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Abstract
This paper presents a comprehensive study on the application of Artificial Intelligence (AI) methods, specifically machine
learning and deep learning, for the diagnosis of bearing faults. The study explores both data preprocessing-dependent methods
(Support Vector Machine, Nearest Neighbor, and Decision Tree) and a preprocessing-independent method (1D Convolutional
Neural Network). The experiment setup utilizes the CaseWestern Reserve University dataset for signal acquisition. A detailed
strategy for data processing is developed, encompassing initialization, data loading, signal filtration, decomposition, feature
extraction in both time- and frequency-domains, and feature selection. Indeed, the study involves working with four datasets,
selected based on the distribution curves of the indicators as a function of the number of observations. The results demonstrate
remarkable performance of theAImethods in bearing fault diagnosis. The 1D-CNNmodel, in particular, shows high robustness
and accuracy, even in the presence of load variations. The findings of this study shed light on the significant potential of AI
methods in improving the accuracy and efficiency of bearing fault diagnosis.
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1 Introduction

Rotating machinery, including bearings, forms the backbone
of many industrial processes [1]. Their efficient operation
is crucial for productivity and profitability. However, these
machines are prone towear and tear, and their failure can lead
to significant downtime and financial loss [1, 2]. Tradition-
ally, the diagnosis of faults in rotating machines has relied
on manual inspection and conventional vibration analysis
techniques. Though effective, these methods can be time-
consuming, require expert knowledge, and may not detect
faults at an early stage [2].

In recent years, Artificial Intelligence (AI) has emerged
as a powerful tool for detecting faults in rotating machin-
ery [3]. AI-based methods, particularly Machine Learning
(ML) andDeepLearning (DL), are capable of analyzing large
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volumes of data, learning complex patterns, and accurately
predicting errors. These technologies have the potential to
automate the diagnostic process, improve early fault detec-
tion, and reduce the need for manual inspection [1, 3, 4].
AI has been widely applied to the identification of bear-
ing faults in rotating machinery. To this end, a variety of AI
methods have been employed, each with its unique advan-
tages. Artificial Neural Networks (ANNs) are capable of
learning and recognizing patterns from data, making them
suitable for diagnosing different types of bearing faults [5,
6]. Support Vector Machines (SVMs) are particularly effec-
tive in handling high-dimensional data and have been used
to achieve high classification accuracy [7–9]. Genetic Algo-
rithms (GAs) have been used for feature selection in bearing
fault diagnosis, optimizing the selection of features that are
fed into the diagnostic model, thereby improving themodel’s
performance [10–12]. The research work in Ref. [13] com-
bines the genetic algorithm with SVM for the diagnosis
of bearing defects. Fuzzy Logic systems handle uncertainties
in the data and have been used to enhance the bearings’ con-
dition monitoring [14, 15]. Random Forests have been used
for bearing fault diagnosis due to their ability to handle large
datasets and provide importance scores for features [16–18].
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The K-Nearest Neighbors (K-NN) algorithm has been effec-
tively applied in the diagnosis of bearing faults [19, 20]. This
method classifies a new test sample based on the majority
of its K-Nearest training samples. In the context of bearing
fault diagnosis, K-NN can be particularly useful due to its
simplicity and effectiveness [21, 22]. Amaury’s study [23]
integrates Support Vector Machine (SVM) and K-Nearest
Neighbor (K-NN) techniques to monitor rotating machinery
using vibration data. Another technique that can be found
in the literature is Decision Trees (DT). It has been effec-
tively utilized in the diagnosis of bearing faults in rotating
machinery [24, 25]. This method, which offers a clear visu-
alization of the decision-making process, has been used to
enhance the interpretability of diagnostic models. The Naive
Bayes classifier, which relies on the assumption of indepen-
dence, has proven to be effective and common in diagnosing
bearing faults [26]. Some drawbacks limiting the use of this
method are the conditional independence hypothesis and the
accuracy of the estimate [27, 28].

Deep learning models, such as Convolutional Neural Net-
works (CNNs), have shown promising results in bearing fault
diagnosis by automatically extracting features from raw data,
leading to improved diagnostic accuracy [29, 30]. The effec-
tiveness of these methods is likely to depend on the specific
characteristics of the bearing faults and the quality of the data
available. It is also common to use a combination of these
methods to improve the accuracy of the diagnosis [31–34].

This paper offers an exhaustive review of the most recent
developments in the application ofArtificial Intelligence (AI)
techniques for the diagnosis of faults in rotating machin-
ery, with a particular emphasis on bearing defects. The
paper begins by exploring the AI techniques that have been
employed, providing a clear explanation of various methods,
and discussing their primary advantages and disadvantages.
Subsequently, it provides a detailed description of the test
bench and explains the strategy developed for preprocessing
the database. The paper concludes by presenting the results
and engaging in a comparative discussion of the methods
used.

2 Bearing Faults Diagnosis

2.1 Traditional Methods for Bearing Diagnosis

Bearing diagnosis is an essential component of predictive
maintenance in industrial systems. Bearings play a crucial
role in rotating machinery, and their failure can lead to costly
downtime and significant equipment damage. Historically,
the diagnosis of bearing faults has relied heavily on classical
methods such as vibration analysis and acoustic emission
techniques.

2.1.1 Vibration Analysis

Vibration analysis has been one of the most widely used
techniques for bearing fault detection. It involves measur-
ing the vibrations emitted by machinery to identify patterns
indicative of faults. Traditional vibration analysis methods
rely on time-domain and frequency-domain features to detect
anomalies in the vibration signals. Techniques such as Fast
Fourier Transform (FFT) are commonly used, where char-
acteristic fault frequencies can be identified [35]. However,
while effective, these methods require expert knowledge for
accurate interpretation and can be time-consuming, as they
often involve manual inspection of vibration signatures [36].

2.1.2 Acoustic Emission Techniques

Acoustic emission (AE) techniques have also been employed
for bearing diagnosis, capturing high-frequency stress waves
generated by defects in bearings. AE sensors are capable
of detecting crack formation and surface defects at an early
stage. Nonetheless, acoustic emission methods can be sus-
ceptible to environmental noise and require sophisticated
signal processing techniques to extract meaningful informa-
tion [37].

2.1.3 Oil Analysis

Oil analysis is another traditional approach that involves
examining lubricant samples for particles or contaminants
indicative of wear and tear in the bearing components. This
method provides insights into the internal condition of bear-
ings and can help predict failures before they occur. However,
it typically requires laboratory testing and may not be prac-
tical for real-time monitoring [38].

2.2 The Shift Toward Intelligent Systems

As industries moved toward more complex and automated
systems, the limitations of classical diagnostic methods
became apparent. These traditional techniques often require
significant manual intervention and are limited in their abil-
ity to handle large volumes of data. Consequently, the focus
shifted toward more intelligent and automated approaches,
leveraging advancements in signal processing and data anal-
ysis.

Signal processing techniques such as wavelet transform
and Hilbert–Huang Transform (HHT) have been developed
to address the limitations of traditional methods. Wavelet
transform, in particular, offers a multi-resolution analysis
capability, allowing for the detection of transient features
in non-stationary signals commonly associated with bear-
ing defects [39]. These advanced techniques improve fault
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detection accuracy but still require expert interpretation and
manual setup.

2.3 The Rise of Artificial Intelligence in Bearing
Diagnosis

The advent of Artificial Intelligence (AI) has revolutionized
the field of fault diagnosis by introducing automated and
more accurate methods for bearing monitoring [1, 3, 4]. AI
techniques such as machine learning and deep learning have
shown great promise in enhancing the diagnosis process by
automating feature extraction and classification tasks. The
integration of AI in fault diagnosis not only enhances accu-
racy and reliability but also reduces the dependenceonhuman
expertise. As AI technology continues to advance, further
improvements in the efficiency and effectiveness of bearing
fault diagnosis are anticipated, paving the way for smarter
and more resilient industrial systems.

Combining AI with traditional techniques has led to
hybrid approaches that capitalize on the strengths of both
worlds. These hybrid models offer a balanced approach,
leveraging the precision of signal processing with the
automation and scalability of AI [13].

3 Artificial IntelligenceMethods Applied
in Bearing Faults Diagnosis

In the domain of machine learning, various techniques
necessitate distinct data preprocessing requirements. Support
Vector Machines (SVM), K-Nearest Neighbors (K-NN), and
Decision Trees (DT) are methods that typically require vari-
ous forms of data preprocessing. The latter may involve tasks
such as data normalization or standardization, handlingmiss-
ing values, or feature extraction and selection. These steps
are crucial to ensure that the data fed into these models are
in a suitable format and of a quality, enabling the models to
learn effectively [40].

On the other hand, 1D Convolutional Neural Networks
(1D-CNNs), a type of deep learning model, can often work
with raw data without the need for extensive preprocessing.
They are capable of automatically learning and extracting
useful features from raw data during the training process.
This makes them particularly useful for tasks such as time-
series analysis or natural language processing, where the raw
data can be fed directly into the model. However, it is impor-
tant to note that while 1D-CNNs can work with raw data,
some levels of preprocessing such as data cleaning or reshap-
ing might still be required depending on the specific task or
dataset [41].

3.1 Methods with Data Preprocessing: SVM, K-NN,
and DT

In the field of bearing fault detection, machine learning algo-
rithms such as Support Vector Machines (SVM), K-Nearest
Neighbors (K-NN), and Decision Trees are widely utilized.
These algorithms excel at analyzing data, learning from it,
and subsequently applying the acquired knowledge to make
informed decisions about the presence of bearing faults. The
application of these machine learning techniques has con-
sistently produced satisfactory results in this domain. They
have significantly contributed to the advancement of predic-
tive maintenance strategies by enhancing the accuracy and
efficiency of fault detection processes. This, in turn, helps in
reducing downtime and maintenance costs, thereby improv-
ing the overall operational efficiency of the machinery.

3.2 MethodWithout Data Preprocessing: 1D-CNN

The application of deep learningmethods, such as 1D-CNNs,
has transformed the field of bearing diagnosis by allow-
ing machines to autonomously learn complex patterns from
vibration data. This advancement has significantly enhanced
the accuracy and efficiency of fault detection in rotating
machinery. Recently, there has been a substantial increase
in the use of deep learning, which is a type of machine learn-
ing that is competent not only at sorting things into categories
with more accuracy, both in broad and in specific terms, but
also at handling lots of data [42].

Deep learning methods are more efficient and accurate
compared to traditionalmachine learning techniques because
the former often solve the whole problem at once, while
the latter break the problem down into smaller parts before
putting the pieces together at the end [43].

Figure 1 illustrates the process of fault diagnosis using
Machine Learning (ML) and Deep Learning (DL). It reveals
the steps from data collection to fault identification and clas-
sification and clearly compares the two processes.

Table 1 displays the advantages and limitations of the dif-
ferentmachine learning algorithms used in this paper, namely
SVM, K-NN, DT, and 1D-CNN. It offers insights into their
strengths and weaknesses in addressing various data and
usage challenges.

4 Experiment Setup and Signal Acquisition

4.1 Data Description

The dataset utilized in this section was obtained from the
Bearing Data Center at Case Western Reserve Univer-
sity (CWRU) [44]. Many researchers have employed this
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Fig. 1 Process of ML and DL for fault diagnosis

Table 1 List of AI algorithms and their advantages and limitations

Algorithm Advantages Limitations

SVM Ability to handle
multi-dimensional
spaces, adaptation to
nonlinear
boundaries,
minimizing
generalization errors

Need for data
preprocessing, less
efficiency in managing
missing data

K-NN Ease of
implementation,
ability to handle
complex data, fast
learning

Influence of Euclidean
distance, sensitivity to
k-parameter selection

DT Relative ease to
interpret, robustness
to outliers, handling
missing values

Not good for regression,
overfitting problem,
instability, predictions
are not smooth or
continuous

1D-CNN Robustness to noise
and variability, faster
training speed,
efficient feature
extraction, effective
for 1D signals

Limited data
augmentation, feature
extraction challenges:
sensitivity to
hyperparameters

database in their investigations [1, 2, 40, 45–48]. The web-
site provides access to test data related to both functional and
defective ball bearings. These tests were conducted using
a Reliance Electric 2 HP electric motor, with acceleration
measurements taken at locations near and far from the motor
bearings.

Figure 2 shows a 2 HP motor (positioned on the left), a
torque transducer/encoder (center), a dynamometer (right),
and control electronics (not shown). The motor shaft is sup-
ported by the test bearings. Point defects were intentionally

introduced into these bearings using EDM, resulting in diam-
eters ranging from 0.178 to 0.533 mm at the inner raceway,
ball, and outer raceway. Bearingswith defectswere then rein-
stalled in the test motor, and vibration data were recorded for
motor loads varying from0 to3HP.Different sensor positions
were used for the outer race, with motor speeds oscillating
between 1797 and 1730 rpm. The data collection for drive-
end bearing faults occurred at a rapid rate of 48,000 samples
per second. This high sampling frequency allowed precise
monitoring and analysis of the bearing behavior, helping in
the fault detection and diagnosis.

4.2 The Developed Strategy for Data Processing

Figure 3 shows the working steps and comprehensive pre-
processing of vibration signal data from different operating
conditions.

4.2.1 Initialization and Data Loading

The initial phase focuses on initializing the working environ-
ment and loading the data. Besides, there is an extraction of
signals from «.mat» format files (MATLAB), which contain
crucial information from sensors. These signals, represent-
ing measurements in the time-domain, are organized into a
matrix namedM. This Mmatrix constitutes an essential data
structure, serving as a basis for subsequent analyses.

4.2.2 Signals Filtrating

Filtering is a critical process that helps in discarding unnec-
essary elements from vibration signals. By employing a finite
impulse response (FIR) filter alongwith aHammingwindow,
the masking effect can significantly be diminished.
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Fig. 2 Bearing components and
the experimental configuration of
the ball bearing system on the
CWRU bearing test rig

• EBt, EB1, EB2, EB3, EB4, EB5

1. Initialization and loading data

3. Decomposition of signals

• Standard Deviation (SD) 

• Peak-To-Peak Value (Acc) 

• Skewness (Ks)                

• Kurtosis (Ku)                    

• Root Mean Square (RMS)

5. Calculation of frequency indicators

7. Storing indicators in a “. mat” file

8. Launch of classification learner on matlab for the 

application of ML methods (SVM, K-NN and DT)

4. Calculation of temporal indicators

6. Feature selection

(Dataset1, Dataset2, Dataset3, Dataset4) 

Results

Time domain Frequency domain

168 Features

168 vibration samples

2. Signals filtrating

Fig. 3 The framework of the proposed strategy
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4.2.3 Signals Decomposition

Signal decomposition is an effective method that entails the
division of the signal into multiple components or frequency
bands to collect crucial information for fault detection. By
independently examining each component, thismethod facil-
itates the computation of time and frequency indicators for
each component, assisting in the determination of signal
attributes across diverse frequency ranges.

In this step, the time signals are segmented into 28 samples
of fixed length, thus allowing a more in-depth analysis of
variations and local behaviors. Each signal is divided into 28
samples, which in turn are then organized and stored.

4.2.4 Feature in Time-Domain

Statistical indicators are frequently employed among the
time-domain features because of their robust associationwith
early bearing damage [49]. Root Mean Square (RMS) quan-
tifies the overall vibration energy in a signal. It offers a
measurement tool for the signal’s amplitude, which is crucial
for detection of bearing defects.While highRMSvalues indi-
cate increased vibration levels, the kurtosis indicator assesses
the distribution of vibration peaks. Furthermore, elevated
kurtosis values suggest localized faults, such as pitting or
spalling, which create sudden impact forces during rotation.
Peak-to-peak (Acc) is another significant feature that mea-
sures the difference between the highest and lowest points in a
vibration waveform. The large values of this feature indicate
significant variations in vibration amplitudes, often linked
to bearing defects like looseness or cracked races. Besides,
Standard Deviation (SD) measures the dispersion or spread
of vibration data points around the mean and reflects the
variability of the signal. High SD values indicate inconsistent
vibration patterns, which can be indicative of bearing defects
such as looseness,misalignment, or early-stagewear. The last
temporal indicator used in this paper is the skewness which
evaluates the symmetry of the vibration distribution. Positive
skewness indicates a longer tail on the right side of the dis-
tribution, while negative skewness reveals a longer left tail.
Abnormal skewness values may suggest specific fault con-
ditions. For instance, positive skewness could be associated
with localized defects like spalling, while negative skewness
might be accredited to outer raceway wear.

Hence, the collection of five time-domain features is
generated utilizing the equations provided in Table 2. The
parameter xi represents a sample in the acquired signal, and
N defines the total number of samples.

4.2.5 Feature in Frequency-Domain

Frequency-domain analysis, commonly used for monitoring
bearing conditions, empowers the distinct frequencies linked

Table 2 Equations of the extracted time-domain features [50]

Feature Equation

Root mean square
RMS =

√
1
N

∑N
i=1 x

2
i

Standard deviation
SD =

√
1
N

∑N
i=1(xi − mean)2

Kurtosis
Kurtosis =

∑N
i=1(xi−mean)4

N ·SD4

Peak-to-peak Acc = max(x) − min(x)

Skewness Skewness = 1
N

∑N
i=1 (

xi−mean
std )

3

to bearing defects in vibration and current signals. Energies
from the envelope spectrum are utilized for this purpose.

This section implements the Hilbert transform to obtain
the envelope spectrum of each signal slice. Then, the
energy Efrequency is calculated in specific frequency ranges,
namely [0–1500 Hz], [1500–3000 Hz], [3000-4500 Hz],
[4500–6000 Hz], and [0–6000 Hz]. These energy mea-
surements are used to evaluate five frequency indicators,
including the total energy “EBt” in the band [0–6000 Hz]
and the energy in specific sub-bands “EB1, EB2, EB3, and
EB4,” thus providing a detailed analysis of the distribution of
frequency energy in each signal sample. The energy equation
is defined by:

E f requency =
∑+∞

−∞|X( f )|2

where X(f ) is the signal equation in the frequency-domain,
and s represents the sample size.

4.2.6 Feature Selection

To evaluate the effectiveness and preference of different
classification methods, it is necessary to select a database.
Additionally, in order to select sets of indicators that will be
used as inputs for machine learning methods, it is essential
to study the impact of the defect’s severity on the indicators’
reactivity.

Figure 4 presents the evolution of the five temporal indi-
cators as a function of the number of observations, totaling
168 observations corresponding to the total number of slices
between the state without load and that with 3 HP. The first
42 observations correspond to the defect with a diameter of
0.533 mm (14 without load and 28 with 3 HP). Starting from
the 43rd observation, the signal has a defect of 0.355 mm,
then from the 85th to 126 observations, the defect decreases
to 0.178 mm, finally reaching the normal state (the last 42
observations). From the evolution curve of the RMS values, a
significant increase in amplitude, surpassing 2.5, is observed
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Fig. 4 Time-domain features distribution of the data

as the diameter of the defect on the highest rolling element
grows.

Notably, this indicator exhibits high sensitivity to varia-
tions in the fault. The Standard Deviation (SD) value for a
bearing in the case without defect, under normal conditions,
generally does not exceed 0.1. However, an increase exceed-
ing 0.25 is observed as the defect diameter on the rolling
element increases. This indicator turns out to be sensitive to
variations in the default. The variation of the kurtosis values
and the peak-to-peak value also shows that these two indica-
tors are sensitive to variations in the fault. The variation of

the skewness indicator can be explained by the fact that the
distinction between the fault-free state of the bearing and the
state with fault can be difficult because the peak values are
close.

Frequency-domain indicators, extracted from vibration
signal envelope spectra, play a crucial role in bearing fault
diagnosis. Figure 5 illustrates the evolution of these indica-
tors of signal energy in various fault scenarios. The indicators
EB1, EB2, EB3, and EBt exhibit remarkable discriminatory
power between healthy bearings and those with faults. As
defects develop, the amplitude of these indicators increases
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Fig. 5 Energy features distribution of the data

significantly. Notably, even minor faults cause noticeable
deviations from the healthy baseline. Their sensitivity to fault
variations makes them valuable tools for early detection. In
contrast, the behavior of EB4 is less straightforward. Its vari-
ation does not yield a clear and interpretable curve shape.

To sum up, the relevant indicators to be used for defect
classification include the standard deviation, root mean
square, peak-to-peak, kurtosis, and total energy (EBt), aswell
as the energy in bands EB1, EB2, and EB3.

4.3 Storage of Indicators in a .mat File

This step ensures the preservation of both temporal and
frequency-domain results (10 indicators) in a matrix. This
matrix serves to systematically group the indicators extracted
from each signal slice. Subsequently, these results are saved
in a .mat file, which contains a main matrix that consoli-
dates all the results. This recording process enables organized
storage of the resultant data for future reference or in-depth
analysis.

Based on the shape of the indicators depicted in Figs. 4
and 5, four sets of indicators have been selected as follows:
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• Set 1: All indicators,
• Set 2: Standard deviation, peak-to-peak, EB1, EB2,
• Set 3: Kurtosis, root mean square, EBt, EB3,
• Set 4: Standard deviation, root mean square, EBt, EB1.

5 Results and Discussion

After introducing the test bench, this section explores the
application of artificial intelligence methods on the vibration
data from the drive-end bearing, considering loads of 0 and
3 HP. A method that does not require data preprocessing
will be implemented alongside other methods that do require
preprocessing. Finally, a comprehensive comparative study
will be conducted.

5.1 Methods with Data Preprocessing

5.1.1 Support Vector Machine (Medium Gaussian SVM)

The SVM version with a medium Gaussian kernel refers to
the application of a Gaussian kernel function (also known as
RBF—Radial Basis Function) with a bandwidth parameter
set at a medium level.

The Gaussian kernel function is among the most com-
monly used techniques that perform transformation from the
original feature space to a higher-dimensional space, thereby
facilitating the separation of nonlinear classes. This kernel
is influenced by a parameter called "gamma," which gov-
erns the configuration of the Gaussian function. While a
high gamma tightens the Gaussian function, a low gamma
widens it. By selecting an intermediate gamma, a balanced
decision boundary, neither overly flexible nor overly rigid,
can be established, thus helping to prevent overfitting to the
training data.

• Set 1

The implementation of this method on the entire dataset
resulted in a remarkable accuracy of 98.2% for the unloaded
set with a 3 HP load. Figures 6 and 7 display the corre-
sponding scatter plots for both sets, along with the prediction
outcomes.

Figures 8 and 9 represent the confusion matrices for both
cases, together with the associated prediction results.

• Set 2

The implementation of this method on the entire dataset 2
resulted in a remarkable accuracy of 98.2% for the unloaded
set and 99.1% for the set with a 3 HP load. Figures 10 and

Fig. 6 Scatter plot for 0 charge (Set 1)

Fig. 7 Scatter plot for 3 HP charge (Set 1)

Fig. 8 Confusion matrix without load (Set 1)

11 display the corresponding scatter plots for the second set,
alongside the prediction results.

The confusion matrices for both loads are presented in
Figs. 12 and 13, accompanied by the associated prediction
results.
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Fig. 9 Confusion matrix with 3 HP charge (Set 1)

Fig. 10 Scatter plot for 0 charge (Set 2)

Fig. 11 Scatter plot for 3 HP charge (Set 2)

• Set 3

Applying this method across all dataset 3 yielded an
impressive accuracy rate of 98.2% for the set without load
and for the set with a 3 HP load. The scatter plots for these
two sets, along with their respective prediction outcomes, are

Fig. 12 Confusion matrix with 0 charge (Set 2)

Fig. 13 Confusion matrix for 3 HP charge (Set 2)

exhibited in Figs. 14 and 15. The confusion matrices of the
third set are represented in Figs. 16 and 17.

• Set 4

An impressive accuracy of 96.4% for the unloaded set
and 98.2% for the set with a 3 HP load was achieved through
the implementation of this method on the entire dataset 4.
Figures 18 and 19 present the corresponding scatter plots for
both sets, along with the prediction outcomes.

The confusion matrices for both sets are illustrated in
Figs. 20 and 21, along with their corresponding prediction
results.
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Fig. 14 Scatter plot for 0 charge (Set 3)

Fig. 15 Scatter plot for 3 HP charge (Set 3)

Fig. 16 Confusion matrix with 0 charge (Set 3)

Fig. 17 Confusion matrix for 3 HP charge (Set 3)

Fig. 18 Scatter plot for 0 charge (Set 4)

Fig. 19 Scatter plot for 3 HP charge (Set 4)

123



Arabian Journal for Science and Engineering

Fig. 20 Confusion matrix with 0 charge (Set 4)

Fig. 21 Confusion matrix for 3 HP charge (Set 4)

5.1.2 Decision Tree (Fine Tree)

The “Fine Tree” model is a variant of the Decision Tree that
is characterized by the creation of more detailed and pre-
cise trees. It excels in handling complex datasets by breaking
down decisions at multiple levels with finesse.

This method is applied to the same database and indica-
tor sets as the SVM method. After obtaining similar results
(scatter plots and confusion matrices), only the percentage
accuracy of this method for the four sets of indicators is pre-
sented in this section.

• Set 1: The application of this method to the complete
dataset resulted in an accuracy of 98.2% for both cases,
without load and with a load of 3 HP.

• Set 2: When this method was applied to dataset 2, it
achieved a significant accuracy of 96.4% for the set with-
out load and 99.1% for the set with a 3 HP load.

• Set 3: The implementation of this method on dataset 3 led
to a significant accuracy of 98.2% for the set without load
and 95.5% for the set with a load of 3 HP.

• Set 4: Utilizing this method on dataset 4 achieved a note-
worthy accuracy of 98.2% for the unloaded set and 99.1%
for the set with a 3 HP charge.

5.1.3 Nearest Neighbor (Fine K-NN)

The fine K-NN represents a step forward from the standard
K-NN by factoring in the distance between points during
the classification process. In contrast to the standard K-NN
method where each neighbor has an equal influence on the
classification decision, fine K-NN assigns varying weights
to each neighbor based on their proximity to the observation
under assessment. As a result, neighbors that are closer have
a greater influence on the classification, while those further
away have a lesser effect. This method of weighting based
on distance allows for more accurate decision-making by
focusing on the most relevant neighbors, leading to a com-
prehensive enhancement of the model’s performance.

For this method, it is imperative to provide the accuracy
percentage for each indicator set, avoiding the presentation
of scatter plot curves and confusion matrices.

• Set 1: The application of this method to the entire of the
data resulted in a notable accuracy of 96.4% for the set
without charge and 95.5% for the set with a load of 3 HP.

• Set 2: The utilization of this method on the whole dataset 2
led to a noteworthy precision of 92.9% for the set without
load and an impressive 98.2% for the set carrying a charge
of 3 HP.

• Set 3: The deployment of this method on the full dataset
3 resulted in a significant accuracy of 96.4% for the set
without load and 95.5% for the set with a load of 3 HP.

• Set 4: The execution of this method on the comprehensive
dataset 4 achieved a noteworthy precision of 91.1% for
the set without load and a remarkable 98.2% for the set
bearing a load of 3 HP.

5.2 MethodWithout Data Preprocessing: 1D-CNN

Unlike some traditional methods that require meticulous
preparation to extract meaningful features from vibration
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1. Division of data into training and validation sets

2.Preparing class labels for data

3.Training the 1D-CNN model

4.Evaluation of loss and precision

5.Error analysis (confusion matrix)

Fig. 22 Steps of training 1D-CNN model

signals, one-dimensional convolutional neural networks (1D-
CNN) can autonomously learn from raw data. They can
independently identify patterns and significant traits, thus
eliminating the need for specific preprocessing procedures.

5.2.1 Choice of 1D-CNNModel Hyperparameters

Hyperparameters play a crucial role in setting up a one-
dimensional convolutional neural network (1D-CNN)model.
In this specific configuration, the stride is set to 1, determin-
ing the distance between each convolution operation applied
to the one-dimensional signal. Pooling is performed with
the MaxPooling1D method, which reduces the dimension-
ality of the signal by retaining the maximum values. The loss
function is defined as categorical cross-entropy, suitable for
multi-class classification tasks. The optimizer used is Adam,
which represents a popular optimization algorithm.Thebatch
size is set to 300, determining the number of samples pro-
cessed in each training iteration. Themodel is trained over 10
periods, each ofwhich represents a complete pass through the
dataset. Finally, the Rectified Linear Unit (ReLU) activation
function is applied, promoting nonlinearity in the model by
introducing positive activations. This hyperparameter con-
figuration aims to optimize the performance of the 1D-CNN
for the specific task at hand.

5.2.2 Application of the 1D-CNNMethod to All Data

Figure 22 presents the different stages of training the 1D-
CNN model in detail.

5.2.3 Division of Data Into Training and Validation Sets

• Training set

This set is used to train the model by providing it with
a large amount of data. It allows the model to acquire the

ability to recognize patterns and understand the relationships
between features and different classes. The training set is
used to adjust the weights and biases of the model through
successive iterations, aiming to minimize the error on these
data.

• Validation set

This set is dedicated to evaluating the model’s perfor-
mance during the training process. It plays a crucial role in
adjusting themodel’s parameters, thus preventing overfitting.
At each training iteration (or period), the model is evaluated
on the validation set to obtain an estimate of its performance
on the data it has not yet encountered. These evaluations are
used to adjust the parameters, thus optimizing the model’s
performance while ensuring its generalization to new data.

5.2.4 Class Label Preparation for Data

It is imperative to characterize the various categories or
classes to which the data are affiliated. For instance, in
the context of bearing fault detection, these classes could
be defined as "Normal" or "0CHARGE_R_0178." Subse-
quently, the data and labels are paired so that each data
element is matched with the appropriate label.

5.2.5 Training the 1D-CNNModel

The training set was used to adjust the model’s weights,
including parameters and biases. This process involves
exposing the training data to the various layers of the model
and using gradient backpropagation to successively adjust
the weights to optimize the model’s performance. Through-
out this training phase, the regular evaluations of the model’s
performance were carried out on the validation set. This
approach allowed for close monitoring of the model, pre-
vention of overfitting, and, where necessary, adjustments to
the parameters to achieve optimal performance.

5.2.6 Monitor Learning: Evaluation of Loss and Accuracy

To evaluate the performance of the 1D-CNN model, two
curves were generated: one for the loss and the other for
the precision.

• The loss curve

The evolution of the loss function reveals how the gap
between the model predictions and the actual labels changes
throughout the training epochs. The main objective is to
ensure a constant decrease in the loss in each period. A steady
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Fig. 23 Loss curve for 0 HP

Fig. 24 Loss curve for 3 HP

decrease indicates that themodel is appropriately incorporat-
ing the patterns inherent in the data, as illustrated in Figs. 23
and 24.

“Loss” measures the error between the model predictions
and actual labels on the training set, while “loss_val” eval-
uates the error on a separate validation set not encountered
by the model during training. The objective is to minimize
both "Loss" and "loss_val" values. However, if the "loss_val"
increases while the "Loss" decreases, this could indicate
overfitting, indicating that themodel fails to generalize effec-
tively to unseen data.

• Precision curve

The trajectory of the precision curve reveals how the
model’s accuracy, calculated as the number of correct predic-
tions divided by the total number of samples, progresses over
epochs. The primary goal is to observe a constant improve-
ment in accuracy over time, thus signaling an improvement in
the model’s data classification, as evidenced by Figs. 25 and
26. Accuracy measures the proportion of correct predictions

Fig. 25 Accuracy curve for 0 HP

Fig. 26 Accuracy curve for 3 HP

relative to the total number of samples in the training set,
while val_accuracy evaluates the proportion of correct pre-
dictions on the validation set. The major goal is to achieve
high accuracy, both for overall accuracy and for val_accuracy.

5.2.7 Error Analysis

In order to investigate the errors, the confusion matrix was
used, a fundamental instrument for studying the inaccuracies
of a classification model. This matrix provides a detailed
overviewof themodel’s performance for each class, exposing
how the model correctly or incorrectly assigns data to each
of the classes, as demonstrated in Figs. 27 and 28.

While the vertical axis of the matrix represents the actual
classification labels, the horizontal axis represents the pre-
diction labels. The elements of the confusion matrix near
or equal to 1 on the main diagonal indicate that the model
has successfully made predictions for these classes. More
specifically, these values reflect the rates of correct predic-
tions, suggesting that the model has appropriately assigned
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Fig. 27 Confusion matrix for 0 HP

Fig. 28 Confusion matrix for 3 HP

the correct class to the corresponding samples. On the other
hand, values outside themain diagonal, equal to 0, reveal that
themodel has not generated confusion between these classes,
as no incorrect prediction has been observed for these specific
class pairs.Values different fromzero outside themain diago-
nal indicate classification errors, demonstrating situations in
which the model has made incorrect class predictions. These
values provide insight into how often the model confuses
certain classes with others.

This evaluation underscores the proven benefits of the
1D-CNN method, emphasizing its pivotal role in enhanc-
ing maintenance practices. By enabling early fault detection,
1D-CNNs reorganize the adoption of predictive maintenance
strategies. The potential integration of 1D-CNNs into pre-
dictive maintenance systems confirms a promising future for
operational efficiency and industrial equipment reliability.

5.3 Discussions

Table 3 represents the classification accuracies of different
methods.

The analysis of the results from the application of the
methods on the four datasets, followed by the classification
using the 1D-CNN method for detecting bearing defects in
the rolling element, highlights significant trends in terms of
classification accuracy:

• The 1D-CNN model displays remarkable performance in
both scenarios, demonstrating exceptionally high accu-
racy, and even maintains perfect accuracy in the presence
of the maximum load.

• Set 1 (All indicators):
The results show high stability of accuracy, demonstrating
that the use of the full set of indicatorsmaintains consistent
performance, whether without load or with 3 HP.
The robustness of this set could be attributed to the diver-
sity of information provided by the full set of indicators,
thus reducing the impact of load variation on accuracy.

• Set 2 (Standard deviation, peak-to-peak, EB1, EB2):
Although accuracy is generally high, there is a slight vari-
ation between sets with and without load. The reduced
variance of the indicators in this set may explain the sta-
bility of accuracy, but the slight variation suggests that the
load can moderately influence performance.

• Set 3 (Kurtosis, effective value, EBt, EB3):
Accuracy slightly decreases for some algorithms, indicat-
ing that the specific selection of indicators may be more
sensitive to the load.
The increased variance of the indicators in this set could
explain this variation in accuracy, showing that the diver-
sity of features may be more sensitive to load changes.

• Set 4 (Standard deviation, effective value, EBt, EB1):
Performance generally remains highwith a slight variation
between sets with and without load.
The relative stability of this set suggests that the selection
of specific indicators maintains robust accuracy, even with
load variations.

• Influence of the load: Overall, the addition of the 3 HP
load seems to have a positive impact on accuracy in most
cases, indicating that load variation can help improve the
classification ability of bearing defects.
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Table 3 Classification accuracy

Set 1 Set 2 Set 3 Set 4

0 HP 3 HP 0 HP 3 HP 0 HP 3 HP 0 HP 3 HP

Fine Tree 98.2% 98.2% 96.4% 99.1% 98.2% 95.5% 98.2% 99.1%

Medium Gaussian SVM 98.2% 98.2% 98.2% 99.1% 98.2% 98.2% 96.4% 98.2%

Fine K-NN 96.4% 95.5% 92.9% 98.2% 96.4% 95.5% 91.1% 98.2%

0 HP 3 HP

1D-CNN 99.4% 100%

The analysis of the results demonstrates that the diversity
of indicator sets significantly influences the stability of accu-
racy in bearing fault classification. The full set of indicators
maintains consistent performance, while narrower sets may
exhibit varying sensitivity to the load. Generally speaking,
the addition of the 3 HP load commonly improves accuracy,
underlining its positive impact on the ability of the 1D-CNN
method to distinguish bearing faults.

6 Conclusion

The present researchwork has demonstrated the considerable
potential of artificial intelligence techniques, specifically
Machine Learning andDeep Learning, in diagnosing bearing
faults. A key aspect of this study is the comparative analysis
conducted between the differentmethods, providing valuable
insights into their respective strengths and limitations in the
context of bearing fault diagnosis.

The study has revealed that both methods that require data
preprocessing and those that do not can achieve high preci-
sion in fault detection. Notably, the 1D-CNNmodel achieved
an impressive accuracy rate of 100% for 3 HP, demonstrating
its resilience and high accuracy even under varying load con-
ditions (99.4% for 0 HP). Regarding the comparison among
the three methods that require preprocessing, none can be
definitively deemed more accurate than the others. Their
accuracy percentages are very similar, and the results depend
on the engine load and the database selected. The incorpora-
tion of four distinct datasets, chosen based on the distribution
curves of the indicators relative to the number of observa-
tions, has added depth to the study. The results emphasize
the critical role of feature selection and the influence of load
variations on the accuracy of fault diagnosis.

This study contributes to the ongoing advancements in
improving the accuracy and efficiency of bearing fault
diagnosis, thus facilitating more dependable and effective
maintenance strategies across various sectors. In the future,
the focus will be on developing more efficient indicators and

incorporating other datasets to further enhance the robustness
and applicability of these methods in bearing fault diagnosis.
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