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Abstract
This paper presents a statistical analysis and modeling of the thermophysical properties of ZnO-MWCNT/EG-water hybrid
nanofluid using three artificial intelligence models, including multilayer perceptron neural network, radial basis function
neural networks, and least square support vector machine (LSSVM). The thermal conductivity of the nanofluid was modeled
using experimental data, and statistical parameters such as R-squared (R2), average absolute relative deviation (AARD %),
root mean squared error, and standard deviation were employed to investigate the accuracy of the proposed models. The R2

values of 0.9926, 0.9951, and 0.9866 and AARD% values of 0.4996%, 0.3532%, and 0.6013% show the accuracy of the
models for respective MLP, RBF, and LSSVM models. Among these models, the RBF model shows the best accuracy. The
study demonstrates the potential of artificial intelligence methods in predicting the thermophysical properties of nanofluids,
which can help minimize experimental time and cost for future work.
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1 Introduction

The enhancement of thermal properties of commercial oils
is of paramount importance, given the significance of heat
transfer in various industries such as power cycles, auto-
motive, and refrigeration systems [1]. Extensive research
has been conducted to improve the thermal properties of
conventional fluids, with a particular focus on the use of
nanomaterials (with an average particle size of 1 to 100 nm)
to intensify heat transfer when uniformly dispersed in base
fluids like oil, water, or ethylene glycol (EG) [2–5].

The remarkable properties of nanofluids are high stabil-
ity, high thermal conductivity, and small size [6, 7]. The
viscosity of nanofluids is improved by increasing the con-
centration and size of nanoparticles. Moreover, the thermal
conductivity of nanofluids, which directly influences heat
transfer, is improved by increasing temperature and concen-
tration. These unique properties make nanofluids suitable for

B Mohammad Shoaib Zamany
sh_zamany@yahoo.com

1 Islamic Azad University, Central Tehran Branch, Tehran, Iran

2 Islamic Azad University Shiraz Branch, Shiraz, Iran

many applications, including thermal systems, fuel cells, heat
exchangers, and car radiators [8–12].

Carbon nanotubes (CNTs) have been the subject of
increased study due to their unique structural, mechanical,
and electrical properties [13, 14]. Recent research has high-
lighted the significant potential of carbon nanotubes (CNTs)
in enhancing the thermophysical properties of nanofluids,
particularly in applications such as solar technologies and
heat transfer. CNTs possess exceptional thermal conductiv-
ity, mechanical strength, and chemical stability, making them
promising candidates for improving the thermal and optical
properties of nanofluids [15]. In the context of solar tech-
nologies, nanofluids containing CNTs have been shown to
enhance the efficiency of solar energy systems by improv-
ing heat transfer and optical properties, thereby contributing
to the overall performance of these systems [16]. Although
CNTs are expensive, they can enhance the thermal proper-
ties of fluids when used in combination with nanoparticles,
resulting in a powerful and effective fluid. The most well-
known cases are single-wall carbon nanotubes (SWCNTs),
graphene oxide, double-wall carbon nanotubes (DWCNTs)
and multi-wall carbon nanotubes (MWCNTs) [17–21].

The use of nanofluids, particularly hybrid nanofluids,
has gained significant attention due to their potential to
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enhance heat transfer properties. Hybrid nanofluids have
been the focus of recent research aimed at accurately pre-
dicting their thermophysical properties. For instance, a study
by Bhanuteja et al. [1] developed machine learning algo-
rithms to predict the thermophysical properties of hybrid
nanofluids, demonstrating the potential for accurate esti-
mation of these properties. Rashidi et al. [22] provided an
updated and comprehensive review of the thermophysical
properties of hybrid nanofluids, shedding light on the factors
influencing these properties and proposing models for their
accurate prediction. Rostami et al. [23] focused on the ther-
mal conductivity modeling of nanofluids with ZnO particles,
highlighting the use of artificial neural network approaches
for accurate prediction of thermal conductivity. These recent
studies underscore the growing interest in accurately pre-
dicting the thermophysical properties of hybrid nanofluids,
particularly through the use of artificial intelligencemethods.
The development of accurate prediction models for hybrid
nanofluids is essential for their effective utilization in var-
ious industrial applications, where improved heat transfer
properties are of critical importance.

A computing method like artificial neural network (ANN)
is an apt way for estimating the thermo-physical properties of
nanofluids at less time and lower cost in comparison with the
experiments [24] at low and high temperature conditions [25,
26]. For example,Alfaleh et al. [27] focused on the prediction
of thermal conductivity and dynamic viscosity of nanofluids
using support vector machines (SVMs). The study reviewed
various research works on the forecasting and modeling of
these properties of nanofluidswithSVMsand their outcomes.

Onyiriuka [28] proposed a unique method for modeling
the thermal conductivity of nanofluids. He utilized exper-
imental data, modeling correlations from previous studies,
and theoretical data streams to estimate the thermal conduc-
tivity of nanofluids. The study demonstrated the efficiency
and effectiveness of this approach in predicting the enhance-
ment in thermal conductivity, with the robust linear model
emerging as the most efficient algorithm, exhibiting high
accuracy on validation and test data. A statistical method
named principal components analysis and back propaga-
tion network (BPN) model were employed by Yousefi et al.
[29] to calculate the effective thermal conductivity of vari-
ous nanofluids contains different nanoparticles, such as ZnO,
CuO, Fe3O4, TiO2, and Al2O3 nanoparticles. The thermal
conductivity of the aforementioned fluids was dependent on
the thermal conductivity of nanoparticle, temperature, the
volume fraction of nanoparticle, the thermal conductivity of
base fluids, and the diameter of the nanoparticle. The net with
one hidden layer whose performance was assessed by mean
square error leads the best result. Absolute average deviation
and correlation coefficient, which were used to compare the
results with experiments and other models, were 1.47% and
0.9942, respectively.

The thermal conductivity of ZnO-MWCNT/EG-water
nanofluid as a function of temperature and solid volume
fraction was assessed by Hemmat Esfe et al. [30]. They
presented a new correlation and a neural network model.
The ANN model with two hidden layers and four neurons
predicted experimental data accurately. They could validate
their results with data published in the literature [31, 32].
Rostamian et al. [18] experimentally studied the thermal con-
ductivity of CuO-SWCNTs-EG water nanofluid in terms of
temperature and concentration. A precise correlation based
on the experiments was developed by nonlinear regression to
estimate the thermal conductivity. In addition, a feed-forward
multilayer perceptron neural network was used to calculate
the thermal conductivity and it was identified that based on
the margin of deviation, ANNmodeling can potentially have
a high accuracy in predicting the physical properties of the
nanofluids, especially for high-temperature applications and
microfluidics and passive systems [33].

Shahsavar and Bahiraei [34] and other investigators [19,
26, 35] evaluated the thermal performance of single and
two-phase systems, including the measurement of thermal
conductivity and viscosity of the working fluid. For example,
Shahsavar and Bahiraei [36] measured the thermal prop-
erties of a non-Newtonian hybrid nanofluid consisting of
Fe3O4 and CNTs in terms of temperature and concentration.
Moreover, multilayer perceptron ANN models with back-
propagation rule were applied to predict the viscosity and
thermal conductivity. Three approaches referred to as “re-
silient backpropagation,” “Quasi-Newton,” and “Bayesian
regularization-based Levenberg–Marquardt” were used to
obtain a suitable ANN model. Mean squared error, maxi-
mum absolute error, and coefficient of determination were
utilized to estimate the accuracy of the model.

In this paper, MLP, RBF, and LSSVM methods are used
to calculate the thermal conductivity of ZnO-MWCNT/EG-
water nanofluid. To choose an appropriate network, root
mean square error, correlation coefficient, and average abso-
lute relative deviation are utilized. The results of modeling
are compared with the experimental data and empirical cor-
relation. It is worth saying that the novelty of this work is to
develop a newANNmodel for predicting the physical proper-
ties of a hybrid nanofluid. This adds to the economic viability
of the projects and saves the ages of time. This is because one
can estimate the physical properties of the nanofluid to ensure
that it can have a plausible effect based on the target applica-
tion. The developed model prevents additional experiments
that are expensive and time-consuming though.
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Fig. 1 The structure and topology of theMLPmodel used in the present
research

2 Details of the Intelligent Models

2.1 Multilayer Perceptron Neural Network (MLP)

Multilayer perceptron (MLP) is a type of artificial neural
network that consists of neurons with massively parallel
interconnections, arranged in layers and receiving weights
[37].MLP hasmore than two layers, including an input layer,
an output layer, and one or more hidden layers in between.
Information always flows in one direction, from inputs to out-
puts, in a feed-forward manner. Each neuron (except input
layer neurons) receives values fromadjacent neurons through
weighted connections. At each neuron, the weighted inputs
are combinedwith bias values and used as the input argument
of an activation function. [38]. In MLP, the number of neu-
rons in the input and output layers depends on the dimension
of inputs and outputs of the main problem. The number of
hidden layers and their neurons are determined by the trial
and error method to minimize the error values [39]. In this
work, theMLPwas trained using the back-propagation algo-
rithm, the most widely used ANN method. The number of
neurons in the input and output layers is obtained based on
the conditions of the problem, as mentioned in Sect. 2.1. In
contrast, determining the number of hidden layers and hid-
den neurons is debatable. It was mathematically proved by
Cybenko [40] that the MLP using back-propagation could
predict every nonlinear function accurately with only one
hidden layer. Thus, in our designed neural network struc-
ture, there is only one hidden layer. The number of hidden
neurons is typically determined by the trial and error method
[41]. The structure and topology of the MLP model is pre-
sented in Fig. 1.

2.2 Radial Basis Function Neural Networks

Radial basis function (RBF) neural networks were proposed
by many researchers [19, 42–44] and can be used for a wide

Fig. 2 The structure and topology of the RBFmodel used in the present
research

range of applications such as function approximation, classi-
fication patterns, spline interpolations, clustering, and mixed
methods [45–47]. An RBF neural network consists of three
layers: input, output, and a hidden layer. The nodes within
each layer are connected to the previous layer, as shown in
Fig. 2. In this figure, n is the dimension of the input layer.

The hidden layer consists of k neurons and one bias neu-
ron. This network is implemented according to Eq. (1) [48]:

F(x) = w0 +
k∑

i=1

(wi Q(‖x − ci‖)) (1)

where x is the input vector, ci is the center of the ith neuron in
the hidden layer,‖x − ci‖ denotes the Euclidean distance, Q
is the Gaussian function, wi is a weight from ith hidden unit
to the output node and k is the number of hidden nodes. The
Gaussian function Q with the spread σ is defined as follows
[49]:

Qi (r) = exp

(
− r2

2σ 2
i

)
(2)

The parameters of the RBF model, such as the maxi-
mum number of neurons (MNN) and the spread of Gaussian
function, are determined using the genetic algorithm (GA).
Although the trial and error approach also can be used to
determine these parameters, it is not recommended due to its
time consuming nature. GA is one of the best optimization
algorithms inspired by Darwinian evolutionary models. In
this algorithm, a population of potential solutions is refined
iteratively by the natural selection strategy. In this paper, a
primary population size of 50 is considered to start the algo-
rithm. Themain principle of GA is "survival of the fittest," so
the fitness function should be defined and calculated for each
member. In this paper, RMSE is used as a fitness function to
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Table 1 Details of data bank
used in the present work Parameter Minimum Maximum Average Standard deviation

� (%) 0.02 1.00 0.38 0.36

T (°C) 30.00 50.00 40.00 7.17

Thermal conductivity ratio 1.01 1.28 1.12 0.08

Fig. 3 Performance of the MLP networks with different numbers of
neurons of hidden layer for thermal conductivity ratio

calculate the error between the model predictions and the
target data. Following this process, the members who repre-
sent better solutions havemore chances for reproduction than
those representing poorer solutions. These better solutions
are selected as parents. After that, some genetic operators,
including crossover and mutation operators, are applied to
parents for producing new offspring. Then, the fitness func-
tion is reused to evaluate and rank this new generation. These
iterative operations are applied until the termination criteria
are met (maximum iteration number of 30). Further details
about this algorithm are available in published works [50].
The optimum values of spread and MNN were 1.2 and 17,
respectively.

2.3 Least Square Support Vector Machine (LSSVM)

Support vector machine (SVM) has been introduced by Vap-
nik [51] and has been used for many classification and
function estimation problems [52]. Using the concept of
SVM, Suykens proposed least squared SVM (LSSVM) [53].
LSSVM is a powerful machine learning technique that has
demonstrated its ability to learn complex nonlinear problems
[54]. Themost crucial difference between LSSVM and SVM
is that SVM uses a quadratic optimization problem for train-
ing,whileLSSVMutilizes linear equations [55].Considering
a given training set of N data points, where xk ∈ RM is the

Fig. 4 Convergence of GA to optimize MNN and spread values to pre-
dict the thermal conductivity ratio

multi-dimensional input data and yk is the dimensional out-
put data, LSSVMcanbeobtained by formulating the problem
as the following equation:

f (x) = wTϕ(x) + b (3)

where ϕ(x) and wT are kernel function and the transposed
output layer vector, respectively. b is the bias value [56].

InLSSVM, for calculationofwandb,Eq. (4) isminimized
as cost function [56]:

Cost Function = 1

2
wTw + c

N∑

k=1

(
ξk − ξ∗

k

)
(4)

Eventually, the resulting LSSVM model for the function
prediction can be obtained by solving the following opti-
mization problem (Eq. 5) [56]:

s = y(x) =
N∑

k=1

akK (x , xk) + b (5)

where K(x,xk) is a kernel function, and αk is the Lagrange
multiplier. There are many kernel functions such as linear,
polynomial, spline, and Gaussian. In this paper, Gaussian
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Table 2 The performance of the
different developed intelligent
models

Intelligent predictor Data set Rˆ2 AARD SD RMSE N

MLP Train data 0.9927 0.5020 0.0071 0.0070 28

Test data 0.9958 0.4899 0.0058 0.0062 7

Total data 0.9926 0.4996 0.0069 0.0069 35

RBF Train Data 0.9975 0.2878 0.0042 0.0041 28

test data 0.9932 0.6146 0.0100 0.0094 7

Total data 0.9951 0.3532 0.0057 0.0056 35

LSSVM Train data 0.9877 0.6176 0.0093 0.0091 28

Test data 0.9845 0.5364 0.0087 0.0090 7

Total data 0.9866 0.6013 0.0092 0.0091 35
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Fig. 5 The statistical parameters for theMLP,RBFandLSSVMmodels:
a R2, and b RMSE

function has been used:

K (x , xk) = exp
(
−‖xk − x‖2/σ 2

)
(6)

where σ is the width of the Gaussian function.
In the LSSVM method, two parameters, including γ and

σ2, used in the mentioned equations, affect the accuracy of
the method. These parameters should be specified by users.
To determine the optimum values of the model’s parameters,
the coupled simulated annealing (CSA) method is applied

[57]. The values of γ and σ 2 were determined, respectively,
to be 3,155,127.70 and 54.76.

3 Material andMethods

3.1 Data Gathering

One of the steps that should be taken to present a reliable
model is to utilize valid data with wide ranges [58, 59]. Data
used in this study are derived from references [18]. This study
computes the thermal conductivity ratio considering the fol-
lowing factors as the input variables: Volume concentration
(ϕ (%)) and Temperature (°C). The statistical values of the
mentioned parameters are listed in Table 1.

3.2 Model Development

In order to develop the model, the following formula is used
for normalization, which produces a value between − 1
and 1. It has the same range of values for each input to the
intelligent models. This can guarantee a stable convergence
of weight and biases.

xNormal = 2 × x − xMin

xMax − xMin
− 1 (7)

After normalizing the data, the data set is grouped into two
sub-sets of testing and training data. This process is repeated
several times for two following reasons:

• find a homogeneous distribution in each sub-set, and
• prevent local aggregation of data points.

In this paper, 80% of the data points belongs to the subset
of the training, and the rest 20% are members of the subset
of the testing.
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Fig. 6 Error distribution for prediction of the thermal conductivity ratio by a MLP, b RBF, and c LSSVM models

To evaluate the precision of the proposed models, several
statistical parameters such as average absolute relative devi-
ation (AARD%), R-squared (R2), standard deviation (SD),
and root mean squared error (RMSE) are utilized (Eqs. 8–11)
[60, 61]. In these formulasλ denotes the thermal conductivity
ratio.

R2 = 1 −
∑N

i=1

(
λPred(i) − λExp(i))2

)
∑N

i=1

(
λPred(i) − λExp)2

) (8)

%AARD = 100

N

N∑

i=1

(
λPred(i) − λExp(i)

)

λExp(i)
(9)

RMSE =
(∑N

i=1

(
λPred(i) − λExp(i)

)2

N

)
(10)

SD =
N∑

i=1

(
(λPred(i) − λExp(i))2

N

)0.5

(11)

4 Results and Discussion

Figure 3 compares the RMSEof the networkswith a different
number of hidden neurons. As can be seen in Fig. 3, theMLP
with four hidden neurons has the least cost, so it has the best
performance. Also, Fig. 4 shows the convergence process of
GA during the optimization process.

Table 2 shows the results of the aforementioned statistical
parameters for all the developedmodels. As it is shown in this
table, the RBF model is better than the other two methods as
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y = 0.9817x + 0.0208
R² = 0.9951
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Fig. 9 Simultaneous representations of the experimental data and pre-
dicted thermal conductivity ratio

the value of the R2 is the highest, and the values of AARD%,
RMSE, and SD are the lowest.

Figure 5 shows the schematic representation of these eval-
uation parameters. As it is evident in Fig. 5a, the R2 value for
theRBFmodel is higher than those for the other twomethods.
In addition, the lowest value of RMSE for the RBF method
shown in Fig. 5b indicates the superiority of this method to

other ones. It should be noted that the mentioned comparison
includes the total dataset.

Figure 6 represents the error distribution for these meth-
ods. In the analysis of the error distribution diagrams, two
factors are essential: the distribution spread (σ ) and the loca-
tion of the distribution’s peak (μ). According to Fig. 6b, the
amount of σ in the RBF method is the lowest, which indi-
cates that the standard deviation in the error values is the
lowest. Moreover, the location of the distribution’s peak (μ)
is sufficiently close to zero.

As it can be seen in Table 2, the R2 was obtained greater
than0.98 for all the developedmethods,which indicates these
models are valid and acceptable. Since theRBFmethod owns
the best performance, Fig. 7 shows just the cross-plot for the
RBF method. In using the correlation coefficient to evaluate
the performance of the method, it is enough to consider two
things: firstly, the approach of the R2 to value 1 and secondly
the closeness of accumulation of data points to the 45° line.
In the RBF model, the R2 value is obtained 0.995, and the
location of most of the data points is close to the 45° line.
This indicates the RBF is the best predictor for the thermal
conductivity ratio. Figure 8 is drawn to indicate the relative
deviations of predicted values of the RBF model versus the
measured thermal resistance data points. Moreover, Fig. 9
shows a very close match between the RBFmodel prediction
and target values versus the index of the data points. As it is
shown in this figure, there is a great agreement between the
predicted and measured data for the RBF model. Notably,
Fig. 8 compares the accuracy of the model against the target
values, which not only validated the model but also shows
that the model is not noisy. As can be seen, the target values
overlap the model prediction line showing that the model has
sufficient accuracy.

5 Conclusion

The objective of this studywas to predict the thermal conduc-
tivity ratio of ZnO-MWCNT/EG-water hybrid nanofluid. In
this regard, three intelligent models, including MLP, RBF,
and LSSVM, were utilized. In all the developed models,
the same dataset, which included wide ranges of volume
concentration, temperature, and thermal conductivity ratio
values, was used for training and testing the developed net-
works. The aim of using these three intelligent models was to
access a model with the best quality for predicting the ther-
mal conductivity ratio. In this study, the graphical graphs and
statistical parameters were utilized to evaluate the accuracy
of the mentioned methods. Comparing the MLP, RBF, and
LSSVMmodels, it was revealed that the RBF model was the
most accurate one.
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Table 3 the experimental data for
thermal conductivity ratio of
ZnO-MWCNT/EG- water hybrid
nanofluid [18]

Temperature (°C)

ϕ (%) 30 35 40 45 50

0.02 1.011 1.013 1.016 1.022 1.024

0.05 1.022 1.034 1.039 1.050 1.053

0.1 1.037 1.059 1.064 1.094 1.112

0.25 1.084 1.108 1.120 1.145 1.154

0.5 1.107 1.123 1.149 1.191 1.221

0.75 1.122 1.157 1.199 1.242 1.248

1 1.148 1.188 1.201 1.250 1.281

Appendix A

Thermal conductivity ratio data that used in this work
are listed in Table 1. The thermal conductivity of ZnO-
MWCNT/EG-water hybrid nanofluid was measured in the
0.02%, 0.05%, 0.1%, 0.25%, 0.5%, 0.75%, and 1% solid vol-
ume fractions. As can be seen from Table 1, the temperature
ranges were 30–50 °C.

See Table 3.
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