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Abstract
To enhance production efficiency and quality, there is a rising interest in integrating robots into small manufacturing entities
(SMEs) to enable flexible and agile production processes, thereby reducing redundancy. This poses challenges for robots as
they must perform various tasks in unstructured environments without necessitating specialized programming training for
workshop workers. This approach aims to reduce redundancy and streamline operations. To address these challenges, this
paper presents a code-free system for programming robot tasks, which leverages an interactive programming interface and
kinesthetic teaching methods. The system operates in three phases. Initially, the kinesthetic teaching method is employed
to demonstrate the task, and the data generated from this demonstration are utilized for skill acquisition and visualization
of the robot’s state within the human–robot interaction software interface. Next, the demonstrated trajectories are learned
through dynamic motion primitives, and various sub-skills form the skill library necessary for task completion. Ultimately,
the skill library is activated to guide the actual robotic arm in executing the task. This approach allows end users to construct
a skill library for a specific task without delving into task code-level programming. To validate the system’s effectiveness,
we invited experimenters to utilize our system for programming a designated task. The results demonstrate that users without
programming experience can efficiently and flexibly employ our system to program robots for various tasks.

Keywords Human–robot interaction · Kinesthetic teaching · Learn from demonstration · Robot skills

1 Introduction

Over the past few years, we have entered the era of collab-
orative robots, where robots are no longer viewed as bulky
machines confined to the production line but actively partic-
ipate in shared workspaces alongside human workers. They
can operate safely alongside humans without the need for
fencing, enhance production processes, and facilitate the
automation of novel processes.
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To enhance both production efficiency and quality, there is
a burgeoning interest in integrating robots into small manu-
facturing entities (SMEs) [1]. Nevertheless, SMEs encounter
numerous distinct challenges. Initially, SMEs must possess
the capability to swiftly adjust production lines for manufac-
turing newproducts in small batches. This necessitates robots
to seamlessly execute diverse tasks within evolving work-
flows. Moreover, ideally, this repurposing should be achiev-
able by shop floor workers without the need for extensive
training or specialized programming skills. Lastly, systems
must be adaptable to unstructured environmentswhere equip-
ment, tools, and components are often not fixed andmay vary
in position, orientation, or shape. Although low-cost collab-
orative industrial robots have witnessed increased adoption
in robotic automation among SMEs, several fundamental
issues persist as barriers hindering SMEs from implementing
robotic automation in their factories.

A straightforward system that enables end users to intu-
itively program robots [2, 3] represents a crucial step toward
transitioning robots from the laboratory to real-world appli-
cations. While experts can often effectively program robots
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to execute complex tasks, such programming is typically
knowledge-intensive, time-consuming, and often tailored to
specific tasks. To tackle this challenge, recent efforts have
concentrated on robotic learning by demonstration (LfD)
[4–6] or programming by demonstration (PbD) [7–9]. In
these approaches, non-expert users can teach robots task
performance through demonstrations. Modern collaborative
robotic arms like the UR series and KUKA iiwa7 support
kinesthetic teaching [10, 11], where users can manually
manipulate the end of the robotic arm to demonstrate task
completion. These demonstrations eliminate the necessity
for expertise in the robotic system and often only require a
fraction of the time compared to manually designing a con-
troller by an expert.

The interactive capabilities of current collaborative robotic
arms enable them to demonstrate task trajectories through
kinesthetic teaching [12–14]. However, they lack further
semantic understanding and skill acquisition from thedemon-
stration data, limiting their overall intelligence. With the aim
of enhancing robotic arm intelligence, our goal is for the
robotic arm to acquire skills and replicate the demonstrated
data.

Ideally, learning from demonstration systems should be
capable of mastering and generalizing complex tasks with
minimal demonstrations, without the need for extensive
robotic expertise. A significant portion of research in learn-
ing from demonstration (LfD) has concentrated on scenarios
where a robot learns a comprehensive policy from a demon-
stration of a straightforward task with clearly defined starting
and ending points. However, this approach frequently proves
inadequate for complex tasks that cannot be effectively mod-
eled using a single policy. Hence, structured demonstrations
are frequently offered for a sequence of subtasks or skills
that are simpler to learn and apply broadly than the entire
task and that can be utilized across various tasks. However,
manually segmenting tasks and providing demonstrations of
individual skills present numerous challenges. As the most
intuitive method of demonstrating a task is to execute it con-
tinuously from beginning to end, breaking down the task into
component skills is not only time-consuming but also chal-
lenging. Effective segmentation demands an understanding
of the robot’s kinematics, internal representations, and exist-
ing skill sets. Defining skills requires qualitative judgment, as
skills may be repeated within and across tasks. This includes
determining when two parts can be considered a single skill
and deciding on the suitable level of granularity for segmen-
tation. Expecting users to manually manage these skill sets
over time is impractical.

To achieve this goal, this paper introduces an interactive
robot task programming system that relies on kinesthetic
demonstration. With this system, operators lacking rele-
vant robot programming experience can easily perform robot
task programming. Initially, the kinesthetic teaching method

is utilized to demonstrate the task, and the resulting data
can be employed for skill acquisition and visualization of
the robot’s state within the human–computer interaction
software interface. Next, the demonstration trajectories are
acquired through dynamic motion primitives, and various
sub-skills can form the skill repository needed to accomplish
the task. Lastly, utilize the skill library to execute the task.
As no code-level programming is necessary, the system out-
lined in this paper significantly reduces the requirements on
operators.

In conclusion, the primary contributions of this paper can
be summarized as follows:

(1) We introduce a framework that merges the advantages
of kinesthetic demonstration and a visual programming
interface, enabling intuitive teaching via demonstration
and adaptable execution of structured tasks.

(2) We suggest a segmented skill demonstration and learn-
ing approach that links segmented demonstrations with
skill repositories concurrently during a single kinesthetic
demonstration.

(3) We showcase the entire system, offering experimental
results to demonstrate the effectiveness of the proposed
method in task teaching and execution.

2 Background and RelatedWork

2.1 End-User Robot Programming

End-user robot programming [15] is designed to enable users
to program robots with complexity and ease of learning
that matches their level of expertise. Previous research has
investigated various programming modalities to enhance the
usability of robot programming for end users These include
natural language-based programming (e.g., [16, 17]), visual
programming (e.g., [18, 19]), tangible programming (e.g.,
[20, 21]), and programming in augmented (e.g., [22]) or
mixed reality (e.g., [23]).

Within the different end-user robot programming approac-
hes, one direct approach for defining robot skills without
manual programming is to demonstrate the task skill in
question. Demonstrations can be supplied using kinesthetic
teaching, where users physically guide the robot to perform
the desired action (e.g., [28, 29]), through video (e.g., [24,
25]), or via teleoperation of the robot (e.g., [32, 33]). Robot
motion trajectories can be demonstrated either as constant
paths or as a collection of waypoints for the robot to follow.

To enhance the usefulness of human demonstrations,
exploration in programming by demonstration (PbD) has
explored methods to broaden demonstrations to diverse
situations, allow robots to learn from numerous demonstra-
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tions of similar activities, and guide robots what actions to
avoid. However, PbD is largely dependent on the quality
of user-specified demonstrations. This work studies creating
and revising tools aimed at assisting end-users in creating
impactful and productive kinesthetic demonstrations. These
demonstrations are intended to support later learning meth-
ods.

2.2 Robot Learning fromDemonstration

Learning from demonstration (LfD) [26, 27] offers an intu-
itive approach to robot programming by allowing a human
demonstrator to show the robot how to complete tasks.
This method leverages the demonstrator’s existing procedu-
ral knowledge, minimizing the need for specialized skills
or training. LfD has gained significant attention due to its
potential to simplify robot programming.

Robot imitation learning, a key aspect of LfD, involves
reproducing the behavior demonstrated by a teacher. This
is typically achieved by collecting and utilizing trajectories
generated through kinesthetic teaching [28–31], telemanip-
ulation [32–36], or virtual simulation environments [37, 38].
Kinesthetic teaching, where the robot is physically guided to
exhibit desired behaviors, is particularly effective for learn-
ing and reproducing basicmotor primitives.Ourwork aims to
extend this by enabling robots to learn structured cooperative
tasks from kinesthetic demonstrations.

For instance, Takano [39] developed a method to segment
actions into dictionaries of basic movements, which can be
combined to create complex behaviors. Similarly, Zuyuan
Zhu et al. [26] proposed a method for learning grasping
poses for assembly tasks through kinesthetic teaching and
force controls. Their experiments on LEGO brick assembly
demonstrated the feasibility of teaching robots to perform
assembly taskswith simple demonstrations.However, further
research is needed to evaluate the system’s robustness across
various assembly scenarios, such as sliding into grooves,
screwing bolts, and chair assembly.

2.3 Trajectory Learning

Encoding skills at the trajectory level is a class of approaches
to skill modeling that use variables in joint space, task space,
or moment space to learn human motion. Among them,
statistics-basedmethods have been widely used because they
can effectively deal with the inherent variability of teaching
actions, for example, therewill be differences between teach-
ing actionswhen the same person demonstrates the same task
many times.

Trajectory learning [39–41] is a fundamental problem in
robotics skill learning [42, 43]. It enables robots to learn use-
ful skills and solve specific tasks. Many representations for
encoding observed behaviors have been proposed for trajec-

tory learning. Hidden Markov Models (HMMs) [45, 46] are
a popular representation for trajectory learning that utilizes a
Hidden Markov Model to encode the indicated trajectories,
exploiting the concept of keypoints to generate generalized
trajectories. Furthermore, David et al. proposed a Gaussian
Mixture Model (GMM) for motion encoding, which has
advantages over HMMduring trajectory reconstruction [44].

In recent years, there have been many skill modeling stud-
ies using dynamic system-based approaches. The stability of
the dynamic system can make the model robust to the dis-
turbance of the environment. DynamicMovement Primitives
[47–52] (DMP) take another approach, combining nonlinear
dynamical systems for trajectory modeling with statistical
machine learning. Originally proposed by the team of Pro-
fessor Stefan Schaal [47] in 2002, it is a method for trajectory
imitation learning, which has been applied to various fields
of robotics due to its highly nonlinear characteristics and
high real-time performance. DMPs formulations have many
desirable properties, such as stability and convergence, effi-
cient coupling with other dynamical systems for trajectory
modification, and robustness to environmental perturbations.

Work in DMP has looked at ways to generalize learned
behavior and adapt it to new situations. For example, the
literature [53] proposed the concept of query sub (Queries)
combined with the DMP model. Its goal is not only to con-
sider the motion control strategy learned from the teaching
data (that is, the original DMP model parameters), but also
to consider the robot’s task recurrence. In the task parame-
ters in the process, the DMP model that has been learned is
linkedwith the current task state through the query.When the
task status is different, it is very convenient to select/modify
the model parameters to achieve skill generalization. They
applied the proposed method to a robotic percussion instru-
ment task. Reference [54] proposed an improvedDMPmodel
for robots to learn the skills of playing table tennis.Reinforce-
ment learning has been applied toDMP toguide policy search
and improve learning behavior [55–57]. The general pro-
cess is: first, people teach the robot to get the teaching data;
according to the teaching data, the DMP model is learned;
in the skill reproduction stage, the learned DMP parameters
are used as the initial strategy of the reinforcement learning
algorithm, and the appropriate cost is defined according to the
task requirements. The function optimizes the DMP model
parameters until the task is completed. Literature [55, 56]
proposed a weighted search strategy learning algorithm with
reward,which is used for parameter adjustment andoptimiza-
tion of the DMP model, and the perception unit is coupled
to the transformation system of each degree of freedom of
the DMP model as an external environmental variable. Ref-
erence [57] applied the reinforcement learning algorithm to
the cooperative arm grasping task of mobile robots, and opti-
mized the high-dimensional (manipulator and manipulator)
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motion trajectories at the same time until the grasping task
was successfully completed.

DMP is also widely used to demonstrate through learn-
ing. Qian Luo et al. [58] proposed a general handwriting
learning system for a demonstration of a physical robot learn-
ing human handwriting to draw alphanumeric characters.
DMP is also used in the industrial field. Reference [59] pro-
poses a programming framework for exposure tasks based on
demonstration learning. The framework is demonstrated on
an industrial bonding task, showing that high-quality robotic
behavior can be programmed from a single demonstration.
Reference [60] describes an end-user instruction framework
for industrial robotic assistants that supports complex, event-
driven automation behaviors. The system has been deployed
in laboratory experiments and real industrial tasks in an SME.

3 SystemDesign

The architecture of the whole system is shown in Fig. 1. Dur-
ing the interactive demonstration of the task, the end user
can program the robot and control the opening and closing
of the end gripper through the interactive command menu of
the human–robot interaction software. The demonstration of
the task is achieved through the kinesthetic teaching func-
tion of the collaborative robot arm. Skill learning is based on
dynamic motion primitives to encode demonstration trajec-
tories to achieve trajectory-level learning.

The system of this paper mainly includes three parts:
First, the Windows human–robot interaction software ter-

minal, including the human–robot interaction UI menu and
the digital twin simulation environment of the robot state
visualization. The second is the skill learning and robotic
arm control backend, including the DMP-based skill learn-
ing module, and the program package developed based on
ROS and MoveIt to control UR5 and Robotiq hardware. The
third is the hardware part, including robotic arms, grippers
and experimental workbenches.

4 Human–Robot Interaction Programming
Based on Kinesthetic Teaching

The system proposed in this paper supports human–robot
interaction during task demonstration and task execution.
In order to achieve natural interaction and incremental task
learning, the system can transform demonstration and execu-
tion at any time. The system introduction is shown in Fig. 2.
During the demonstration phase, the user can manually pull
the robotic arm to perform a task correctly. For example,
for the grasping task, the user can manually pull the robotic
arm to the pre-grasp position of the object, and then control
the closing of the gripper by clicking the “Close Gripper”
button in the interactive system menu, thus completing the
grasping task demonstration. The data throughout the teach-
ing period have been recorded and supervised by the skill
learning system. As the data input for skill learning, the seg-
mented motion data are automatically associated with the
corresponding subtasks. In this way, the low-level robotic
actions that the user teaches through kinesthetic teaching are

Fig. 1 System architecture
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Fig. 2 Human–robot interaction software

Fig. 3 Skill learning and reproduce

marked by the skill learning system subtask. The entire learn-
ing process will be described in further detail in the rest of
this section.

4.1 Human–Robot Interaction System

Around the concept of end-user programming, we built an
interactive system application where the end-user programs
the robot. The interface of this application is shown in Fig. 2
below. Thewhole application is developed based on the unity
game engine, which provides the function of demonstrating
and learning the tasks of the robotic arm.On the left side of the
application are some buttons for programming operations,
which can be operated by clicking with the mouse. On the
right is a model of UR5 collaborative robotic arm, a robotiq-
2f 85 griper model, and a robotic arm simulation platform
composed of some object models. Through the development
kit based on ROS-Sharp, the unity application can commu-
nicate with the program on the ROS side. The robotic arm
platform can be regarded as a simple digital twin system.
After the system is started, the unity application subscribes
to the joint position data of the real robotic arm platform in
real time, and the robotic arm simulation platform updates
in real time according to the subscribed data. The real hard-
ware platformof the robotic armachieves a fully synchronous
update of the pose.

4.2 Human–Robot Skill Teaching

Through the human–robot interaction application on the
Windows side and the kinesthetic teaching function of the
collaborative robotic arm, we can complete the interactive
demonstration and learning of robot tasks. Taking the task
of grabbing a water bottle as an example, let us describe the
entire flow of task programming.

(1) Start the programs on theWindows side andUbuntu side,
respectively

(2) Click the “Start Demo” button on the human–robot
interaction software interface to start the expert demon-
stration

(3) Start the kinesthetic teaching mode of the UR5 robotic
arm, and manually pull the end of the robotic arm to the
pre-grab position of the water bottle

(4) Click the “End Demo” button on the human–robot inter-
action software interface to end the expert demonstration

(5) At this time, the trajectory data of the “approaching”
water bottle is recorded by the skill learning system.
Click the “Lean Dmp” button to invoke the DMP algo-
rithm of the skill learning system to learn the “approach-
ing” skill and store it in the skill library

(6) Click “Open Gripper” on the human–robot interaction
software interface to complete the grabbing of the water
bottle, and the skill learning systemalso records the grab-
bing action and stores it in the skill library

(7) Repeat the above process to complete the demonstra-
tion and learning of skills such as moving, releasing,
and leaving, and finally form the “approach-grab-move-
release-leave” skill library for the task of grabbing a
water bottle. By clicking the “Dmp Generation” button,
you can call the skill library of the water bottle grabbing
task, click “Preview Dmp” to complete the trajectory
planning, generate control commands for the robotic arm
and gripper, and click the “Run Dmp” button to control
the real robot platform to complete the task of grabbing
the water bottle according to the planned trajectory.

4.3 Skill Learning

Through the human–robot interaction demonstration system,
we will demonstrate each subtask of a given task separately
and associate the subtask with the segmented demonstration
data. To reproduce the actions of the robot, we encode the
demonstration data of the subtasks into stable dynamic sys-
tems and refer to these systems as motion primitives. In this
paper, the motion primitives are learned from demonstra-
tions based on the DMP (Ijspeert et al. [48]) method. DMP
encodes a motion primitive into a second-order nonlinear
dynamic system. DMP models can generally be divided into
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discrete DMP models and rhythmic DMP models, respec-
tively, for different types of motion: point-to-point motion
and periodic motion. A single degree of freedom motion can
be expressed by the following formula:

τ v̇ = K
(
xg − x

) − Dv + (
xg − x0

)
f (s;ω)

τ ẋ = v

τ ṡ = −α1s
(1)

For the sake of simplicity, the time variable is ignored
here, for example, xt means x . The formulation represents a
transformation system that consists of two parts: a first-order
spring-damper system and a nonlinear term, f (s;ω). In the
formula, K and D represent the stiffness and damping of the
system, respectively, and D is usually set as: D = 1/4K . xg
and x0 represent the target position and initial position of the
motion, respectively; τ represent the time scaling constant,
which is shared by all formulas; x and v represent the posi-
tion and velocity of the motion trajectory, respectively, and
the relationship between the two is shown in the formula; s
represents the phase variable of the system, determined by
a canonical system, see formula, where α1 is a predefined
constant. The nonlinear term f (s;ω) in the formula can be
expressed by the following formula:

f (s;ω) = ωT g (2)

Among them, g represents a kernel vector, and w repre-
sents a set of policy parameters, which can directly determine
the trajectory shape. The elements in the kernel vector are
defined as:

[g]n = ϕn (s) s
N∑

n−1
ϕn (s)

(3)

where ϕn (s) represents a set of basis functions, and usu-
ally defines radial basis functions, namely Gaussian kernels:

ϕn (s) = exp (−hn (s − cn)) (4)

In the formula, cn and hn represent the center value and
width value of the kernel function, respectively; N is the num-
ber of selected Gaussian models. Usually, cn is uniformly
distributedover the time length of the trajectory,hn is selected
according to experience; N can be selected according to the
complexity of the task.

Generally, a supervised learning algorithm such as a
locally weighted regression algorithm can be used to deter-
mine the model parameter w. Given a taught trajectory
xt , ẋt , ẍt , where t = [1 · · · T ] , xg = x (T ), the target force
function can be determined according to:

ft arg et = τ v̇ + Dv − K (x∂ − x)

xg − x
(5)

Furthermore, w is determined by the following formula:

min
∑ (

ft arg et − f (s)
)2 (6)

The above DMP model is for motion with one degree of
freedom, while robotic skill learning usually involves multi-
ple degrees of freedom, such as the need to control the end
pose or joints of a robotic arm, which has multiple joints.
In forming multi-joint systems from DMPs, we encode the
movement trajectories of each joint as separate DMPs. These
DMPs are then synchronized to ensure coordinated move-
ment across all joints. The system adjusts the parameters of
each DMP to account for the specific dynamics and con-
straints of the robotic arm, resulting in smooth and natural
multi-jointmotions. This approach allows for the flexible and
adaptive generation of complex movements, even in unstruc-
tured environments.

5 Experiments

In this section, our system is applied to a real programming
task to show that the proposed system can be used for fast
and flexible programming of robotic tasks. By inviting some
experimenters to evaluate the performance of learning and
using our programming system.

5.1 Experimental Setup

In this section, we conducted some experiments to verify
that our proposed method can (1) be used for fast robotic
structured task programming and (2) transfer the acquired
task knowledge in different task contexts. We consider two
typical tasks: the block pick and place task and the water
bottle pouring task.

Our experimental environment consists of both hardware
and software components. The hardware part includes the
UR5 cooperativemanipulator, theRobotiq-2F85 gripper, and
the experimental platform. As shown in Fig. 4, we use the
Aruco marker to calibrate the pose transformation relation-
ship between the camera and the manipulator. During the
experiment, the marker is used to calculate the pose of the
object and convert it to the base coordinate system of the
manipulator.

The software part includes a computer running Windows
10,which is used to run the human–robot interaction software
developed based on Unity, including the human–robot inter-
action menu and the digital twin environment of the robotic
arm, as introduced in Section 4. Additionally, a program
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Fig. 4 Experimental scene

developed based on ROS includes the DMP skill learning
algorithm and the robotic arm control algorithm. Communi-
cation betweenUnity andROS is facilitated by theRos-Sharp
project, enabling direct communicationwithROS topics, ser-
vices, and actions from C# code.

5.2 Experimental Results and Discussion

5.2.1 Pick and Place Experiment

In the first experiment, we taught the robot how to pick and
place green blocks into boxes. The first task contains five
sub-skills: approach, grab, move, release, and leave. During
the teaching process, the instructor controls the movement
of the robot arm by simply moving the end of the robot arm
and controls the opening and closing of the gripper and the
skill learning of the movement trajectory through the Unity
menu interface. Once the demonstration process is over, the
robot has completed the learning of skills and can perform
tasks by calling the learned skills library. In the demonstra-
tion process, each sub-skill is demonstrated separately and
learned accordingly. The automatic segmentation of skills is
done through the experience of human teaching experts, who
teach a sub-skill at the beginning and end of the GUI inter-
face. This forms a skill library, allowing the robot to complete
the given task by sequentially executing the sub-skills. In the
process of task execution, the skill library is called, and each
sub-skill generates the motion control output of the corre-
sponding robotic arm. A record of the task demonstration
and robot execution is shown in Fig. 5.

In order to quantitatively evaluate the effectiveness of the
proposed algorithm in this paper, we recorded the average
time of 10 task teaching and execution and recorded the
number of times the task was successfully executed under
10 cases. If the robot grabs the green block and moves the

Fig. 5 The robot learns to pick and place tasks

Table 1 Results for ten repetitions of the pick and place green building
block

Pick block Place block Leave

Teaching time (s) 18.838 15.634 10.823

Execution time (s) 91.0969

Success rate 100%

green block to a given position, it counts as a successful
experiment. In order to demonstrate the robustness of our
method to environmental changes, we change the initial posi-
tion of the block, place the block at any position to carry out
10 experiments, and count the number of times the task is
performed correctly to obtain the success rate. As shown
in Table 1, the teaching of the block grab and place task
takes about 50 s. The tasks were all successful in 10 experi-
ments with a 100% success rate. Experimental results show
that the proposed framework is able to transfer new skills to
robotic devices in a fairly fast, natural, and efficient manner.
In fact, in each experiment, the task was illustrated by a one-
time kinesthetic teaching demonstration, with the help of the
Unity menu interface for skill learning and control of gripper
opening and closing. Also, note that the execution time of the
task shown here is slightly longer than the time required for
the demonstration of the task. A possible solution to reducing
execution time is to increase the speed at which the robotic
device executes actions.

In order to evaluate the effect of DMP-based skill learning
of the system in this paper, we compared the demonstrated
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Fig. 6 Comparison of demonstration trajectories and generated trajec-
tories in x, y, and z axes

Fig. 7 Comparison of demonstration trajectory and generated trajec-
tory in three - dimensional space

joint trajectory datawith the trajectory generated by theDMP
algorithm. Figure6 is the comparison of the motion trajec-
tory data in the x, y, and z axes, respectively, and Fig. 7 is
the comparison of the motion data in the three-dimensional
space, where the red line represents the motion trajectory
curve collected during the teaching stage and the blue line is
the trajectory learned by the DMP algorithm.

As can be seen from the experimental results in Figs. 6
and 7, the DMP trajectory learning algorithm is better able
to imitate and demonstrate the trajectory, while ensuring the
convergence of the starting point and the ending point.

Fig. 8 The robot learns the task of grabbing a water bottle and pouring
water

5.2.2 Water Bottle Pouring Experiment

This experiment demonstrates how a complex, structured
task is learned and performed by the proposed framework.
We set a water pouring task, and the robot must complete
the following subtasks: (1) grab the water bottle; (2) move
to the position of the water glass; (3) pour water into the
water glass; (4) put the water bottle back to its position. As
shown, we recorded pictures of the demonstration and robot
execution of the four subtasks.

Similar to the previous experiment, we measured the
teaching and execution time, and the success rate of 10 repe-
titions of the experiment, respectively, and the position of the
water cupwas randomly placed. The experimental results are
shown in Table 2. On average, the total time for the demon-
stration water bottle pouring task is 55.3 s, and the time for
the robot to perform the task is 130s. Similar to the previ-
ous experiments, the longer execution time mainly depends
on the speed limit set by the robot during mission planning.
Table 2 also shows the demonstration times for each subtask.
It can be seen from the experimental results that the water
pouring subtask has the shortest time, because thewater pour-
ing subtask only needs to rotate the end joint of the robotic
arm to complete the task demonstration.

In this experiment, we also noticed that the task success
rate was very high (90%), with only 1 failure for 10 repeti-
tions. In the failed experiment, the robotic arm poured water
out of thewater glass during thewater pouring subtask,which
was caused by inaccurate estimation of the water cup pose.
A possible solution is to use more advanced object pose esti-
mation methods that provide robustness to the system.
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Table 2 Results for ten
repetitions of the pouring water

Take bottle Pour water Add water Place bottle

Teaching time (s) 14.831 13.627 7.616 19.644

Execution time (s) 131.058

Success rate 90%

Fig. 9 Experimenters programmed the robot using our system and the
PolyScope system separately

5.2.3 Comparative Experiment

We invite 10 experimenters to program a given task using our
programming system and UR5’s teach pendant, respectively,
as shown in Fig. 9. Compare the experimental results of the
two groups. Give the experimenters half an hour to learn
our programming system and UR5 teaching pendant pro-
gramming. For the robotic arm UR5 used in this article, the
manufacturer developed the PolyScope system for collabora-
tive robotic arm programming. The system has the functions
of adding, previewing, and executingwaypoints; path record-
ing; andgrabbing actions.These functions represent common
programming methods for collaborative robotic arms. Com-
pare the time and success rate of two groups of people
programming the same task, and the experimental results
are shown in Table 3.

It can be seen from the data in Table 3 that compared with
the PolyScope system, our programming system can com-
plete the programming of tasks in a shorter time. In terms of
success rate, both experimenters achieved 100% success rate
using our system, while the success rate on the PolyScope
system was 75%. Both experimenters failed the first time
using PolyScope. As can be seen from the programming time

and success rate, our system is more conducive to program-
ming by inexperienced users.

In addition, the teaching pendant programming system
lacks the generalization of environmental changes. Once the
environment changes, the robot needs to be reprogrammed to
adapt to the environmental changes. Our system learns and
stores skills, calls the skill library corresponding to the task
to repeatedly execute the given task, and adapts to changes
in the environment with the help of the sensory system. The
sensing system in our system provides a camera to estimate
the position of the operating object, and the trajectory gen-
eration algorithm can generate a trajectory according to the
new position to adapt to the changes of the environment.

6 Conclusion and FutureWork

The application of collaborative robotic arms greatly reduces
the difficulty of deploying robotic arms in factories. The
end user can complete the robotic arm task programming
with the help of the teach pendant. But there are still some
issues to be resolved. First of all, the end user needs a certain
level of knowledge and time to learn the task programming
through the teach pendant. Secondly, the programming of the
teach pendant lacks generalization to environmental changes.
Once the environment changes, the robot needs to be repro-
grammed to adapt to the changes in the environment.

The interactive robot task programming system based on
kinesthetic demonstration proposed in this paper solves the
above two problems. End users can quickly program the
robotic arm without any programming experience and can
learn skills and adapt to changes in the environment. How-
ever, it is important to note that this technology has certain
limitations. Specifically, the methodology is not suitable for
scenarios that pose significant risks for direct demonstra-

Table 3 The experimental results of comparison between our system and PolyScope system

Our system PolyScope
Task programming time(s) Success rate Task programming time (s) Success rate

Experimenter 1 55 100% 316 75%

Experimenter 2 65 100% 265 75%

Average time (s) 60 290.5

Adapt to environmental change Yes No
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tion, such as those involving hazardous materials or extreme
operating conditions. Additionally, the current implementa-
tion may not perform optimally at very high speeds due to
the potential for increased error rates and decreased precision
in trajectory execution. To address these limitations, future
research could focus on enhancing the safety protocols for
robot demonstrations in hazardous environments and opti-
mizing the DMP algorithms for better performance at higher
speeds.
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