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Abstract
In recent years, with the indepth research on driverless technology, model predictive control theory was extensively applied in
the field of vehicle control. In order to improve the accurate tracking of reference trajectories by driverless vehicles, a model
predictive control trajectory tracking controller for driverless vehicles optimized by an improved sparrow search algorithm is
proposed. Firstly, an objective function with constraints is added to the model predictive control trajectory tracking controller
by establishing the vehicle dynamics model; Secondly, the improved sparrow search algorithm is enhanced to speed up
convergence and expand the program’s search capabilities; Then, in order to discover the best value, the model predictive
control trajectory tracking controller’s prediction time domain and control time domain are optimized using the improved
sparrow search algorithm; Finally, to confirm the method’s viability, collaborative simulations in Simulink/Carsim were
completed. The simulation results show that the lateral errors generated by the improved sparrow search algorithm-based
optimized model predictive control trajectory tracking controller are reduced by 53.53% and 65.44%, respectively, when the
vehicle speed is 36 km/h, compared with the traditional model predictive control trajectory tracking controller. When the
vehicle speed is 54 km/h, the lateral deviations are reduced by 81.08% and 86.76%, respectively. In addition, the optimized
model predictive control trajectory tracking controller improves the accuracy and at the same time, the driving stability of the
control vehicle is significantly improved.

Keywords Driverless · Sparrow search algorithm · Model predictive control · Trajectory tracking

1 Introduction

In the reform and development of the transportation industry,
the emergence of driverless technology is of epoch-making
significance. As technology in Artificial Intelligence has
developed, driverless technology has received increasing
attention from researchers. The Society of Automotive Engi-
neers (SAE) has identified six degrees of driving automation
for driverless vehicles, ranging from L0 to L5. Many aca-
demics and professionals in relevant disciplines are focusing
their research on achieving L5 level of fully autonomous
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vehicles. The driverless system is an intelligent control sys-
tem that integrates various advanced theoretical technologies
such as environment perception, high precision positioning,
path planning and trajectory tracking [1]. The main require-
ment for safe operation of driverless vehicles is environment
perception technology,whichdepends onon-board sensors to
generate the surrounding environment as well as the vehicle
status [2–4]. In the constructed perception system, different
sensors demonstrate their individual benefits and provide the
necessary conditions for the subsequent trajectory tracking
work [5, 6].

A key component of autonomous technology, trajectory
tracking technology strives to preserve the stability of the
vehicle’s lateral and longitudinal control [7, 8]. Currently,
the commonly used trajectory tracking control methods are
PID control, sliding mode control, model predictive control
(MPC), fuzzy control, etc. [9, 10]. Among the above four
control methods, PID control provides the widest range of
applications. Out of the four control strategies mentioned
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above. PID control is utilized to control the vehicle longitu-
dinal motion in trajectory tracking by decoupling the vehicle
motion, which to some extent increases tracking accuracy
[11]. Since, there is a certain time delay in the vehicle steer-
ing, then using PID control in the steering motion can offset
this disturbance [12]. Although PID control has some supe-
riority in improving the trajectory tracking accuracy and
anti-jamming, PID control is a linear control method with
limitations, so its application to complex nonlinear systems
will decrease the controller’s regulation accuracy. Sliding
mode control belongs to the nonlinear control method, which
is how it differs from PID control. By evenly dividing the
driving torque of thewheels during steering, the slidingmode
control for vehicle steering can effectively lower the dan-
ger of vehicle rollover [13]. The vehicle steering stability
was improved by using the Kalman filter to determine the
tire sideslip angle, while taking the road adhesion coefficient
into account [14]. The wheel slip rate does not soon con-
verge to the ideal value when the vehicle is abruptly braked,
so the sliding mode control does not guarantee the resilience
of the system [15]. By its essence, fuzzy control does not
only mean nonlinear control, but also belongs to the category
of intelligent control. By establishing a fuzzy control rule
base, the corresponding parameters are dynamically adjusted
in the trajectory tracking controller to secure the flexibility
and safety of vehicle driving [16]. Likewise, fuzzy control
is applied to the vehicle steering, and the lateral stability of
the vehicle can be greatly improved by designing a torque
distribution control system [17, 18]. The vehicle’s tracking
accuracy will be decreased by the fuzzy control system’s
incompleteness, since there will be several unanticipated dis-
turbances in its trajectory.

It is important to note that in the tracking trajectory control,
not only the kinematic and dynamic constraints of the vehi-
clemodel should be considered, but also the control variables
output by the controller should satisfy the above constraints
[19]. While, model predictive control, a traditional control
approach, has a strong capability to handle constraints, the
aforementioned three methods nevertheless have significant
limits in how they handle constraints. This method can pre-
dict the future output of the multi-constrained system based
on the existing model, the current state of the system, and the
future control variables [20]. Model predictive control the-
ory relies on its distinct advantages to be ideally adapted for
both technologies, whether it is path planning or trajectory
tracking [21].

Among them, in terms of path planning, adding rein-
forcement learning algorithms to MPC controllers enables
real-time path planning [22, 23]. Efficiency of the MPC
controller was significantly improved with the addition of a
planning algorithm to the MPC trajectory tracking controller
[24, 25].

In vehicle trajectory tracking control, MPC trajectory
tracking controller analyzes the vehicle stability and sets rea-
sonable constraints by optimizing the function, which makes
it widely used for trajectory tracking of driverless vehicles
[26, 27]. By linearizing the processing vehicle model, the
vehicle can reach the steady state in time during the track-
ing trajectory to avoid the phenomenon of vehicle overspeed
and control saturation [28]. In transverse and longitudinal
coupled control, the differential game theory is used to
enable each MPC trajectory tracking controller to gener-
ate an adapted control based the corresponding cost, and to
continuously correct the driving trajectory during each con-
trol cycle [29]. For longitudinal control in which multiple
objectives are considered, oversimplification of the vehicle
longitudinal motion model can cause velocity oscillations,
and real time control of the on-board electronic control unit
is further achieved by transforming these problems intoMPC
optimization solutions [30]. In the transverse control of the
vehicle, a preview model to output the optimal front wheel
angle and speed is created, which can achieve the steadiness
in vehicles [31, 32]. When the vehicle driving environment
is in extreme conditions, the Kalman filter algorithm is uti-
lized to predict the road surface grip coefficient in time, and
the vehicle speed corresponded with different road surface
grip coefficients is gotten by plotting the vehicle mass lateral
deflection angle and lateral deflection angle velocity phase
plane stability diagram, so that the vehicle can be kept stable
under extreme conditions [33]. Although the driving stabi-
lization and convenience of the vehicle were strengthen with
the processing of the model and the coupled control of the
vehicle motion in the above study, the accuracy of the track-
ing trajectory was not further improved.

Currently, regarding the improvement of trajectory track-
ing accuracy, the MPC controller cost weights can be
adaptively adjusted using fuzzy control, which improves
the tracking accuracy and ensures vehicle steadiness [34].
In the MPC trajectory tracking controller, the correspond-
ing weights are dynamically adjusted, while considering the
curvature of the reference trajectory to better the accurate tra-
jectory tracking [35]. The vehicle’s tire stabilitywill decrease
when it is driven on a slick surface. By restraining the tire slip
angle, the MPC trajectory tracking controller can optimize
the slip angle in time and reduce the vehicle steering error [36,
37]. On the basis of the least squaresmethod, the correspond-
ing parameters in theMPCcontroller are estimated according
to the recursive idea as a way to improve the tracking accu-
racy [38]. By estimating as well as dynamically adjusting
some parameters, the error is reduced, but the computational
effort is slightly increased, and most importantly, the opti-
mized of objective function is not considered. In complex
nonlinear vehicle control systems, intelligent optimization
algorithms combined with intelligent fuzzy modeling will
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further improve the performance of trajectory tracking con-
trollers [39, 40].

The key to the optimization of the objective function in
the MPC trajectory tracking controller is the selection of the
prediction time domain and control time domain, because the
values of different time domains determine the accuracy of
the vehicle tracking trajectory [41]. In previous studies, the
values of these two parameters often depended on personal
experience. This method is inefficient and has large errors.
In the current study, control time domain is adjusted using
matrix chunking and applied to the quadratic solution. This
method only considers the choice of the control time domain
and ignores the adjustment of the prediction time domain
[42]. In fact, use of intelligent optimization algorithms is
a good choice in terms of objective function optimization.
Based on the dynamics model, the optimal time domain is
obtained by optimizing the objective function through the
particle swarm optimization (PSO) algorithm, but the PSO
algorithm tends to fall into local optimal solutions and does
not guarantee global convergence [43]. In contrast to the PSO
algorithm, sparrow search algorithm (SSA) as an emerging
heuristic optimization algorithm, has shown excellent results
in function optimization [44]. In addition to the function
optimization function, the algorithm can be applied to robot
path planning to find the optimal path [45, 46]. Although the
sparrow search algorithm is simple in structure and easy to
implement, the algorithm itself has some randomness and
slow convergence speed.

In this research, an enhanced sparrow search algorithm-
based optimization approach of MPC trajectory tracking
controller for unmanned vehicles is proposed to address the
issues raised by the aforementioned study. The key contribu-
tions of this study, as compared to earlier ones, are as follows.

(1) To implement the unmanned vehicle trajectory track-
ing, the vehicle’s dynamics model is established, as well an
objective functionwith restrictions, and a fullMPC trajectory
tracking controller are built.

(2) Throughout and beyond this paper, traditional SSA
has been improved in three ways. The improved algorithm
accelerates the convergence speed and enhances the search
capability.

(3) Using improved sparrow search algorithm to optimize
the objective function in MPC trajectory tracking controller.
Solving for the prediction time domain and control time
domain corresponding to the optimal fitness value. The sim-
ulation demonstrates that the proposed method reduces the
deviation from real trajectory and reference trajectory of the
vehicle.

Essay is structured like below. In Sect. 2, the dynamics
model of the vehicle is established to prepare for subsequent
trajectory tracking. Section 3 constructs the MPC trajec-
tory tracking controller. The sparrow search algorithm is
initially introduced in Sect. 4, followed by a discussion of

Fig. 1 Vehicle dynamics model

its drawbacks and suggestions for improvements, and lastly,
the introduction of the optimization process. Section 5 sim-
ulates and verifies the method proposed in this paper and
analyzes the results. The paper is shown in Sect. 6.

2 Vehicle Dynamics Model

When the driverless vehicle tracks the reference trajectory,
the vehicle motion must conform to the actual situation and
satisfy the vehicle dynamics constraints. A vehicle dynamics
model is developed in this study to represent the reality of
vehicle motion, which is shown in Fig. 1.

Equations for the dynamics of the vehicle are.

mÿ � −mẋ ϕ̇ + 2

[
Ccf

(
δ − ẏ + l f ϕ̇

ẋ

)
+ Ccr

(
lr ϕ̇ − ẏ

ẋ

)]

mẍ � mẏϕ̇ + 2

[
Cl f s f + Ccf

(
δ − ẏ + l f ϕ̇

ẋ

)
δ + Clr sr

]

I ϕ̈ � 2

[
l f Ccf

(
δ − ẏ + l f ϕ̇

ẋ

)
δ − lrCcr

(
lr ϕ̇ − ẏ

ẋ

)]

Ẏ � ẋsinϕ + ẏcosϕ

Ẋ � ẋcosϕ − ẏsinϕ (1)

Among them, m is the body mass, ϕ represents the yaw
angle, Cl f and Clr represent the longitudinal cornering stiff-
ness of the front and rear tires, Ccf and Ccr is the lateral
cornering stiffness of the front and rear tires, l f and lr denotes
the distance from the center ofmass of the vehicle to the front
and rear axles, I represents the rotational inertia, δ indicates
the wheel turning angle. s f and sr represent the slip rate of
the front and rear tires of the wheel.

Under Eq. (1), it suffices to known that the system state
quantity ξ � [ẏ, ẋ , ϕ, ϕ̇, Y , X ]T , and the control quantity
u � δ[47]. Its ordinary form is:

ξ̇ � F(ξ , u) (2)
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The forward Eulerian discretization of Eq. (2) is applied
to obtain.

ξ(k + 1) � ξ(k) + T f (ξ(k), u(k)) (3)

where T is the system sampling time.
Linearize Eq. (3) and let it expand at the point (ξ0, u0)

ξ̃0(k + 1) � F
(̃
ξ0(k), u0(k)

)
(4)

ξ(k + 1) � F
(̃
ξ0(k), u0(k)

)
+

∂F

∂ξ
|̃ξ0(k), u0(k)

(
ξ(k) − ξ̃0(k)

)

+
∂F

∂u
|̃ξ0(k), u0(k)(u(k) − u0(k)) (5)

Let ∂F
∂ξ

|̃ξ0(k), u0(k) � Ak, 0, ∂F
∂u |̃ξ0(k), u0(k) � Bk, 0.

Then Eq. (5) can be rewritten as

ξ(k + 1) � F
(̃
ξ0(k), u0(k)

)
+ Ak, 0

(
ξ(k) − ξ̃0(k)

)
+ Bk, 0(u(k) − u0(k)) (6)

Equation (6) minus Eq. (4) yields

{
ξ(k + 1) � Ak, 0ξ(k) + Bk, 0u(k) + dk, 0(k)

dk, 0(k) � ξ̃0(k + 1) − Ak, 0ξ̃0(k) − Bk, 0u0(k)
(7)

The above is the expansion at the point (ξ0, u0), now
choose any point (ξt , ut ) to obtain the expansion.

{
ξ(k + 1) � Ak, tξ(k) + Bk, t u(k) + dk, t (k)

dk, t (k) � ξ̃t (k + 1) − Ak, t ξ̃t (k) − Bk, t ut (k)
(8)

Among themAk, t �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(Ccr+Ccf )
mẋ

∂Fẏ
∂ ẋ 0 −ẋ +

2(lrCcr−l f Cc f )
mẋ 0 0

ϕ̇ − 2Ccf δ

mẋ
∂Fẋ
∂ ẋ 0 ẏ − 2l f Cc f δ

mẋ 0 0
0 0 0 1 0 0

2(lrCcr−l f Cc f )
I ẋ

∂Fϕ̇

∂ ẋ 0
−2(l f 2Ccf +lr 2Ccr )

I ẋ 0 0
cos(ϕ) sin(ϕ) ẋcos(ϕ) − ẏsin(ϕ) 0 0 0

−sin(ϕ) cos(ϕ) −ẏcos(ϕ) − ẋsin(ϕ) 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bk, t �
[

2Ccf
m

2Ccf (2δ−
ẏ+l f ϕ̇

ẋ )
m 0

2l f Cc f
I 0 0

]

∂Fẏ

∂ ẋ
� (2Ccf

(
ẏ + l f ϕ̇

)
+ 2Ccr (ẏ − lr ϕ̇))

mẋ2
− ϕ̇

∂Fẋ
∂ ẋ

� 2Ccf δ(ẏ + l f ϕ̇)

mẋ2

∂Fϕ̇

∂ ẋ
� 2l f Ccf

(
ẏ + l f ϕ̇

)− 2lrCcr (ẏ − lr ϕ̇)

I ẋ2

Let ξ̂ (k + 1) �
[

ξ (k + 1)
u(k)

]
, we can get

ξ̂ (k + 1) �
[
Ak, tξ(k) + Bk, t u(k) + dk, t (k)

u(k − 1) + �u(k)

]

�
[
Ak, t Bk, t

0 1

][
ξ(k)

u(k − 1)

]
+

[
Bk, t

1

]
�u(k) +

[
dk, t
0

]

(9)

A new linear time-varying prediction model with control
increments can be constructed from the above Eq. (9). As
shown.
{

ξ̂ (k + 1) � Âξ̂ (k) + B̂�u(k) + dk
η(k) � C ξ̂ (k)

(10)

Among them, Â �
[
Ak, t Bk, t

0 1

]
, B̂ �

[
Bk, t

1

]
.

3 Design of MPC Trajectory Tracking
Controller

3.1 Design Objective Function

Through continuous iterative inference Eq. (10), a system
output expressionwith prediction time domain (Np) and con-
trol time domain (Nc) can be obtained:

Y � �ξ + 	�U + 
φ (11)

In Eq. (11):

123



Arabian Journal for Science and Engineering

� �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C Â
C Â2

· · ·
C ÂNc

· · ·
C ÂNP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

�U �

⎡
⎢⎢⎢⎢⎣

�u(k)
�u(k + 1)

...
�u(k + Nc − 1)

⎤
⎥⎥⎥⎥⎦, φ �

[
dk dk+1 · · · dk+Np+1

]T

	 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C B̂ 0 0 0
C ÂB̂ C B̂ 0 0

· · · · · · . . . · · ·
C ÂNc−1 B̂ C ÂNc−2 B̂ · · · C B̂
C ÂNc B̂ C ÂNc−1 B̂ · · · C ÂB̂

...
...

. . .
...

C ÂNP−1 B̂ C ÂNP−2 B̂ · · · C ÂNP−Nc B̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


 �
⎡
⎢⎣

C · · · 0
...

. . .
...

C ÂNp−1 · · · C

⎤
⎥⎦

It is worth noting that the MPC trajectory tracking con-
troller are design to ensure that actual trajectory of the vehicle
movement should be as close as possible to the reference tra-
jectory. For this reason, it is necessary to add the optimization
of the biases of the state quantities and the control quantities
in the established objective function.

J �
Np∑
i�1

‖η(t + i |t) − ηre f (t + i |t)‖2Q

+
Nc−1∑
i�1

‖�U (t + i |t)‖2R + ρε2. (12)

where, on the right side of the equation, the first part repre-
sents the accuracy of the vehicle tracking a known trajectory,
the second item represents the stationarity of the vehicle
tracking a known trajectory, and the third item is the soft
constraint, the purpose of which is to prevent the system
from appearing a zero solution phenomenon. η is an actual
state quantity generated by the actual motion of the vehicle,
ηre f represents the reference state quantity, �U is control
increment, Q and R are the weight matrix, ρ represents the
weight coefficient, ε is the relaxation factor.

3.2 Design Constraints

Within the motion of the vehicle, the main consideration is
the control quantity and the control increment constraints.
The expressions of the two constraints are:

{
umin(ka) ≤ u(ka) ≤ umax (ka)

�umin(ka) ≤ �u(ka) ≤ �umax (ka)
(13)

In the above inequalities, ka � 0,1, 2, · · · , Nc − 1.
The change of front wheel steering angle in driverless

vehicle trajectory tracking is critical to the stability of the
vehicle driving. To ensure that vehicles are safe while in
motion, the frontwheel turning angle need to are constrained:

−2.5◦ ≤ δ ≤ +2.5◦ (14)

Since, the model are solved to obtain the control incre-
ments, forwhich corresponding constraintsmust also contain
control increments, converting the objective function to
quadratic form is required.

ByEq. (11), letY �
[
η(t + 1) η(t + 2) · · · η(t + Np)

]T
,

Yre f �
[
ηre f (t + 1) ηre f (t + 2) · · · ηre f (t + Np)

]T
, and

Eq. (12) can be reduced to:

J � [
Y − Yre f

]T
Q
[
Y − Yre f

]
+ �UT R�U + εT ρε (15)

Among them, Q �
⎡
⎢⎣
Q · · · 0
...
. . .

...
0 · · · Q

⎤
⎥⎦

Np×Np

, R �

⎡
⎢⎣
R · · · 0
...
. . .

...
0 · · · R

⎤
⎥⎦

Nc×Nc

.

Bringing Eq. (11) into Eq. (15), we get

J � [
�ξ + 	�U + 
φ − Yre f

]T
Q
[
�ξ + 	�U + 
φ − Yre f

]
+ �UT R�U + εT ρε

(16)

Let E � Yre f − �ξ − 
φ.
And so

J � [	�U − E]T Q[	�U − E] + �UT R�U + εT ρε

�
[
�UT	T − ET

]
Q[	�U − E] + �UT R�U + εT

� �UT
[
	T Q	 + R

]
�U − 2ET Q	�U + ET QE + εT ρε

(17)
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Fig. 2 Comparison of vehicle tracking trajectories in different time
domains

Constructing Eq. (17) into quadratic form as

J � 1
2

[
�U ε

]
H

[
�U
ε

]
+ f T

[
�U
ε

]
(18)

Among them, H �
[
2	T Q	 + 2R 0

0 2ρ

]
, f �

[
−2eT Q	 0

]T
, e represents the tracking error in the pre-

diction time domain.

4 OptimizedMPC Trajectory Tracking
Controller

4.1 Vehicle Tracking Trajectory Simulation
Comparison in Different Time Domains

In the constructed objective function, prediction time domain
and control time domain affect accuracy of the vehicle
tracking reference trajectory. For these two parameters, the
traditional method is to adjust and select relatively appropri-
ate values through personal experience, but this method is
too inefficient and may cause larger errors.

Taking the circular trajectory as an example, as seen in
Fig. 2, different prediction time domains and control time
domains have a great impact on the tracking of the reference
trajectory of the driverless vehicle. When Np � 12, Nc � 5,
the vehicle driving trajectory will have large fluctuations, the
tracking effect will become worse, and the vehicle stability
will be reduced. Similarly, when Np � 10, Nc � 3, the
vehicle trajectory is still very volatile and has a large track-
ing error. Therefore, selecting the suitable prediction time
domain and control time domain are important for the trajec-
tory tracking of driverless vehicles.

Fig. 3 Sparrow search algorithm optimization process

4.2 Sparrow Search Algorithm

Sparrow search algorithm is an emerging optimization algo-
rithm that simulates the scavenging and anti-predation behav-
ior in sparrows through continuously updating individual
positions. The sparrow search algorithm features fewer con-
trol parameters, a simpler structure, and better local search
performance than the conventional optimization algorithm
[44]. It performs better than some classic algorithms in a
few distinct search areas and is somewhat superior to them.
Figure 3 depicts the algorithm’s optimization procedure.

In the figure below, the producer indicates that in the pro-
cess of searching, it will preferentially find food and provide
all scroungers with a foraging area and direction. Its position
update formula is:

Xt+1
i , j �

{
Xt
i , j*exp

( −i
α·Imax

)
if AV < ST

Xt
i , j + r1∗L if AV ≥ ST

(19)

In Eq. (19), t refers to the iteration count of current, Xt
i , j

represents positions at the j-th dimension of the i-th sparrow
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on t-th generation, α ∈ (0, 1), Imax is total number of opti-
mization process iterations, and AV denotes warning value,
ST indicates security value, r1 represents one random num-
ber, L denotes a 1×d matrix, and d represents the dimension.

Scroungers will constantly be spying on producers, and
as they find that producers have found great food, they will
compete for the food. Its position update formula is:

Xi , j (t + 1)

�
{
r1*exp

(
xw(t)−Xi , j (t)

i2

)
i > n

2

X p(t + 1) +
∣∣Xi , j (t) − X p(t + 1)

∣∣∗A+∗L i ≤ n
2
(20)

where X p(t + 1) represents position with an optimum fitness
value in current finder, xw(t) denotes the position with the
worst global fitness, A represents a column vector with the
same dimension as the individual sparrow, and n represents
the population quantity.

Vigilantes will quickly move towards the safe area when
aware of the danger to get a position in better. Its position
optimization equation is:

Xi , j (t + 1) �
{
Xb(t) + β∗∣∣Xi , j (t) − Xb(t)

∣∣ fi > fg
Xi , j (t) + K∗

(
Xi , j (t)−Xw(t)

( fi− fw)+ε

)
fi � fg

(21)

Among them, Xb(t) represents current global optimal
position, β indicates step size, K ∈ [−1, 1], fi denotes the
fitness value assigned to the current sparrow individually. fg
and fw are the current global best and worst fitness values
respectively, ε indicates a small constant to prevent zeros in
denominators.

4.3 Improved Good Point-Set

Traditional SSA populations are initialized with a high
degree of randomness. This randomness often represents an
uncertainty and the population is not uniformly distributed
in space. Optimizing sparrow positions using good point set
to enhance global search capability for algorithms.

r j � mod
(
2 cos

(
2π j
p

)
, 1
)

(22)

Pm(i) � {(r1i1, r2i2, · · · , rmim)} (23)

X j
i � a j + Pn(i)

(
b j − a j

)
(24)

Among them, 1 < j < n, i � 1, 2, 3, · · · , m, n denotes
the spatial dimension, m is the number of populations, r j
shows the good point, Pn means good point collection, a j

indicates the upper limit of the current dimension, b j is the
lower limit of the current dimension。

Since, the value of good points in the set of good points
is determined by p and the value is not fixed. If the value of
the good point is too large, the population will disperse to the
spatial edge, and if the value of the good point is too small,
the population will be clustered to the spatial center. For this
reason, the range of values of good points is improved in this
paper as follows.

p � n +
(m−t

t

)
(25)

where, t represents the current number of iterations.
As the number of iterations increases, the populations are

gradually distributed over the space.

4.4 Improved Producer Position Updates

During the conventional sparrow search algorithm location
updatewhen AV ≥ ST , the producer enters the searchmode,
and the parameter a in its position update formula has ran-
domness, and the size of its value directly influences the
speed of convergence as well algorithm accuracy.

To increase the convergence speed of algorithms, a larger
value of α can expand search range of the sparrow in prelim-
inary iterations with algorithm, and the value of α needs to
be reduced in the late iteration in order to increase the con-
vergence speed of traditional algorithm. Then, the improved
α:

α �
(
1 − t

Imax
+ ε
)

(26)

In the above equation, t refers to the iteration count of cur-
rent, Imax is total number of optimization process iterations,
ε indicates constant, the purpose is to prevent zero solution.

In addition, with the increase of the number of iterations,
the local search ability of producers in sparrow population
will be reduced, which will lead to the decline of popula-
tion optimization ability. Therefore, the local search ability
should be strengthened in the later iteration of the producer
position update entering the search mode. Then, combined
with formula (19), the improved finder position update for-
mula is:

Xt+1
i , j �

⎧⎪⎪⎨
⎪⎪⎩

Xt
i , j∗exp

(
−i(

1− t
Imax

+ε
)
·Imax

)exp
(
1
t

)

i f AV < ST

Xt
i , j + r1∗L i f AV ≥ ST

(27)
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4.5 ImprovedVigilante Position Updates

When the sparrow realizes the danger, it must immediately
approach the safe area. Due to randomness of the moving
step length K , the sparrow moves slowly and the short step
length will lead to the decrease of the sparrow fitness value at
the current position. The sparrowmoves fast and the increase
of the step length will lead to the decrease of the accuracy of
the algorithm. In order to meet the need for location updates
in different periods and to take into account the global search
as well as the local search capability of the algorithm, Then,
the improved K :

K � b + a−b

1+exp
(
−0.05

(
2t

T−1

)) (28)

In Eq. (28), a and b are the upper and lower population
limits, respectively, and T is the number of iterations. When
the algorithm optimization enters the late iteration, the value
of K gradually decreases and the algorithm global search as
well as local search capability will be gradually enhanced.
The complete formula is as follows.

Xi , j (t + 1) �
⎧⎨
⎩

Xb(t) + β∗∣∣Xi , j (t) − Xb(t)
∣∣ fi > fg

Xi , j (t) + b + a−b

1+exp
(−0.1t

T−1

)∗
( Xi , j (t)−Xw(t)

( fi− fw)+ε

)
fi � fg

(29)

4.6 Algorithm Combination

An optimization method of MPC trajectory tracking con-
troller for driverless vehicles based on improved sparrow
search algorithm is proposed in this paper. By using the
optimization ability of the improved sparrow search algo-
rithm, the objective function in the MPC trajectory tracking
controller is optimized and the prediction time domain and
control time domain corresponding to the optimal fitness
value are obtained. The specific combination process is
shown in Fig. 4.

Step 1: Generate an initial population and assign initial
values.

Step 2: Initialization of sparrow positions and calculation
with corresponding fitness assigns sparrow positions in each
dimension to Np and Nc accordingly.

Step 3: Run the system model.
Step 4: The sum of position and yaw angle deviation

between the reference trajectory and the actual trajectory out-
put by the system is taken as the fitness value.

Step 5: It is judged whether the end condition is satisfied,
and if yes, it ends; otherwise, steps (6) to (7) are executed.

Step 6: Iteratively update the position of the producer,
scrounger, and vigilante.

Fig. 4 Algorithm combination process

Step 7: The new fitness value is calculated and sparrow
position is updated, continue with steps (2) to (5).

5 Simulation Experiments and Analysis

5.1 Co-simulation of Carsim and Simulink

This paper chooses using Carsim and simulink in collab-
orative simulations. The simulation platform are shown in
Fig. 5. Firstly, build the MPC trajectory tracking controller
in Simulink and determine the inputs and outputs of the
system to satisfy the vehicle motion; Then, build a vehicle
model in Carsim and select inputs and outputs that match the
MPC trajectory tracking controller. The front wheel steering
angle and speed are output by the MPC trajectory track-
ing controller, which controls the vehicle tracking reference
trajectory in Carsim. For better verification of the method
proposed for this paper, the double lane change trajectory
and the lane change trajectory are specially selected as the
reference trajectory to verify the feasibility on the method.
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Fig. 5 Co-simulation platform

Fig. 6 System framework

Table 1 Main parameters

Parameters Value

m 1723kg

g 9.8

I 4175

C f 66,900

Cr 62,700

l f 1.468m

lr 1.232m

The system framework is shown in Fig. 6. The main param-
eters are shown in Table 1.

5.2 Algorithm Performance Test Comparison

The optimization capability of ISSA must be tested before
conducting joint simulations. In Table 2 F1~F3 are single-
peaked benchmark functions with only one optimal value,
whose main investigation is the global search ability of the
optimization algorithm. F4~F6 are multi-peaked benchmark
functions, which contain multiple optimal values and are
designed to evaluate the local search capability of the opti-
mization algorithm.

Figure 7 compares the optimization capability of ISSA
with PSO, SSAand thewhale optimization algorithm (WOA)
[48]. Among them, Fig. 7a–c show the comparison of the
results of three optimization algorithms to optimize F1~F3,
respectively, and it can be seen that ISSA can effectively find
the minimum value and has a better global search capability.
Figure 7d–f shows the comparison of the results of three
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Table 2 Description of benchmark functions

Function Dimension Range fmin

F1(x) � maxi {|xi |, 1 ≤ i ≤ n} 30 [−100,100] 0

F2(x) �
n∑

i�1
(|xi + 0.5|)2 30 [−100,100] 0

F3(x) �
n∑

i�1
i x4i + random[0, 1)

30 [−1.28,1.28] 0

F4(x) �
n∑

i�1
[x2i − 10 cos(2πxi ) + 10]

30 [−5.12,5.12] 0

F5(x) � −20 exp

(
−0.2

√
1
n

n∑
i�1

x2i

)
− exp

(
1
n

n∑
i�1

cos(2πxi )

)
+ 20 + e

30 [−32,32] 0

F6(x) � 1
4000

n∑
i�1

x2i −
n∏

i�1
cos
(

xi√
i

)
+ 1

30 [−600,600] 0

Fig. 7 Comparison of ISSA, SSA, WOA and PSO function optimization

optimization algorithms to optimize F4~F6, respectively. It
can be seen that ISSAcan quickly reach the convergence state
and find the optimal value with better local search ability. In
summary, it can be seen that ISSA has better global search
and local search ability after testing and comparison.

5.3 Track Double Lane Change Trajectories

Figure 8a shows the optimal values obtained by ISSA opti-
mally solving the MPC trajectory tracking control model.
The optimal value in Fig. 8a when the curve reaches con-
vergence is 0.0773. Figure 8b represent the prediction time
domain and control time domain obtained by ISSA to opti-
mize the objective function. It should be particularly noted
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Fig. 8 ISSA-optimized MPC trajectory tracking controller under double lane change work conditions

Fig. 9 Comparison of ISSA + MPC trajectory tracking effect under 36 km/h and 54 km/h velocity

that the values of the Np and Nc must be positive inte-
gers. Throughout the optimization iteration, when the curve
reaches the final convergence state and stabilizes, the values
should be taken according to the “rounding” rule. From the
figure, the ISSA optimization objective function obtains the
Np � 16, Nc � 3.

Figure 9a–d represent, comparison of MPC and ISSA
+ MPC tracking reference trajectory at vehicle speed of
36 km/h. Np � 12 and Nc � 3 selected for MPC controller.
In addition, this paper also designs and compares an MPC
trajectory tracking controller based on neural network (NN-
MPC) optimization. The optimization results of this method
are Np � 35, Nc � 5. The lateral trajectory generated by
the MPC controller in Fig. 9a generated oscillations in the
7 ~ 15 s interval. The ISSA + MPC controller generates a
smoother lateral trajectory. The lateral errors generated by
MPC controller and NN-MPC controller in Fig. 9b and c as
well as the wheel turning angle still fluctuate considerably,

and the lateral acceleration shown in Fig. 9d is extremely
unstable. However, the lateral error and lateral acceleration
generated by ISSA + MPC gradually converge to zero, and
the steering control is more stable.

When the speed is increased to 54 km/h, the lateral tra-
jectory generated by MPC controller in Fig. 9e still has
fluctuations, and the lateral trajectory generated by ISSA +
MPC controller is smoother and has a better tracking effect
in the straight line interval. The lateral error and lateral accel-
eration generated by the ISSA + MPC controller in Fig. 9f
and h do not fluctuate, and the lateral error is stable in the
±0.5 m interval and tends to zero after 6s. The vehicle turn-
ing angle generated by the ISSA +MPC controller in Fig. 9g
remains smooth. However, the lateral error, front wheel turn-
ing angle, and lateral acceleration generated by the MPC
controller fluctuate continuously as the speed increases. The
lateral error results generated by the three controllers are
shown in Table 3.
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Table 3 Maximum value of lateral error comparison

36 km/h 54 km/h

MPC 0.5815 0.9101

NN-MPC 0.8431 1.4579

ISSA + MPC 0.2702 0.3145

5.4 Track Lane Change Trajectories

The optimal value in Fig. 10a when the curve reaches conver-
gence is 0.0229817. Throughout the optimization iteration,
when the curve reaches the final convergence state and stabi-
lizes, the values should be taken according to the “rounding”
rule. From the figure, the ISSA optimization objective func-
tion obtains the Np � 13, Nc � 13. The optimization results
of the NN-MPC controller are the same as those in Sect. 5.2.

Also, in this simulation the MPC controller is still chosen
for Np � 12 and Nc � 5. The lateral trajectory generated

by the MPC controller in Fig. 11a at a vehicle speed of 36
km/h produced oscillations in the 15 ~ 20 s interval. The
lateral trajectory generated by the ISSA + MPC controller
remains smooth. The lateral errors generated by the MPC
controller in Fig. 11b and c as well as the wheel turning
angle still fluctuate considerably, and the lateral acceleration
shown in Fig. 11d is extremely unstable. The lateral error
generated by the NN-MPC controller is larger. Nevertheless,
the lateral error and lateral acceleration generated by ISSA
+ MPC gradually converge to zero, and the steering control
is more stabilized.

While, the velocity increases to 54 km/h, the lateral tra-
jectory generated by the MPC controller in Fig. 11e still
fluctuates, and the lateral trajectory generated by the ISSA +
MPC controller is flatter during the whole tracking process.
The lateral acceleration of the lateral error generated by the
ISSA + MPC controller in Fig. 11f and h does not fluctuate,
and the lateral error stabilizes in the ±0.1 m interval and

Fig. 10 ISSA-optimized MPC trajectory tracking controller under lane change work conditions

Fig. 11 Comparison of ISSA + MPC trajectory tracking effect under 36 km/h and 54 km/h velocity
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Table 4 Maximum value of lateral error comparison

36 km/h 54 km/h

MPC 0.5867 0.9797

NN-MPC 0.4814 0.4690

ISSA + MPC 0.1110 0.1297

tends to zero after 10 s. The vehicle turning angle generated
by the ISSA + MPC controller in Fig. 11g is still smooth.
Therefore, the lateral error, front wheel angle, and lateral
acceleration generated by the MPC controller still fluctuate
as the speed increases. The lateral error results generated by
the three controllers are shown in Table 4.

6 Conclusion

In this paper, the effects of prediction time domain and
control time domain in MPC trajectory tracking controller
on vehicle trajectory tracking accuracy are investigated.
By improving the traditional sparrow search algorithm and
designing the performance evaluation function, an MPC tra-
jectory tracking controller optimization method based on the
improved sparrow search algorithm is proposed to improve
the trajectory tracking accuracy. Through simulation ana-
lyzes, to draw the below concluded:

(1)In order to improve the convergence speed and search
capability of the algorithm, the traditional sparrow search
algorithm is improved. The simulation comparison of the
tested optimized benchmark functions shows that ISSA out-
performs SSA and WOA in function optimization.

(2)The simulation results show that when the vehicle
speed is 36 km/h, the lateral error of the ISSA optimized
MPC trajectory tracking controller is reduced by 68.98% and
81.08% compared with the MPC controller, and by 67.95%
and 76.94% compared with the NN-MPC controller, respec-
tively. When the vehicle speed is 54 km/h, the lateral error
of the MPC controller is reduced by 65.44% and 86.76%,
respectively, and that of the NN-MPC controller is reduced
by 78.43% and 72.35%. The results show that the ISSA
improved MPC trajectory tracking controller is superior to
the traditional MPC controller and NN-MPC controller in
terms of tracking accuracy.
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