over the duration of the infectious period,
given that all other members of the population are susceptible [16].

Rm =
√

abH κH

μM (κM + μM )

abMκM

(κH + μH )(μH + α + η)
(3)

2.2 Local stability of the Disease-free Equilibrium E0

The local stability of the disease free equilibrium can be discussed by examining the linearised
form of the system (1) at the steady state E0.
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Theorem 1 The disease-free equilibrium E0 is locally asymptotically stable whenever Rm <

1, and unstable otherwise.

Proof The Jacobian matrix of the model (1) evaluated at the disease free equilibrium point
is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 ν γ 0 0 0 −abH Q3
0 −(κH + μH ) 0 0 0 0 0 abH Q3
0 κH −Q1 0 0 0 0 0
0 0 α −(γ + μH ) 0 0 0 0
0 0 0 0 Q2 0 0 0
0 0 −abM Q4 0 βM −μM 0 0
0 0 abM Q4 0 0 0 −(κM + μM ) 0
0 0 0 0 0 0 κM −μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where Q1 = (ν + μH + α + η) and Q2 = −(μJ + βM ) + 2μJ
(βJ βM −μJ μM −βM μM )

βJ βM −μJ μM

Q3 = θ
μH

μM (βJ βM −μJ μM )
KβM (βJ βM −μJ μM −βM μM )

and Q4 = KβM (βJ βM −μJ μM −βM μM )
μM (βJ βM −μJ μM )

μH
θ

= 1
Q3

.

The first and the sixth columns have diagonal entries resulting in the diagonal entries being
two of the eigenvalues of the Jacobian. Now excluding these columns and the corresponding
rows we calculate the remaining eigenvalues.⎡

⎢⎢⎢⎢⎢⎢⎣

−(κH + μH ) 0 0 0 0 abH Q3

κH −Q1 0 0 0 0
0 α −(γ + μH ) 0 0 0
0 0 0 Q2 0 0
0 abM Q4 0 0 −(κM + μM ) 0
0 0 0 0 κM −μM

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Again the third and fourth columns have diagonal entries making them two other eigenvalues.
Excluding these columns and the corresponding rows we calculate the remaining eigenvalues
from ⎡

⎢⎢⎣
−(κH + μH ) 0 0 abH Q3

κH −Q1 0 0
0 abM Q4 −(κM + μM ) 0
0 0 κM −μM

⎤
⎥⎥⎦ .

Let a1 = κH + μH , a2 = 0, a3 = 0, a4 = abH

In the same manner,
b1 = κH , b2 = μH + α + η, c2 = abM , c3 = κM + μM , d3 = κM , d4 = μM

The eigenvalues are solutions of the characteristic equation of the reduced matrix of
dimension four which is given by

(κH + μH + λ)[(μH + α + η + λ)(κM + μM + λ)(μM + λ)] − abH (κH abMκM ) = 0

which is simplified to

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0, (4)

where

A3 = a1 + b2 + c3 + d4

A2 = (a1 + d4)(b2 + c3) + a1d4 + b2c3

A1 = c3d4(b2 + a1) + a1b2(c3 + d4)

A0 = a1b2c3d4 − a2bH κH κM bM

(5)
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The Routh–Huwirtz conditions are sufficient and necessary conditions on the coefficients of
the polynomial (4). These conditions ensure that all roots of the polynomial given by (4) have
negative real parts. For this polynomial, the Routh–Hurwitz conditions are A3 > 0, A2 >

0, A1 > 0, A0 > 0 and

H1 = A3 > 0,

H2 =
∣∣∣∣ A3 1

A1 A2

∣∣∣∣ > 0,

H3 =
∣∣∣∣∣∣

A3 1 0
A1 A2 A3

0 A0 A1

∣∣∣∣∣∣ > 0,

H4 =

∣∣∣∣∣∣∣∣

A3 1 0 0
A1 A2 A3 1
0 A0 A1 A2

0 0 0 A0

∣∣∣∣∣∣∣∣
> 0,

Since all Ai > 0, i = 1, 2, 3.

Note that from A0 = a1b2c3d4 − a2bH κH κM bM the reproduction number reduces to

R2
m = a2bH κH κM bM

a1b2c3d4

Hence if Rm < 0, A0 > 0.
Clearly, H1 = A3 > 0.

H2 = A3 A2 − A1

= (b2 + c3)(b2 + d4)(c3 + d4) + a2
1(b2 + c3 + d4) + a1(b2 + c3 + d4)

2 (6)

which is positive.

H3 = A1(A3 A2 − A1) − A0 A2
3

= a3
1(b2 + c3)(b2 + d4)(c3 + d4) + b2c3(b2 + c3)d4(b2 + d4)(c3 + d4)

+a4b1c2d3(b2 + c3 + d4)
2 + a2

1(a4b1c2d3 + b3
2(c3 + d4) + 2b2

2(c3 + d4)
2

+c3d4(c3 + d4)
2 + b2(c

3
3 + 4c2

3d4 + 4c3d2
4 + d3

4 )) + a1(b
3
2(c3 + d4)

2

+(c3 + d4)(2a4b1c2d3 + c2
3d2

4 ) + b2
2(c

3
3 + 4c2

3d4 + 4c3d2
4 + d3

4 )

+2b2(a4b1c2d3 + c3d4(c3 + d4)
2)) (7)

which is also positive.
It can be easily seen that H4 = A0 H3.
Therefore, all eigenvalues of the Jacobian matrix have negative real parts when Rm < 1.

However, Rm > 0 implies that A0 < 0, and since all coefficients of the polynomial (4) are
positive, not all roots of this polynomial can have negative real parts. This means that when
Rm > 1, the disease free equilibrium point is unstable. �	
2.2.1 Endemic equilibria and stability analysis

The endemic equilibrium point E1 is a steady-state solution where the disease persists in the
population. The endemic equilibrium of model system (1) is given by

E1 = (S∗
H , E∗

H , I ∗
H , R∗

H , S∗
M , E∗

M , I ∗
M ),

in terms of the forces of infection λH and λM , where
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S∗
H = θ(γ + μH )(κH + μH )(μH + α + η)

μH (γ + μH )(κH + μH )(μH + α + η) + λH [μH (γ + μH )(+μH + α + η) + κH (γ η + μH (μH + α + η))]

E∗
H = θλH (γ + μH )(μH + α + η)

λH [μH (γ + μH )(μH + α + η) + κH (γ η + μH (μH + α + η))] + μH (γ + μH )(κH + μH )(μH + α + η)

I ∗
H = θκH λH (γ + μH )

λH [μH (γ + μH )(μH +)α + η) + κH (γ η + μH (μH +)α + η))] + μH (γ + μH )(κH + μH )(μH + α + η)

R∗
H = (1 − p)αθκH λH

λH [μH (γ + μH )(μH + α + η) + κH (γ η + μH (μH + α + η))] + μH (γ + μH )(κH + μH )(μH + α + η)

J ∗
M =

KβM + N∗
M βJ + KμJ ±

√
(KβM + N∗

M βJ + KμJ )2 − 4K N∗
M βJ μJ

2μJ

S∗
M =

βM [KβM + N∗
M β j + KμJ ±

√
(KβM + N∗

M βJ + KμJ )2 − 4K N∗
M βJ μJ ]

2μJ (λM + μM )

E∗
M =

βM λM [KβM + N∗
M β j + KμJ ±

√
(KβM + N∗

M βJ + KμJ )2 − 4K N∗
M βJ μJ ]

2μJ (κM + μM )(λM + μM )

I ∗
M =

βM κM λM [KβM + N∗
M β j + KμJ ±

√
(KβM + N∗

M βJ + KμJ )2 − 4K N∗
M βJ μJ ]

2μJ μM (κM + μM )(λM + μM )

N∗
M = KβM (βJ βM − βM μM − μJ μM )

μM (βJ βM − βM μM )

N∗
H = θ[(γ + μH )(μH + α + η)(λH + μH ) + κH {λH ((1 − p)α + γ + μH ) + (γ + μH )(μH + α + η)}]

μH (γ + μH )(μH +)α + η)(λH + μH ) + κH [μH (γ + μH )(μH + α + η + λH (γ η + μH (μH + α + η))]

λM = aθbM κH λH μM (γ + μH )(βJ βM − μJ μM )

KβM [μH (γ +μH )(μH +α+η)(λH +μH ) + κH {μH (γ + μH )(μH + α + η) + λH [γ η + μH (μH + α + η)]}](βJ βM − (βM + μJ )μM )

λH = abH βM κM λM [μH (γ + μH )(μH + α + η)(λH + μH ) + κH [μH (γ + μH )(μH + α + η + λH (γ η + μH (μH + α + η))]A]
2θ[(γ + μH )(μH + α + η)(λH + μH ) + κH {λH ((1 − p)α + γ + μH ) + (γ + μH )(μH + α + η)}]μJ μM (κM + μM )(λM + μM )

where

A = 2KμJ (βJ βM − (βM + μJ )μM )

βJ βM − μJ μM
(8)

From expanding and simplifying the equation of λH , we obtain third order equation in λH

as follows

λH (B1λ
2
H + B2λH + B3) = 0,

where B1 = 2KμJ μM [κH ((1− p)α+γ +μH )+(γ +μH )((1− p)α+η+ pα+μH )](κM +
μM ){βJ βM − (βM +μJ )μM }[aθbMκH (γ +μH )(βJ βM −μJ μM )+ κβM (βJ βM − (βM +
μJ )μM )(μH (γ + μH )(η + α + μH ) + κH (γ η + μH ((1 − p)α + η + γ + μH )))],
B2 = 2KμJ (βJ βM −(βM +μJ )μM )

[
aθbMκH (γ +μH )(η+α+μH )(κH +μH )μM (κM +

μM )(βJ βM − μJ μM ) + a2 K bH bMβMκH κM (−μH (γ + μH )(η + α + μH ) − κH (γ η +
μH ((1 − p)α + γ + η + μH )))(βJ βM − (βM + μJ )μM ) + KβM (η + α + μH )μM (κM +
μM )(βJ βM − (βM + μJ )μM ){κ2

H μH ((1 − p)α + γ + μH ) + κH μ2
H (α + γ + μH ) +

2κH μH (γ +μH )(η +α +μH )+ 2μ2
H (γ +μH )(η +α +μH )+ 2Kκ3

H (γ η + ((1 − p)α +
γ + η + μH )μH )2μJ μM (κM + μM )(βJ βM − (βM + μJ )μM )}

]
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B3 = 2K 2βMμH μJ (γ +μH )2(η+α +μH )(κH +μH )(βJ βM − (βM +μJ )μM )2[−a2bH

bMκH κM + μM (κM + μM )(κH + μH )(η + α + μH )] which reduces to

B3 = C(−R2
m + 1)

where C = 2K 2βMμH μJ (γ + μH )2(η + α + μH )(κH + μH )(βJ βM − (βM + μJ )μM )2

Now

λH (B1λ
2
H + B2λH + B3) = 0,

gives λ∗
H = 0 which corresponds to the disease free equilibrium, and

λ∗
H =

−B2 ±
√

B2
2 − 4B1 B3

2B1
> 0

for the endemic equilibrium.

−B2 ±
√

B2
2 − 4B1C(1 − R2

m) > 0

−B2 ±
√

B2
2 + 4B1C(R2

m − 1) > 0

B2
2 < B2

2 + 4B1C(R2
m − 1)

0 < 4B1C(R2
m − 1)

(9)

Clearly, B1 is always positive or negative and C is always positive. If B1 is negative, then
Rm < 1 and if B1 is positive, Rm > 1. Thus E1 exists for both Rm < or > 1 and this
result is summarised in lemma below.

Lemma 1 The endemic equilibrium E∗ exists and is unique whenever Rm > 1, and there
exists a backward bifurcation when Rm < 1, (B1 < 0).

2.3 Local stability of the Endemic Equilibrium

The stability of the endemic equilibrium can be determined by computing the eigenvalues of
the Jacobian matrix and then evaluate it at the endemic equilibrium. However this approach is
mathematically complicated for the system of equations (1). Bifurcation analysis is performed
at the disease free equilibrium by using Center Manifold Theory as presented in Chavez and
Song [21].

The system (1) is rewritten by introducing the dimensionless state variables; let x1 =
SH , x2 = EH , x3 = IH , x4 = RH , x5 = JM , x6 = SM , x7 = EM , x8 = IM .

We can write

d Xi

dt
= F(Xi )

where Xi = (x1, x2, ..., x8)
T , F = ( f1, f2, ..., f8)

T and (.)T represents the matrices trans-
pose.
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Assessing the impact of temperature on malaria 1103

The system of equations (1) becomes

dx1

dt
= θ − aφ∗x8x1

NM
− μH x1 + pαx3 + γ x4 = f1

dx2

dt
= aφ∗x8x1

NM
− (κH + μH )x2 = f2

dx3

dt
= κH x2 − (pα + μH + (1 − p)α + η)x3 = f3

dx4

dt
= (1 − p)αx3 − (γ + μH )x4 = f4

dx5

dt
= [βJ NM − μJ (T )x5]

(
1 − x5

K

)
− βM x5 = f5

dx6

dt
= βM x5 − abM x3x6

NH
− μM x6 = f6

dx7

dt
= abM x3x6

NH
− (κM + μM )x7 = f7

dx8

dt
= κM x7 − μM x8 = f8 (10)

where NH = x1 + x2 + x3 + x4 and NM = x6 + x7 + x8, with φ∗ = bH from (3). Suppose
that φ∗ is a bifurcation parameter, the system (10) is linearised at disease free equilibrium
point E0 when φ = φ∗ with Rm = 1. Now solving for Rm = 1 in (3) gives

φ∗ = μM (κM + μM )(κH + μH )(pα + μH + (1 − p)α + η)

a2bMκM
.

Then zero is a simple eigenvalue of the following Jacobian matrix with the application of the
bifurcation parameters.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 pα γ 0 0 0 −aφQ3

0 −(κH + μH ) 0 0 0 0 0 aφQ3

0 κH −Q1 0 0 0 0 0
0 0 (1 − p)α −(γ + μH ) 0 0 0 0
0 0 0 0 Q2 0 0 0
0 0 −abM Q4 0 βM −μM 0 0
0 0 abM Q4 0 0 0 −(κM + μM ) 0
0 0 0 0 0 0 κM −μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where Q1 = (pα +μH + (1− p)α +η), Q2 = −(μJ +βM )+2μJ
(βJ βM −μJ μM −βM μM )

βJ βM −μJ μM
,

Q3 = θ
μH

μM (βJ βM −μJ μM )
KβM (βJ βM −μJ μM −βM μM )

and Q4 = KβM (βJ βM −μJ μM −βM μM )
μM (βJ βM −μJ μM )

μH
θ

= 1
Q3

.

A right eigenvector associated with the eigenvalue zero is ω = (ω1, ω2, ..., ω7).
Solving gives the system

μH ω1 + pαω3 + γω4 − aφQ3ω8 = 0

−(κH + μH )ω2 + aφQ3ω8 = 0

κH ω2 − (pα + μH + (1 − p)α + η)ω3 = 0

(1 − p)αω3 − (γ + μH )ω4 = 0(
− (μJ + βM ) + 2μJ

(βJ βM − μJ μM − βMμM )

βJ βM − μJ μM

)
ω5 = 0
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1104 E. T. Ngarakana-Gwasira et al.

−abM Q4ω3 + βMω5 − μMω6 = 0

abM Q4ω3 − (κM + μM )ω7 = 0

κMω7 − μMω8 = 0 (11)

Solving the system (11), gives the following right eigenvector

ω1 = aφQ3ω8 pαω3 − γω4

μH

ω2 = aφQ3ω8

κH + μH

ω3 = κH ω2

pα + μH + (1 − p)α + η

ω4 = (1 − p)αω3

γ + μH

ω5 = 0

ω6 = abM Q4ω3 + βMω5

μM

ω7 = abM Q4ω3

κM + μM

ω8 = κMω7

μM
(12)

The left eigenvector satisfying v.ω = 1 is v = (v1, v2, ..., v8). To find these left eigenvector
associated with the eigenvalue 0, the matrix should be transposed.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 0 0 0 0 0 0
0 −(κH + μH ) κH 0 0 0 0 0
pα 0 −Q1 (1 − p)α 0 −abM Q4 abM Q4 0
γ 0 0 −(γ + μH ) 0 0 0 0
0 0 0 0 Q2 βM 0 0
0 0 0 0 0 −μM 0 0
0 0 0 0 0 0 −(κM + μM ) κM

−aφQ3 aφQ3 0 0 0 0 0 −μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From which the following system is calculated

−μH v1 = 0

−(κH + μH )v2 + κH v3 = 0

pαv1 − (pα + μH + (1 − p)α + η)v3 + (1 − p)αv4 + abM Q4v6 − abM Q4v7 = 0

γ v1 − (γ + μH )v4 = 0(
− (μJ + βM ) + 2μJ

(βJ βM − μJ μM − βMμM )

βJ βM − μJ μM

)
v5 + βMv6 = 0

−μMv6 = 0

−(κM + μM )v7 + κMv8 = 0

−aφQ3v1 + aφQ3v2 − μMv8 = 0 (13)

The left eigenvector is solved and the result is v1 =0, v2 =v2 > 0, v3 = (κH + μH )v2

κH
,

v4 = 0, v5 = 0, v6 = 0, v7 = κM

κM + μM
v8, v8 = aφQ3

μM
v2.
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The theorem in Chavez and Song (2004) is reproduced below for convenience, and will
be useful to prove local stability of the endemic equilibrium point near

Rm = 1 [21].

Theorem 2 Consider the following general system of ordinary differential equations with a
parameter φ

dx

dt
= f (x, φ), f : R

n × R → R and f ∈ C
2(Rn × R)

where 0 is an equilibrium point of the system, (that is f (0.φ) = 0 for all φ) and assume

A1 : A = Dx f (0, 0) = (
d fi

dxi
(0, 0)) is the linearization matrix of System (24) around the

equilibrium 0 with evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues
of A have negative real parts;

A2 :Matrix A has a nonnegative right eigenvectorω and a left eigenvectorv corresponding
to the zero eigenvalue. Let fk be the kth component of f and

acs =
n∑

k,i, j=1

vkωiω j
∂2 fk

∂xi∂x j
(0, 0)

bcs =
n∑

k,i=1

vkωi
∂2 fk

∂xi∂φ
(0, 0)

then the local dynamics of the system around 0 are totally determined by the sign of acs and
bcs .

1. acs > 0, bcs > 0. When φ < 0 with |φ| << 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < φ << 1, 0 is unstable and there
exists a negative and locally asymptotically stable equilibrium;

2. acs < 0, bcs < 0. When φ < 0 with |φ| << 1, 0 is unstable; when 0 < φ << 1, 0
is locally asymptotically stable, and there exists a positive unstable equilibrium;

3. acs > 0, bcs < 0. When φ < 0 with |φ| << 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when0 < φ << 1, 0 is stable, and
a positive unstable equilibrium appears;

4. acs < 0, bcs > 0. When φ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive
and locally asymptotically stable.

Particularly, if acs > 0 and bcs > 0, then, a backward bifurcation occurs at φ = 0.

Computation of acs and bcs

For the system (10), the associated non-zero second order partial derivatives at disease free
equilibrium are given by

acs =
3∑

k,i, j=2

vkωiω j
∂2 fk

∂xi∂x j
(0, 0) +

8∑
k,i, j=7

vkωiω j
∂2 fk

∂xi∂x j
(0, 0)

bcs =
3∑

k,i=2

vkωi
∂2 fk

∂xi∂φ
(0, 0) +

8∑
k,i=7

vkωi
∂2 fk

∂xi∂φ
(0, 0)
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Since v1, v4, v5, v6 = 0, for k = 1, 4, 5, 6 then k = 2, 3, 7, 8 should be considered.
That is, the following functions will be used to find acs and bcs from the system (10).

f2 = aφx8x1

NM
− (κH + μH )x2

= μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )
aφx8x1 − (κH + μH )x2

NH = x1 + x2 + x3 + x4

f2 = μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )
aφx8(NH −x2−x3−x4)−(κH +μH )x2 (14)

f7 = abM x3x6

NH
− (κM − μM )x7

NM = x6 + x7 + x8

f7 = aμH bM x3

θ
(NM − x7 − x8) − (κM − μM )x7 (15)

hence

∂2 f7

∂x7∂x3
= −aμH bM

θ
= ∂2 f7

∂x8∂x3
.

Therefore

acs = − μM (βJ βM −μJ μM )

KβM (βJ βM − μJ μM −βMμM )
aφ{v2ω8{ω2 + ω3}} − aμH bM

θ
(v7ω3{ω7 + ω8})

Now simplifying

− μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )
aφ{v2ω8(ω2 + ω3)}

gives

− μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )
a2φ2v2ω

2
8

[
κH + μH + α + η

(κH + μH )(μH + α + η)

]

On the other hand,

−abMμM

θ
{v7ω3(ω7 + ω8)} = −a2b2

MμH )

θ
v7ω

2
3

Hence

acs =−a2φ2v2ω2
8

μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )

[
κH + μH + α + η

(κH + μH )(μH + α + η)

]

−
{

a2b2
M μH
θ v7ω2

3

}

If we let P1 = −a2φ2v2ω
2
8

μM (βJ βM − μJ μM )

KβM (βJ βM − μJ μM − βMμM )

[
κH + μH + α + η

(κH + μH )(μH + α + η)

]

and

P2 =
{

a2b2
MμH

θ
v7ω

2
3

}

such the acs = P1 − P2.
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Table 2 Possibilities of the sign of acs

Case 1 βJ βM − μJ μM > βMμM P1 < 0 P1 − P2 < 0 acs < 0

Case 2 βJ βM − μJ μM < βMμM P1 > 0 P1 − P2 < 0 acs < 0

Case 3 βJ βM − μJ μM < βMμM P1 > 0 P1 − P2 > 0 acs > 0

Possibilities for the sign of acs are explored in Table 2 below

∂ f2

∂φ
= ax8 and

∂2 f2

∂x8∂φ
= a

Therefore

bcs = av2ω8 > 0.

Theorem 3 If acs > 0, then, model system (1) undergoes a backward bifurcation at Rm

close to 1, otherwise acs < 0 and a unique endemic equilibrium E1 guaranteed by Theorem
2 is locally asymptotically stable for Rm > 1, but close to 1.

2.4 Effect of temperature dependant parameters on the reproduction number

The effect of climate change is investigated by examining the effect of climate components
on the disease reproduction number. Evidence suggests that the mosquito biting rate (a),
mosquito mortality rate (μM ) and the parasite development rateκM are all sensitive to changes
in temperature. The change in Rm , with a change in mean temperature can be determined
by the sum of the effects of temperature on each temperature sensitive component of Rm

coupled with the corresponding change to Rm .

dRm

dT
= da

dT

dRm

da
+ dκM

dT

dRm

dκM
+ dμM

dT

dRm

dμM
(16)

The mathematical relationships between Rm and the temperature-sensitive biological para-
meters are as follows:

dRm

da
= Rm

a
dRm

dκM
= Rm

2

(
1 − 1

κM + μM

)

dRm

dμM
= −Rm

2

[
2μM + κM

μM (κM + μM )

] (17)

The system of equations in 17 shows that an increase in a, and κM will have a positive effect
on Rm, while increasing μM will have a negative effect. The quantitative effect of temperature
change on Rm will depend on both the individual relationships of these parameters with
temperature and their combined impact within the Rm equation.

1. Mosquito biting rate a(T )

The biting rate represents the frequency of feeding activity by mosquitoes per day.

a(T ) = 0.000203T (T − 11.7)
√

42.3 − T .
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Hence

da

dT
= 0.000406(T − 10.7)(42.3 − T ) − 0.000203T (T − 11.7)

2
√

42.3 − T
da

dT
= −0.000609T 2 + 0.023891T − 0.18376

2
√

42.3 − T

(18)

2. Mosquito mortality rate μM (T )

μM (T ) = − ln p(T ), where p(T ) = e
−1

AT 2+BT +C is the daily survival rate. Therefore

dμM

dT
= −(2AT + B)

(AT 2 + BT + C)2 (19)

3. Progression rate of mosquitoes to infectious class κM = T −Tmin
DD where DD is the total

degree days for the parasite development, T is the mean temperature in degrees centigrade
and Tmin is the temperature at which parasite development ceases.
DD = 111 while Tmin is 16 for plasmodium falciparum.

dκM

dT
= 1

DD
(20)

Substituting equations (17,18, 19, 20) into equation (16) we have

dRm

dT
= Rm

[−0.000609T 2 + 0.023891T − 0.18376

2a
√

42.3 − T

+ 2AT + B

2(AT 2 + BT + C)

(
1

μM
+ 1

(κM + μM )

)
+ 1

2DD

(
1 − 1

(κM + μM )

)]

Let
0.023891T

2a
√

42.3 − T
= G1,

2AT + B

2(AT 2 + BT + C)

(
1

μM
+ 1

(κM + μM )

)
= G2,

1

2DD
= G3 and

0.000609T 2 + 0.18376

2a
√

42.3 − T
+ 1

2DD(κM + μM )
= G4

Then

dRm

dT
= Rm(G1 + G2 + G3 − G4).

If G1 + G2 + G3 − G4 < 0 then dRm
dT < 0 and increase in temperature results in a decrease

in Rm, typically in regions which experience extremely high temperatures. If G1 + G2 +
G3 − G4 > 0 then dRm

dT > 0 and Rm increases as temperature increases the epidemic also
increases.

In Fig. 2, the relationship between temperature and mosquito biting rate, parasite devel-
opment rate, mosquito mortality rate, and malaria reproduction number respectively, are
illustrated. The mosquito biting rate is low at lower temperatures but increases to a maxi-
mum as temperature increases. Mosquito mortality is high at low temperatures, decreases
to a minimum between 20 and 25 ◦C before increasing at temperatures beyond 250C . The
temperature range where Rm > 1 for malaria is 22.34–38.6 ◦C. A maximum Rm of 3.65
occurs at 31.5 ◦C.

We carry out numerical simulations using a fourth order Runge-Kutta scheme in Matlab
with the aim of verifying some of the analytical results on the stability of the system (1).
The parameter values that we use for numerical simulations are in Table 1. For numerical
simulations, the following initial values are used:
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(a)
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b)
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0.18

0.2

0.22

(c)
15 20 25 30 35 40
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0.05

0.1

0.15

0.2

0.25

(d)
20 22 24 26 28 30 32 34 36 38 40

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2 Simulation of a mosquito biting rate, b mosquito mortality rate, c progression rate of mosquitoes,
d Rm versus temperature

SH = 1000, EH = 300, IH = 200, RH = 0, JM = 30000, SM = 10000,

EM = 1000, IM = 1000.

In Fig. 3, the effects of varying temperature on the infected human and mosquito popula-
tions is illustrated. The simulations reveal both the endemic equilibrium and the disease free
equilibrium points as temperature is varied from 20 − 40 ◦C. In Fig. 3, if temperatures are to
average 20 ◦C, the infected human and mosquito population declines to asymptotically low
levels as mosquito survives at above 22 ◦C [18]. Furthermore, infected mosquito and human
populations tend to decline to asymptotically low levels faster when temperatures average
40 ◦C as compared to temperatures averaging 20 ◦C . This may be due to increased death
rate of juvenile mosquitoes as ponds dry up quickly because of high evaporation rates at high
temperatures and mosquitoes can not survive above 40 ◦C [19]. Infected humans tend to be
more at average temperatures of 35 ◦C as compared to when T = 30 ◦C (the range of optimal
temperature for malaria transmission). This is possibly due to increased mosquito biting rate
and parasite development rate at higher temperatures.

Figure 4 shows that mosquito biting rate plays a more significant role in the increase of Rm

than any other factor. This suggests that mosquito biting rate promotes malaria transmission
than any other factor. Thus intervention strategies should be tailor made to prevent mosquito
bites.

Figure 5 illustrates the effect of varying four sample parameters on the reproductive
number Rm .
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(a) (b)

(c) (d)

Fig. 3 Simulation of a Exposed humans, b Infectious humans, c Exposed mosquitoes, and d infectious
mosquitoes as temperature varies

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Mosquito biting rate

Progression rate of humans

Mosquito to human infection

Mosquito mortality rate

Progression rate of mosquitoes

Natural death rate for humans

Recovery rate of humans

Disease induced death rate

Human to mosquito infection

Fig. 4 Partial rank correlation coefficients showing the effect of parameter variations on Rm using ranges
in the table. Parameters with positive PRCCs will increase Rm when they are increased, whereas parameters
with negative PRCCs will decrease Rm when they are increased
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(a) (b)

(c) (d)

Fig. 5 Monte Carlo simulations of a mosquito biting rate, b mosquito mortality, c human to mosquito infection,
and d recovery rate of humans

3 Discussion

In this paper, a mathematical model to explore the impact of temperature on malaria
transmission is presented as a system of differential equations and analysed. The model
is shown to exhibit backward bifurcation where disease-free and endemic equilibria
co-exist when the reproduction number is less than unity. In such a scenario, mak-
ing the reproduction number less than unity will not be enough to contain the epi-
demic. Analysis of the model suggests that temperature range 23–38 ◦C is ideal for
malaria transmission. The reproduction number increases as temperature increases to
attain a maximum at 31.5 ◦C, beyond which the reproduction number starts declin-
ing. This result suggests the optimal temperature for malaria transmission is around
31 ◦C. The analysed results are also supported by numerical simulations which show
an increase in malaria cases as temperature increases to about 38 ◦C and a decrease
thereafter. From the PRCCs, it is illustrated that the death rate of mosquitoes have
a negative impact on the reproduction number. Thus, results suggest that any fac-
tor which contributes to increased mosquito death like spraying, use of treated mos-
quito nets has potential to reduce malaria transmission. Thus, mosquito spraying, cou-
pled with the use of treated mosquito nets has a great potential to control this deadly
tropical scourge. Given high incidences of tuberculosis in Sub-saharan Africa, where
malaria is also endemic, this model can be extended to incorporate the malaria and TB
coinfection.
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