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Abstract
Peak load forecasting is a critical aspect of power system operations and planning. Accurate forecasting of peak loads
significantly impacts the overall efficiency and reliability of a power system. Among the numerous load forecasting methods
that are used, ensemble learning algorithms have emerged as a popular choice due to their high accuracy. In this research,
the author proposes an innovative methodology that integrates the Differencing Operator with the Sliding Window procedure
for training and predicting peak loads using commonly employed ensemble learning models such as GBDT, XGBoost,
LightGBM, and CatBoost. The performance of the proposed approach was evaluated by analyzing the prediction error and
execution time. The results obtained demonstrated improved accuracy in peak load forecasting, with no impact on execution
time.

Keywords Load forecasting · Ensemble learning ·Window procedure · Differencing Operator

1 Introduction

Electrical peak load forecasting plays a vital role in ensur-
ing the reliability, safety, and economic efficiency of power
system operations and planning. It provides valuable refer-
ence values and guidance for integrating renewable energy
sources, such as wind and solar power, into the smart grid
[1–4]. The research literature has proposed numerousmodels
for electrical peak load forecasting, which can be categorized
into two major groups: (1) classic stage, and (2) advanced
stage. The classic stage category includes well-known fore-
casting methods such as Regression [5, 6], Stochastic time
series [7, 8], and Exponential Smoothing [9, 10]. In the
advanced stage group, researchers have reported the effec-
tiveness of Fuzzy logic [11, 12], Artificial neural network
[13–15], Support Vector Machines [16, 17], Hybrid Tech-
niques [18–20], and Ensemble Learning [21, 22]. In this
context, ensemble learning is a machine learning technique
that combines predictions from two or more models to
increase the accuracy and reliability of the final results.
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By leveraging the collective predictions of multiple mod-
els, ensemble learning can achieve higher accuracy and
more reliable predictions compared to individual models.
Recently, there has been extensive research on the applica-
tion of ensemble learning using decision tree-based machine
learning algorithms in load forecasting, resulting in remark-
able outcomes. Notably, this paper will consider models such
as GBDT, XGBoost, LightGBM, and CatBoost, which have
demonstrated promising performance in this field [23–30].

Since peak load is a time series, it is common to utilize the
Sliding Window procedure when applying ensemble algo-
rithms. This procedure helps partition the data into input and
target sets, enabling the training and forecasting processes
for the load profile to be performed using ensemble algo-
rithm models [28, 31, 32]. Another aspect examined in this
study is the periodicity of peak load. For example, the load
characteristics of a specific Monday may exhibit similarities
to those of the previous Monday. When using only the Slid-
ing Window procedure in data processing, the cyclic nature
of the load data may inadvertently be overlooked. Therefore,
in this study, the author recommends a novel approach that
involves incorporating the input data Differencing Operator
to account for the cyclical characteristics of the load data.
More specifically, the analysis will focus on the series Z t

= Y t–Y t-d as an alternative to using the original data Yt,
where d represents the differencing order. The Differencing
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Operator, integratedwith the SlidingWindowprocedure,will
be employed in combination with ensemble learning algo-
rithms. The proposedmethod’s effectivenesswill be assessed
through the evaluation of forecast errors and program execu-
tion time. The GBDT, XGBoost, LightGBM, and CatBoost
algorithms will be sequentially investigated. Each algorithm
will consider a large number of hyperparameter combina-
tions. Furthermore, this studywill utilize peak load data from
two Australian states, New South Wales and Queensland,
enhancing the reliability of the research results.

This paper is organized as follows: In Sect. 2, a brief
introduction to ensemble algorithms is presented; Sect. 3 pro-
poses a new approach through the combination of the Sliding
Window procedure with the Differencing Operator; Sect. 4
conducts empirical assessments on real datasets from two
states of Australia; and finally, Sect. 5 presents the conclu-
sions.

2 Review of Ensemble Algorithm

Ensemble learning is a technique that enhances predictive
performance by combining multiple models, surpassing the
performance of individualmodels used in isolation. There are
three main classes of ensemble learning: bagging, stacking,
andboosting [33].Bagging is an ensemble learning algorithm
that creates a diverse group of ensemble members by train-
ing models on different subsets of the training dataset. On
the other hand, stacking involves training different types of
models on the training data to generate predictions, which are
then combined using anothermodel. Boosting is an ensemble
algorithm that leverages the mistakes made by previous pre-
dictors to improve future predictions. Boosting algorithms
have gained significant attention in recent years and will
also be employed in this paper. Notably, boosting algorithms
come in various forms, including GBDT (Gradient Boost-
ing Decision Trees), XGBoost (ExtremeGradient Boosting),
LightGBM (Light Gradient Boosting Machine), and Cat-
Boost (Categorical Boosting) [34–36].

2.1 Ensemble Algorithms

GBDT algorithm was first introduced by Friedman in 2001,
presenting anovel approach that combinesGradientBoosting
and Decision Trees in machine learning [37, 38]. In Gradient
Boosting, multiple weak learners are connected sequentially,
with each learner aiming to minimize the error of the previ-
ous learner. Gradient Boosting utilizes gradient descent to
construct new weak learners along the direction of the cur-
rent model’s loss function. The Decision Tree plays a crucial
role as the main component of GBDT and serves as a weak
learnerwithin theGradient Boosting process. The integration

of Gradient Boosting and Decision Trees in GBDT leads to
enhanced effectiveness in learning and optimization.

XGBoost is a scalable, end-to-end tree boosting method
developed by Chen and Guestrin in 2016 [39]. It is an
improved algorithm based on the GBDT model, which uses
second-orderTaylor expansionon the loss function and incor-
porates regular terms into the objective function to achieve
the optimal solution. This approach helps control the decline
of the objective function and the complexity of a model,
resulting in better convergence, prevention of overfitting,
and ultimately providing higher forecasting accuracy. Addi-
tionally, XGBoost processes the data and stores the results
before training, enabling their reuse in subsequent iterations
to reduce computational complexity and facilitate parallel
execution, thereby increasing efficiency.

LightGBM is a novel gradient boosting framework devel-
oped by Microsoft Research Asia in 2017 [40]. It is an
enhanced version of GBDT that incorporates two key tech-
niques: Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB). The core concept behind
GOSS is that larger gradients contribute more to the infor-
mation gain. The GOSS algorithm identifies samples with
high gradients and randomly selects a subset from samples
with small gradients. This approach effectively utilizes the
samples during the training process, optimizing their impact
on the model. On the other hand, EFB focuses on reducing
the number of features by merging mutually exclusive ones.
EFB consists of two algorithms: one for exclusive feature
bundling, which combines related features, and another for
merging feature bundles and assigning a value to the resulting
bundle.

CatBoost is a new gradient descent algorithm that was
presented by Prokhorenkova et al. in 2018 [41]. It is highly
effective in predicting categorical features and is based on
the utilization of binary decision trees as base predictors.
This algorithm incorporates several techniques including
permutation methods, one-hot-max-size encoding, greedy
methods for new tree splits, and target-based statistics. These
techniques are applied as follows: The dataset is randomly
permuted into subsets, the labels are converted to integer
numbers, and the categorical values are transformed into
numerical representations. This combination of techniques
enhances the effectiveness of CatBoost in handling categor-
ical data and improves its predictive capabilities.

2.2 Hyperparameters

One concern when using hybrid learning techniques is the
hyperparameters of the model, which affect the performance
and accuracy of an ensemble model. Hyperparameters are
parameters that are set prior to training a machine learning
model, unlike model parameters which are learned from data
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during training. There are many hyperparameters for ensem-
ble algorithms,which can be classified intomanygroups such
as Accuracy, Speed, and Overfitting. In this research, each
model of GBDT, XGBoost, LightGBM, and CatBoost will
be performed and evaluated in combination with different
values of typical hyperparameters to increase the reliability
of the results [42, 43]. These key hyperparameters that will
be considered in this paper include:

• The learning rate (lr), which determines the step size at
each iteration with respect to the loss gradient function.

• Themaximumdepth (md),which is an integer that controls
the maximum distance between the root node and a leaf
node.

• The number of estimators (ne), which is the number of
trees used in the model.

3 ProposedMethod

3.1 SlidingWindow Procedure

Time series data refers to a collection of observations on
the values that a variable takes at different points in time,
following a uniform time–frequency. It can be represented
by the equation:

y1, y2, . . . , ym , . . . , yM (1)

where m ranges from 1 to M, representing the number of
observation values.

To incorporate time series data into an ensemble algo-
rithm, the Sliding Window procedure has been utilized to
extract both time series data and production data features.
The SlidingWindow procedure is illustrated in Fig. 1, where
a window size of 7 has been employed [32].

Fig. 1 The process of the Sliding Window procedure

Table 1 The Sliding Window procedure process

Dataset Input Output

Training y1 y2 … yN yN+1

… … … … …

yM-H-N yM-H-N+1 … yM-H-1 yM-H

Testing yM-H-N+1 yM-H-N+2 … yM-H yM-H+1

… … … … …

yM-N yM-N+1 … yM-1 yM

When working with a time series dataset of length M, the
Sliding Window procedure is applied using a window size
denoted as N. Subsequently, the dataset is divided into train-
ing and testing subsets, where the number of testing instances
is denoted as H. The steps for constructing the dataset using
the sliding window procedure are detailed in Table 1.

The training dataset is composed of an input sequence
X train = {y1, …, yN; y2, …., yN+1; ….; yM-H-N, …, yM-H-1}
and an output sequenceY train= {yN+1,…yM-H}.On the other
hand, the testing dataset includes an input sequence X test

= {yM-H+1-N, …, yM-H; yM-H+2-N, …., yM-H+1; ….; YM-N,
…, yM-1} and an output sequence Y test = {yM-H+1, …yM}.
Following the Sliding Window procedure mentioned earlier,
the data is structured into input and output components. The
training data is represented as (X train, Y train), while the testing
data is represented as (Xtest, Y test). These training and test-
ing datasets serve as the foundation for applying machine
learning algorithm in time series forecasting.

3.2 Differencing Operator

The repetitive nature of time series refers to the regular or
periodic patterns that occur in the data over time. These pat-
terns can occur at regular intervals, such as hourly, daily,
weekly, monthly, or yearly for electric load patterns. To
address the repetitive nature and make time series data
more amenable to analysis, the Differencing Operator is
often applied. The Differencing Operator involves comput-
ing the difference between consecutive observations in the
time series by subtracting the previous value from the cur-
rent value. This captures the changes or fluctuations in the
data, as shown by the equation below:

y(t) = y(t)− y(t − d) (2)

where d is the order of differencing.
The algorithm flowchart of the Differencing Operator is

shown in Fig. 2. By applying differencing, the operator helps
remove the trend and seasonality from the data, making it
stationary. This process allows for better modeling and pre-
diction of the time series.
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Fig. 2 The flow chart of the Differencing Operator

3.3 The Integration of Differencing Operator
into the SlidingWindow Procedures

Based on the presentation above, the Differencing Opera-
tor has the potential to significantly impact the forecast of
time series data. Therefore, in this study, the author proposes
the utilization of the Differencing Operator integrated into
the Sliding Window Procedure for ensemble learning algo-
rithms in the case of peak load forecasting, as illustrated in
Fig. 3. Figure 3 depicts the training and testing process of
the ensemble learning algorithm. First, ensemble algorithms
are trained using {Xtrain, Ytrain} as input and output variables,
which generates a regressionmodel calledmdl(d)i . Secondly,

this trained regression model, mdl(d)i , produces the output
variable ̂Y corresponding to Xtest in the testing process. The
error rate (such as MAPE) between the predict value ̂Y and
real value Ytest values is used to evaluate the effectiveness of
the ensemble algorithms.

The pseudocode for the training process is shown in Fig. 4.
The input data for this process is assigned to training data,
The output of the training stage is a trained model, mdl(d)i ,
where subscript i represents one case of the combination of
hyperparameters, and superscript (d) refers to the differenc-
ing order d. The training process is performed as follows:

• The original data is differenced according to the order d,
as defined in Eq. (2).

• Transforming data into input-target pairs: The input Xtrain

and output Ytrain for the training process are established
using the Sliding Window procedure discussed earlier in
Sect. 3.1.

• Defining the ensemble model: The ensemble algorithms,
namely GBDT, XGBoost, LightGBM, and CatBoost mod-
els, are defined within the Python environment for this
research. The corresponding libraries used are sklearn,
xgboost, lightgbm, and catboost.

• Themodel training is conducted using the input-target data
(Xtrain and Ytrain), which correspond to the defined model
from the previous step.

The pseudocode for the testing process is presented in
Fig. 5. During the testing process, the input consists of the
testing data, the trained modelmdl(d)i , and the training data
used to invert the Differencing Operator. The testing process
follows these main steps:

Fig. 3 The training and testing process of the ensemble learning algorithm
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Fig. 4 The pseudocode of
training stage

Fig. 5 The pseudocode of testing
stage

• Obtaining rolling data and differencing offset: The training
data is used to obtain the rolling data and determine the
differencing offset.

• Obtaining the input Xtest: The input Xtest is obtained from
the rolling data, using the Sliding Window procedure.

• Obtaining the first predicted value ŷ1: Using the model
mdl(d)i and the Xtest, the initial predicted value ŷ1 is cac-
ulated. It is then adjusted by the differencing offset.

• Updating the rolling data and repeating the process: The
rolling data is updated with the actual observation, and the
process is repeated for the remaining predicted values ŷi ,
i = 2, …h.
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Fig. 6 The daily peak load of New South Wales and Queensland

Table 2 The descriptive statistics
of data Data Descriptive statistics (MW)

Mean Std Min 25% 50% 75% max

NSQ 9453 1051 6747 8696 9322 10,116 13,787

QL 6670 425 5473 6400 6647 6863 8453

The output of the testing process is the error rate, which is
calculated based on the real values [yn-h+1, yn-h+2, …,yn] and
the predicted values [̂y1, ŷ2, . . . , ŷn]. In this paper, the mean
absolute percentage error (MAPE) is calculated to evaluate
forecasting accuracy. The MAPE error rate is expressed by
the following formula [44, 45]:

MAPE = 1

h

h
∑

i=1

∣

∣

∣

∣

yn−h+i − ŷi
yn−h+i

∣

∣

∣

∣

(3)

Note:
To evaluate the effectiveness of the Differencing Operator

based on the Sliding Window Procedure for ensemble algo-
rithms, it is necessary to analyze the performance of these
algorithms according to the differencing order d. This is the
reason why there is a superscript (d) in the model mdl(d)i ,

and the error rateMAPE(d)
i in Figs. 3, 4, and 5 as presented

above.
Additionally, to enhance the reliability of the results, it

is suggested to combine different values of hyperparameters
for each ensemble algorithm. That explains why there is the
input Hi = {lra, mdb, nec} in the training process, as well
as the subscript (i) in the variable mdl(d)i and the error rate

MAPE(d)
i .

Thus, based on the procedure outlined in Fig. 3 and the
integrated pseudocode in Figs. 4 and 5, the error rate of each
ensemble model can be determined by considering specific
values of differencing order (d). This allows for the evalua-
tion of the effectiveness of integrating Differencing Operator
into the SlidingWindowProcedures based on ensemble algo-
rithms.

4 Experimental Study

4.1 Experimental setup

In this study, the author recommends utilizing the daily peak
load data of New SouthWales (NSW) and Queensland (QL),
Australia, for both training and testing. Figure 6 depicts the
peak load graph of these two states from March 4, 2012 to
May 31, 2014, along with their corresponding characteristics
listed in Table 2. The training phase utilizes data fromMarch
4, 2012 toMay 3, 2014, while the testing phase encompasses
the period from May 4, 2014 to May 31, 2014, covering a
duration of 28 days.

To enhance the reliability of the proposedmethod, it is cru-
cial to exploremultiple cases for each ensemble algorithm. In
this study, the author suggests simultaneously investigating
different combinations of significant common hyperparam-
eters for the GBD, XGBoost, LightBoost, and CatBoost
models. These hyperparameters include the learning rate (lr),
maximum depth (md), and number of estimators (ne), as
discussed in Sects. 2 and 3. The range and the number of
survey participants for these hyperparameters are presented
in Table 3 below. The total number of combinations for the
lr, md, and ne hyperparameters is 2000 cases.

In the present work, the focus is on forecasting daily
peak loads. For this purpose, several differencing values are
proposed, including d = 0 (no differencing), d = 1 (first
differencing), d = 7 (weekly seasonal differencing), and d
= 28 (monthly seasonal differencing). Additionally, for the
experimental application of the proposed algorithm to peak
load data, three window sizes have been established:
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Table 3 The ranges for
hyperparameters Hyperparameter Range Number of elements

Min Max Step

Learning rate (lr) 0.01 0.2 0.01 A = 20

Max depth (md) 1 10 1 B = 10

Number of estimators (ne) 100 550 50 C = 10

• Window size = 1, which uses the data taken from the
previous day for forecasting.

• Window size = 7, which uses the data taken from the
previous week.

• Window size= 28,which considers a typicalmonth’s data,
specifically, from four preceding weeks.

After executing the program and analyzing the results
from the mentioned window sizes, the obtained outcomes
were quite similar across the board. However, the window
size of 7 proved to be the most effective one. Notably, this
finding is helpful for the paper focus that is devoted to clar-
ifying the impact of the Differencing Operator. As a result,
the window size of 7 was chosen for further study in this
research.

The experimentswere implementedusing theScikit-learn,
math,Matplotlib, and other libraries, as well as theXGBoost,
LightGBM, and CatBoost libraries in the Python environ-
ment on the Google Colab platform. The runtime type in
Colab is TPU with high RAM.

4.2 Evaluation of Error Rates

Figure 7 displays a boxplot of the error rate (MAPE) between
the predicted value (̂Y ) and the actual value (Ytest) for dif-
ferent values of differencing order d (0, 1, 7, 28). The result
corresponds to the GBDT, XGBoost, LightBoost, and Cat-
Boost models for the New SouthWales and Queensland data
cases.

Table 4 presents statistics for each set of differencing order
d (d= 0, 1, 7, 28) shown in Fig. 7. For each set, five statisti-
cal values are provided, including minimum, 25th percentile,
50th percentile, 75th percentile, and maximum. For exam-
ple, in the upper-left subfigure of Fig. 7 (GBDT model, New
South Wales data), a differencing order d = 0 yields sta-
tistical values of 5.84 (minimum), 6.54 (25th percentile),
6.68 (50th percentile), 6.79 (75th percentile), and 7.47 (max-
imum). Similarly, for the last subfigure on the bottom right
(CatBoost model, Queensland data), a differencing order d=
28 gives statistic values of 3.21 (minimum), 3.51 (25th per-
centile), 3.59 (50th percentile), 3.68 (75th percentile), and
4.32 (maximum).

An in-depth analysis of Figs. 7 and Table 4 reveals that the
application of the Differencing Operator to the input data (d

= 1, 7, 28) leads to significantly better results, with a drastic
reduction in prediction error compared to using the original
data (d = 0). Specifically, when examining the GBDTmodel
andNewSouthWales data, Fig. 7 andTable 4 show that using
the original data yields excessively high forecast error val-
ues (minimum: 5.84, 25th percentile: 6.54, 50th percentile:
6.68, 75th percentile: 6.79, maximum: 7.47), whereas cases
with d = 1 (minimum: 2.45, 25th percentile: 3.11, 50th per-
centile: 3.30, 75th percentile: 3.49, maximum: 4.01), d = 7
(minimum: 2.82, 25th percentile: 3.13, 50th percentile: 3.23,
75th percentile: 3.36, maximum: 4.11), and d = 28 (mini-
mum: 4.47, 25th percentile: 4.92, 50th percentile: 5.23, 75th
percentile: 5.43, maximum: 6.31) demonstrate significantly
improved results. Similar trends are observed in all other
cases. Moreover, a comparison of the error values across dif-
ferent Differencing Operator cases (d = 1, 7, 28) highlights
that the most optimal results are achieved when d = 7.

To accurately evaluate the impact of the Differencing
Operator, the next step focuses on calculating the ratio of
the error rate between the differencing cases (d = 1, 7, 28)
and the original data case (d= 0). Figure 8 displays a boxplot
of the error rate ratio for the GBDT, XGBoost, LightGBM,
and CatBoost models applied to the New South Wales and
Queensland data. The statistical values for each column in
Fig. 8 are summarized in Table 5.

The results in Figs. 8 and Table 5 clearly demonstrate the
fluctuation range of the error rate ratio for both theNewSouth
Wales and Queensland data. For the New South Wales data,
the ratio of the error rate ranges from 0.36 to 0.68 for the
minimum statistic, 0.46 to 0.75 for the 25th percentile, 0.48
to 0.78 for the median (50th percentile), 0.50 to 0.81 for the
75th percentile, and 0.59 to 0.93 for the maximum statistic.
Similarly, for the Queensland data, the ratio ranges from 0.51
to 0.73 for the minimum statistic, 0.58 to 0.85 for the 25th
percentile, 0.60 to 0.88 for the median, 0.62 to 0.92 for the
75th percentile, and 0.80 to 1.16 for the maximum statistic.

For the New South Wales data, all error ratios of the Dif-
ferencing Operator (d = 1, 7, 28) to the original data (d =
0) are less than 1. However, in the Queensland dataset, there
are instances where the ratio 28/0 (d = 28/d = 0) exceeds
1, as detailed in Tables 6 below. Table 6 reveals 10 instances
in the GBDT model, 12 instances in the XGBoost model, 5
instances in the LightGBM model, and 14 instances in the

123



Arabian Journal for Science and Engineering

M
AP

E 
(%

)

M
AP

E 
(%

)

M
AP

E 
(%

)

M
AP

E 
(%

)
GBDT

GBDT

XGBoost

XGBoost

LightGBM

LightGBM

CatBoost

CatBoost

(a)

(b)

Differencing orders Differencing orders Differencing orders Differencing orders

Differencing orders Differencing orders Differencing orders Differencing orders

M
AP

E 
(%

)

M
AP

E 
(%

)

M
AP

E 
(%

)

M
AP

E 
(%

)

Fig. 7 The error rates for differencing orders of 0, 1, 7, and 28: (a) New South Wales, (b) Queensland

Table 4 The descriptive statistics of error rate

Algorithms d New South Wales Queensland

Min 25% 50% 75% Max Min 25% 50% 75% Max

GBDT 0 5.84 6.54 6.68 6.79 7.47 3.80 4.59 4.69 4.84 5.07

1 2.45 3.11 3.30 3.49 4.01 2.51 2.90 2.97 3.04 3.71

7 2.82 3.13 3.23 3.36 4.11 2.52 2.76 2.84 2.93 3.26

28 4.47 4.92 5.23 5.43 6.31 3.31 3.68 3.90 4.30 4.77

XGBoost 0 5.82 6.59 6.72 6.84 7.30 3.80 4.58 4.67 4.78 5.11

1 2.89 3.24 3.32 3.45 3.86 2.55 2.96 3.09 3.23 3.57

7 2.64 3.12 3.26 3.41 3.82 2.39 2.72 2.79 2.87 3.25

28 4.57 4.89 5.19 5.40 6.11 3.42 3.86 4.14 4.33 4.75

LightGBM 0 5.82 6.63 6.89 7.10 7.52 3.80 4.57 4.71 4.91 5.27

1 2.90 3.25 3.44 3.66 4.45 2.87 3.07 3.19 3.29 3.54

7 2.89 3.16 3.29 3.45 4.00 2.58 2.93 3.10 3.23 3.66

28 4.58 4.91 5.39 5.75 6.31 3.26 3.61 3.72 3.86 4.41

CatBoost 0 5.55 6.29 6.45 6.59 6.97 3.79 4.43 4.53 4.66 4.89

1 2.93 3.19 3.29 3.41 3.88 2.56 2.88 2.95 3.00 3.17

7 2.65 2.99 3.09 3.19 3.59 2.53 2.82 2.87 2.93 3.21

28 4.47 4.76 4.87 5.03 5.77 3.21 3.51 3.59 3.68 4.32
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Fig. 8 The error ratio between differencing order d of 1, 7, 28 and 0: (a) New South Wales, (b) Queensland

Table 5 The descriptive statistics of error rate

Algorithms Ratios New South Wales Queensland

Min 25% 50% 75% Max Min 25% 50% 75% Max

GBDT 1/0 0.36 0.47 0.50 0.52 0.60 0.54 0.61 0.64 0.66 0.80

7/0 0.42 0.47 0.49 0.50 0.60 0.51 0.59 0.61 0.63 0.84

28/0 0.62 0.75 0.78 0.81 0.93 0.71 0.80 0.84 0.89 1.16

XGBoost 1/0 0.43 0.48 0.50 0.52 0.60 0.55 0.64 0.67 0.69 0.80

7/0 0.40 0.47 0.49 0.50 0.59 0.52 0.58 0.60 0.62 0.83

28/0 0.66 0.74 0.77 0.80 0.89 0.73 0.85 0.88 0.92 1.14

LightGBM 1/0 0.41 0.48 0.51 0.53 0.62 0.58 0.66 0.68 0.69 0.81

7/0 0.40 0.46 0.48 0.50 0.60 0.57 0.62 0.65 0.68 0.84

28/0 0.67 0.75 0.78 0.81 0.92 0.69 0.77 0.79 0.81 1.16

CatBoost 1/0 0.45 0.50 0.51 0.53 0.62 0.53 0.62 0.65 0.68 0.81

7/0 0.41 0.46 0.48 0.50 0.62 0.56 0.61 0.63 0.65 0.85

28/0 0.68 0.75 0.76 0.78 0.89 0.70 0.77 0.79 0.81 1.14

CatBoost model where the ratios are greater than 1. Consid-
ering the total of 2000 combinations of hyperparameters (lr,
md, and ne) for each model, the number of cases where the
ratio exceeds 1 is exceptionally small. This indicates that the
utilization of the Differencing Operator (d = 1, 7, 28) can
effectively enhance the precision of the forecasting process
for ensemble algorithms. The data analysis also demonstrates
that the differencing order of 7may result in the smallest error
ratio compared to the differencing orders of 1 or 28 for most
values of the min, 25th, 50th, 75th, and max statistics.

In conclusion, the results confirm that the utilization of the
Differencing Operator (d = 1, 7, 28) has a positive impact on
reducing errors and improving the accuracy of the forecasting
process for ensemble algorithms. The analysis also suggests
that a differencing order of 7 tends to yield the smallest error
ratio compared to orders of 1 or 28 for various statistical
values.
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Fig. 9 The execution time for differencing orders of 0, 1, 7, and 28: (a) New South Wales, (b) Queensland

4.3 Evaluation of Execution Time

Figure 9 illustrates a boxplot representing the execution time
for different differencing orders (d = 0, 1, 7, 28) corre-
sponding to the GBDT, XGBoost, LightGBM, and CatBoost
models applied to the New SouthWales and Queensland data
cases. Table 7 presents the statistical values for each set of
differencing orders (d = 0, 1, 7, 28) as shown in Fig. 9.

A detailed analysis of Fig. 9 and Table 7 reveals that
the application of the Differencing Operator (d = 1, 7, 28)
does not significantly increase the execution time of the pro-
gram compared to the case where the original data (d =
0) is used. For example, let’s consider the GBDT network
with the New South Wales dataset. The results presented
in Fig. 9 and Table 7 show that the execution time statistic
values for the original data case (d = 0) are as follows: min-
imum: 0.12 s, 25th percentile: 0.55 s, 50th percentile: 0.95 s,
75th percentile: 1.57 s, and maximum: 3.14 s. These val-
ues remain largely unchanged when compared to the cases
of d = 1 (minimum: 0.14, 25th percentile: 0.58, 50th per-
centile: 0.99, 75th percentile: 1.62, and maximum: 3.19), d
= 7 (minimum: 0.14, 25th percentile: 0.57, 50th percentile:
0.98, 75th percentile: 1.59, and maximum: 3.15), and d= 28
(minimum: 0.13, 25th percentile: 0.55, 50th percentile: 0.94,
75th percentile: 1.53, and maximum: 3.13). And all other
cases have similar results.

In addition, Fig. 10 presents a boxplot illustrating the exe-
cution time ratios between the Differencing Operator (d = 1,

7, 28) and the original data case (d = 0). The corresponding
statistical values for each column in Fig. 10 are summarized
in Table 8. For instance, in the 50th percentile statistical case
(median values), the error ratio of the execution timewith the
Differencing Operator to that with the original data ranges
from [0.99 to 1.20] for all New SouthWales data cases. Sim-
ilarly, for the Queensland data, the ratio fluctuates within the
range of [0.99–1.18]. These findings indicate that there is no
significant difference in the execution timewhen considering
differencing orders of 1, 7, or 28 for the GBDT, XGBoost,
LightGBM, and CatBoost models, respectively. Figures 10
and Table 8 consistently demonstrate that the execution time
remains largely unchanged when the Differencing Operator
is applied.

5 Conclusion

In this study, the author suggests the combination of the input
data Differencing Operator with the Sliding Window proce-
dure for ensemble learning algorithms. The objective was
to assess the error rate and execution time for the GBDT,
XGBoost, LightGBM, and CatBoost models in the fore-
casting process. Extensive exploration of hyperparameter
combinations, such as learning rate, max depth, and number
of estimations, was conducted to evaluate the effectiveness
of the proposed approach. The results clearly demonstrated
that implementing the input data difference approach (d =
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Table 6 The list of ratios 28/0
greater than 1 for the Queensland
data

No Hyperparameters Error Model

lr md ne d = 0 d = 28 (d = 0)/(d = 28)

1 0.01 1 100 3.7953 4.4034 1.1602 GBDT

2 0.01 1 150 3.8668 4.2029 1.0869

3 0.01 1 200 3.9316 4.0228 1.0232

4 0.01 2 100 3.9105 4.0277 1.0300

5 0.01 3 100 3.9805 4.0216 1.0103

6 0.01 5 100 4.0435 4.0515 1.0020

7 0.01 8 100 4.1447 4.2740 1.0312

8 0.01 9 100 4.2177 4.3230 1.0250

9 0.01 10 100 4.2584 4.3789 1.0283

10 0.02 1 100 3.9334 4.0198 1.0220

1 0.01 1 100 3.7986 4.3297 1.1398 XGBoost

2 0.01 1 150 3.8684 4.1784 1.0801

3 0.01 1 200 3.9284 4.1040 1.0447

4 0.01 1 250 3.9780 4.0337 1.0140

5 0.01 2 100 3.9098 4.1231 1.0545

6 0.01 3 100 3.9773 4.2364 1.0651

7 0.01 4 100 4.0218 4.2643 1.0603

8 0.01 5 100 4.0430 4.2680 1.0557

9 0.01 6 100 4.1000 4.1924 1.0225

10 0.01 7 100 4.1834 4.1926 1.0022

11 0.01 10 100 4.2971 4.3942 1.0226

12 0.02 1 100 3.9303 4.1058 1.0446

1 0.01 1 100 3.7962 4.4104 1.1618 LightGBM

2 0.01 1 150 3.8691 4.2150 1.0894

3 0.01 1 200 3.9309 4.0367 1.0269

4 0.01 2 100 3.9079 4.0373 1.0331

5 0.02 1 100 3.9339 4.0296 1.0243

1 0.01 1 100 3.7874 4.3185 1.1402 Catboost

2 0.01 1 150 3.8411 4.0992 1.0672

3 0.01 1 200 3.9077 3.9326 1.0064

4 0.01 2 100 3.8387 4.0052 1.0434

5 0.01 3 100 3.8823 4.0093 1.0327

6 0.01 4 100 3.8954 3.9550 1.0153

7 0.01 5 100 3.9074 3.9374 1.0077

8 0.01 6 100 3.9086 3.9484 1.0102

9 0.01 7 100 3.9111 3.9899 1.0201

10 0.01 8 100 3.9051 4.0765 1.0439

11 0.01 9 100 3.9119 4.1620 1.0639

12 0.01 10 100 3.9029 4.1876 1.0729

13 0.01 10 150 4.0044 4.0107 1.0016

14 0.02 1 100 3.9149 3.9219 1.0018
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Table 7 The descriptive statistics of execution time

Algorithms d New South Wales Queensland

Min 25% 50% 75% Max Min 25% 50% 75% Max

GBDT 0 0.12 0.55 0.95 1.57 3.14 0.12 0.54 0.94 1.53 3.06

1 0.14 0.58 0.99 1.62 3.19 0.14 0.57 0.98 1.61 3.47

7 0.14 0.57 0.98 1.59 3.15 0.14 0.56 0.95 1.54 2.97

28 0.13 0.55 0.94 1.53 3.13 0.13 0.54 0.93 1.49 2.93

XGBoost 0 0.05 0.19 0.35 0.69 7.19 0.05 0.23 0.42 0.83 9.43

1 0.08 0.23 0.40 0.71 4.80 0.09 0.26 0.45 0.82 5.07

7 0.08 0.23 0.39 0.70 4.73 0.09 0.26 0.46 0.81 4.97

28 0.08 0.23 0.39 0.71 4.73 0.09 0.27 0.45 0.82 5.24

LightGBM 0 0.03 0.10 0.18 0.27 0.47 0.03 0.14 0.25 0.37 0.76

1 0.05 0.13 0.21 0.30 0.51 0.05 0.17 0.29 0.43 0.81

7 0.05 0.13 0.20 0.28 0.53 0.05 0.17 0.27 0.39 0.70

28 0.05 0.13 0.20 0.29 0.54 0.05 0.16 0.26 0.37 0.74

CatBoost 0 0.07 0.16 0.29 0.66 3.65 0.08 0.21 0.36 0.80 4.48

1 0.09 0.19 0.31 0.68 3.80 0.10 0.23 0.38 0.83 4.39

7 0.08 0.17 0.29 0.64 3.36 0.10 0.23 0.38 0.83 4.46

28 0.08 0.17 0.29 0.64 3.43 0.10 0.23 0.38 0.83 4.38

(b)

GBDT XGBoost LightGBM CatBoost

Ratios of differencing orders Ratios of differencing orders Ratios of differencing orders Ratios of differencing orders
(a)

Ratios of differencing orders Ratios of differencing orders Ratios of differencing orders Ratios of differencing orders

Fig. 10 The time ratio between differencing order of 1, 7, 28 and 0: (a) New South Wales, (b) Queensland
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Table 8 The descriptive statistics of time ratio

Algorithms Ratios New South Wales Queensland

Min 25% 50% 75% Max Min 25% 50% 75% Max

GBD 1/0 0.96 1.02 1.04 1.05 1.20 0.97 1.03 1.04 1.06 1.55

7/0 0.90 1.01 1.02 1.04 1.20 0.89 1.00 1.01 1.03 1.17

28/0 0.92 0.98 0.99 1.01 1.17 0.91 0.97 0.99 1.00 1.16

XGBoost 1/0 0.03 0.99 1.13 1.34 11.33 0.03 0.97 1.09 1.27 11.80

7/0 0.03 0.99 1.14 1.33 17.43 0.03 0.95 1.08 1.27 12.32

28/0 0.03 1.00 1.12 1.31 13.14 0.03 0.96 1.10 1.27 17.00

LightGBM 1/0 0.47 1.08 1.20 1.35 2.19 0.37 1.08 1.18 1.31 2.20

7/0 0.48 1.02 1.16 1.35 2.11 0.41 1.01 1.13 1.30 2.19

28/0 0.48 1.05 1.18 1.34 2.21 0.35 0.96 1.09 1.25 2.10

CatBoost 1/0 0.66 1.03 1.09 1.18 1.59 0.16 1.01 1.06 1.11 1.46

7/0 0.66 0.98 1.03 1.10 1.33 0.16 1.02 1.05 1.10 1.43

28/0 0.61 0.97 1.02 1.08 1.37 0.16 1.02 1.05 1.10 1.51

1, 7, 28) led to a significant reduction in prediction error.
Furthermore, it was observed that the execution time only
experienced a slight increase when employing the data par-
titioning approach. In conclusion, the integration of the
DifferencingOperator into theSlidingWindowProcedure for
ensemble learning presents a promising solution to address
technical challenges, particularly in the domain of peak load
forecasting. This result lays the foundation for the author
to further develop the proposed algorithm toward various
machine learning models, particularly deep learning mod-
els. Additionally, it enables the extension of the algorithm’s
application in diverse types of time series data, such as finan-
cial and weather data. Moreover, exploring its effectiveness
in real-time data processing or under different operational
conditions presents an important challenge.
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