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Abstract
In recent decades, the challenges of traditional visual inspectionmethods after catastrophic events, which are time- andmoney-
consuming, have necessitated innovative approaches. As a result, a seismic-induced damage detection method utilizing deep
learning has been developed to overcome the limitations of conventional techniques. Structure health monitoring (SHM) has
emerged to address the limitations of the traditional methods of visual inspections, and among the most effective automatic
feature extractor methods is Deep Learning Neural Networks (DLNNs). The DLNN method has proven highly effective
compared to other methods, such as traditional methods used in damage detection when used as a feature extractor for seismic-
induced damage detection. This study proposes a novel deep learning-based damage detection method for automatically
extracting damage features from time series data, eliminating the need for intermediate preprocessing tools. The CNNs
algorithm attains a validation accuracy of 91%when applied to a 7-story frame structure by subjecting the structures to different
sets of incremental dynamic loading. The study investigates real-time applications, including environmental variables such as
noise and temperature effects, examining unseen datasets of different earthquake groups and validating multiple structures in
synthesis datasets. The algorithm is further investigated using the IASC-ASCE Benchmark experimental dataset conducted
at the University of British Columbia laboratory. A comparative analysis is also performed in terms of time and performance
on different deep learning algorithms, such as LSTM, 1D CNN, 2D CNNs and DNNs, while the 1D-CNNs showed the best
performance. The results reveal that the proposed method effectively quantifies damage in different structures, including
7-story story steel and concrete structures, and the IASC-ASCE Benchmark dataset, with 93% validation accuracy. The study
investigates different earthquake characteristics that affect deep learning performance, such as earthquake time step, and
duration, while a specific group was examined to strengthen the claim and show 94% validation accuracy.

Keywords Traditional neural networks · Deep learning algorithm (DLNNs) · Time domain · Acceleration response time
series · Mispredicted damage level
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1 Introduction

Diagnosing the damage caused by natural disasters such
as earthquakes and winds is considered a severe challenge
for the engineering community, creating the potential for
structural health monitoring (SHM) as an essential technol-
ogy for disaster response and recovery. Loss of structural
integrity during disasters, such as the Taiwan earthquake, the
Loma Prieta earthquake and the recent Turkish earthquake,
highlights the need for a seismic-induced health monitoring
(SIHM) system.As part of SIHM strategies, autonomous and
continuous building conditionmonitoring is crucial for disas-
ter mitigation. The cost of expert inspection and continuous
structure monitoring also underscores the need for a robust
system to automate pattern recognition within the response
signal. SHM systems vary in methods, tools and application,
providing an effective solution for addressing the challenge
of continuous building monitoring by experts.

Based on the detection regions, structural damage detec-
tion methods can be classified as local or global [1, 2].
Nondestructive testing methods, including CT (computer-
ized tomography) scanning and ultrasonic, are used for
detecting damage in specific areas of the structure. How-
ever, these techniques require a prior determination of the
detection region [1, 3]. On the other, vibration-based dam-
age detection (VBDD) is a global-based damage detection
approach that depends on the changes in the dynamic charac-
teristics of the structure, such as natural frequencies [4],mode
shapes [5] and mode shape curvature[6]. On the other hand,
based on the data collection method, three main methods can
be categorised: time, frequency and modal domain. The time
domain approach involves feature extraction of time-series
responses [7]. Time-domain approaches have advantages
over modal and frequency domain methods, as they do not
require domain transition, thereby avoiding information loss
and ensuring there is no requirement for a complete struc-
tural model. They can operate on a partial model with limited
measurements [7–9].

ANNs, as a subset of machine learning, have the capa-
bilities to work with few and incomplete data and can be
flexibly trained with selected input and output data, lead-
ing to efficient damage detection [10]. Previous studies have
utilized ANNs to detect damage in seismically excited struc-
tures using data collected in the time and frequency domain.
Kazemi et al. [11] utilized different machine learning (ML)
algorithms to accelerate and improve the seismic risk assess-
ments of RC buildings, including random forest, boosting
algorithm, support vector machine and artificial neural net-
works. The study performed incremental dynamic analysis to
obtain the fragility curve, PDF (ProbabilityDensity function)
andCDF (CumulativeDistribution Function) curve; different
feature selection criteria such as fundamental period, story
weight and spectral acceleration were used as input to the

MLmodel. The study concluded that three input features are
relatively more important than others: fundamental period,
number of stories and spectral acceleration at fundamental
period Sa(T1). Vafaei et al. [12] employed the Multilayer
Layer Perceptron Neural Network (MLPNN) to predict the
damage location and severity of the Kula Lumpur Airport
tower. Theirmethod used the response accelerationmeasured
from the strategically selected location for damage identi-
fication. Furthermore, the studies used continuous wavelet
transformation to decompose the signal. The principal com-
ponent analysis (PCA) was initially employed to reduce the
dimensionality of the wavelet transform modulus. The result
showed that when the noise was introduced to the data with
5% or less, the prediction error was less than 15%. On the
other hand, using the frequency response function, Ni et al.
[13] conducted an experimental test on a 1/20 scaled 38-level
tall concrete structure model subjected to seismic excitation
using a shaking table to generate different levels of damage
from light, moderate, severe and complete (nearly collapse)
damage conditions. After applying different seismic exci-
tations at each level, a low-intensity random white noise of
20-min excitationwas injected into the numerically collected
data. The PCA was used for dimensionality reduction, and
the PCA-Compressed-FRF data were then used as input to
the neural networks. Their study showed that the few PCA-
compressed-FRF identification data somewhat agreed with
the visual inspection result of the seismic damage during the
test. Despite some success in the abovementioned studies
using traditional NNs, the performance of neural networks
is heavily dependent on input features; issues with input
features, such as sensitivity to noise, can hinder the neural
network’s ability to achieve optimal results [14]. Addition-
ally, the connectivity between layers in traditional neural
networks can result in time-consuming processes and may
even lead to overfitting in some cases [3]. Moreover, tradi-
tional neural networks (TNNs) such asMLPNNswere shown
the lowest performance for damage detection compared with
Deep Learning Neural Networks (DLNNS) [15, 16].

Deep Learning Neural Networks (DLNNs) have garnered
significant attention for their ability to extract features [17].
Unlike traditional artificial neural networks (ANNs), which
areNNswith two or three fully connected layers, DLNNs can
automatically extract features from raw data as their hierar-
chical multilayer architecture and layer mechanism result in
higher abstraction and feature learning. The performance of
traditional neural networks is highly dependent on handcraft
feature extractors and preprocessing tools. In handcraft fea-
ture methods, there is a high need to use some approaches
such as (mode shape,Mac,Comac, etc.)without an automatic
process that results in an efficient process. Convolutional
neural networks (CNNs) are a popular class of deep learn-
ing neural networks [18]. The CNNs’ architecture comprises
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three main layers: pooling (helps in dimensionality reduc-
tion), convolutional layers (helps extract features), and fully
connected layers for classification purposes. Lin et al. [14]
proposed using 1D Convolutional Neural Networks (CNNs)
to extract features from 20 s of raw data directly without
requiring manual feature extraction, such as wavelet packet
energy. The study established a finite element model of the
simply supported beam that was randomly excited to estab-
lish the training and validation dataset. The CNNs obtained a
94.57% accuracy in the noise-free situation compared to the
93.90% accuracy for the wavelet packet energy. In the case
of the white noise injection, the study showed 86.99% accu-
racy for the DLNNs algorithm, which exceeds the 77.86%
result of the wavelet packet energy extractor. LSTMs are spe-
cialised time series DLNNs and a subclass of RNNs that can
extract long-term dependencies with the time step data and
make a prediction. Unlike traditional RNNs, which have a
considerable issue with the problem of gradient vanishing or
exploding, which hinders their ability to extract long-term
dependencies, Fu et al. [19] developed a hybrid CNN-LSTM
model, CNN was utilised to capture a high-dimensional
feature, while LSTMs extract a time series feature from
the acceleration of the structure. The study investigates the
model using a numerical example of a large-span suspension
bridge. The result showed outstanding performance of the
hybrid model with 94% of the damage localisation accuracy.
Lin et al. [20] examined theLSTMmodel in a beam structure;
while the damagewas simulated by reducing the beam depth,
the LSTMmodel can predict the damage to the beamwith an
accuracy of 93.81%. Different machine learning and neural
network algorithms, such as SVM, NB, DT and BPNN, were
examined with different validation accuracy: 49%, 52.23%,
55.98%, 86.40% and 93.81%, respectively.

2D CNNs are specialized to extract features from images;
as a result, a classification of the damage quantity can be
identified; different studies have utilised the spectrogram
using time–frequency analysis methods such as fast Fourier
transform [15], fast-S transform [21], continuous wavelet
transform [22, 23]. The 2D convolutional Neural Networks
were used to classify the damage in spectrograms after con-
verting the time series sensory data to the frequency domain
spectrograms in different structures, composite plates, three-
story plexi frame structures and concrete beam structures.

A limited number of studies have investigated the use
of deep learning algorithms for seismic-induced damage
detection to study the effectiveness of the DL algorithm in
extracting hidden features from the time-series acceleration
response [15, 16, 24, 25]. Table 1 summarizes the studies
investigating the DLNNs for seismic-induced damage detec-
tion and their limitation. Yamashita et al. [24] investigated
using the multi-classifier deep neural networks to identify a
damage pattern in braces installed in a steel frame subjected
to seismic excitation. DNNs algorithm was evaluated using

long-duration seismic response and diverse input ground
motions designed to replicate the Japanese building standard.
Both training and testing phases used experimental data to
examine the performance of the DNNs. The results indicated
an accuracy rate that surpassed 77% and reached 87.5%.
However, the study also found that increasing the maxi-
mum acceleration in the training data had a negative impact
on the accuracy of the damage detection output. Yu et al.
[16] proposed using the lower frequency of the signal after
conversion from time series sequence to frequency domain
using fast Fourier transform as it contains crucial information
about the damage location. The smart structure was excited
by the El Centro earthquake and control signals. The study
also provides a comparison between general regression neu-
ral networks and the adaptive neuro-fuzzy inference system.
The study examined the noise influence with three differ-
ent noise levels with 10,5- and 2.5-dB S/N ratios. When the
noise level increases as 5- and 2.5-dB signals, the prediction
accuracy decreases. Different statistical coefficients were
used to compare the results for different neural networks,
and the squared correlation coefficient showed 99.27% for
DCNNs. Dang et al. [15] studied a 2D steel frame sub-
jected to earthquake ground excitation using three different
deep learning algorithms: long short-term memory (LSTM),
1D CNNs, 2D CNNs and traditional neural networks pre-
sented in MLPNNs. Monte Carlo simulation was utilized to
generate a database labelled for training and validating the
neural networks. The study adopted the measured vibration
signals without requiring the extraction of structural charac-
teristics such as modal properties. The performance of NNs
was evaluated using different statistical indexes such as the
Confusion matrix and F1 scores. The 2D convolutional neu-
ral networks outperformed the other LSTM and 1D CNNs in
terms of accuracy. On the other hand, the 1D CNN showed
better time and storage performance, which is suitable for
real-time scenarios as it performs better on cumulative big
data with fewer computation resources [26]. Previouslymen-
tioned studies utilizing seismic induced damage detection
were only examined in approaches without considering the
real-time applicability of the method, including examining
the deep learning on unseen datasets, the real-time algorithm
to handle the dataset from data collection to labelling and
damage quantification, examining the earthquake character-
istics that improve the performance of DLNNs.

This study proposes a new approach to detect damage to
structures subjected to seismic or vibration excitation using
different DLNN algorithms (DLNNs). The study investi-
gates how time and resource-efficient DLNN architectures
and traditional neural networks are in handling seismic-
induced damage detection considering real-time application.
To address this question, the study examines different deep
learning architectures directly using time series sensory data
without a preprocessing tool on other structures. The study
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Table 1 Seismic-induced damage detection using deep learning algorithm literature provided a comparative analysis of their limitations

Reference Structures Analysis methods Excitations Performance
(Accuracy-
Practicality-Damage
detection level)

Dang et al. [15] Experimental three-story frame
structure

Numerical 1D continuous beam
three-story experimental frame
structure

A numerical model for the
Vasco de Gama cable bridge

1D CNN, 2D CNN,
LSTM, MLP
comparison of
performance

Electrodynamic shaker
Simulated ground motion
Moving load

2D CNN outperforms
other neural networks
in terms of accuracy;
however, 1D CNN
achieved the best
performance
regarding time
efficiency

Lin et al. [14] Simply supported the
Euler–Bernoulli beam

1D Convolutional
Neural Networks
and wavelet packet
energy

Burst random excitation, CNN accuracy
outperforms the
wavelet packet
energy in terms of
accuracy

Yu et al. [16] Five-level benchmark frame
model

1D Convolutional
Neural networks,
regression neural
networks, and fuzzy
neural networks

El Centro earthquake
excitation and 100
different seismic
excitations

CNN has a better
prediction of damage
than general
regression NNs

Yamashita et al. [24] One-third scale model of
4-storey steel frame structure

Multi-classifier DNNs Shaking table test using
unidirectional shaking
table

The DNNs accuracy
exceeded 77% and up
to 87.9%

Khodabandehlou et al.
[27]

One-fourth scaled model of
highway bridge model

2D CNNs on the
image format of the
vibration signals

Shaking table using
earthquake ground
motion from the 1994
Northbridge earthquake

2D CNNs
demonstrated
accuracy between
87.5% and 100%

considers themethod’s practicality, such as time response and
performance, and real-time application criteria, such as noisy
datasets, temperature effects and postearthquake retrofitting
decision-making. Automate the process of seismic-induced
damage detection from data collection to DLNNs damage
detection and classification using a ready code Python algo-
rithm. The study also examines the generalisation of DLNNs
on unseen datasets of earthquake groups. A localisation algo-
rithm is also coded to investigate the correlation between
different aspects of the chosen earthquake records, such as
record length and time steps, and its correlationwithDLNNs’
damage detection performance.

2 Methodology

This study aims to develop a new method that is able to
capture the level of damage to a structure that is subjected
to seismic or vibration excitation. The overview of the pro-
posedmethods is shown in Fig. 1 and is organized as follows:
(1) numerical simulation that required nonlinear time his-
tory analysis to be carried out to obtain structural dynamic
response data (i.e., acceleration response measured at each
story); (2) the data are processed by preprocessing stage to
form the damagematrixwhich involves a preprocessing tools

to automate the process for further research conducted in
the same environment using SAP2000 and TensorFlow; (3)
development of 1D-CNNs as presented in Fig. 1 includes two
stages: the feature extraction and classification stage which
involves the dense layers and SoftMax activation function;
(4) the localization of each acceleration response signal to
their floor number (from floor 1 to floor 7) including their
damage quantification using the localization algorithmwhich
is coded and examined inside python environment. The
1D-CNNs algorithm is then examined on the IASC-ASCE
benchmark experimental dataset to demonstrate the practi-
cality of the 1D-CNNs algorithmon the experimental dataset.
The one damage matrix or damage level fusion matrix
(see Fig. 1) as the process of combining the time domain
data using the dynamic response(acceleration response dis-
placement response) extracted from nonlinear time history
analysis into one damage matrix along with its correspond-
ing damage level. For example, each acceleration response
for each floor and incremental dynamic loading is combined
with unique damage levels into one damage matrix, which
is eventually used to train and test the DLNNs algorithm
[3, 19, 20]. After the training process, the localization algo-
rithm propagates the damage levels back to each floor as an
automated process. A comparative analysis with different
DLNNs (LSTM -MLPNNs-2D CNNs (VGGnet) – DNNs) is
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Fig. 1 The main procedure of damage detection through establishing the one damage level matrix and 1D-CNNs

also provided to highlight the effectiveness of this approach.
The art of data science is then used to divide the data into dif-
ferent segmentations with unique correlations, which might
be used to decide on the structure or the forming NNs algo-
rithm. The innovative segmentation approaches of the data
into different groups postprocessing the DLNNs stem from
significant data approaches of segmenting the data to various
groups to understand its correlation with other factors that
influence nonlinear time history analysis such as earthquake
duration, time steps and level number.

2.1 Concrete Frame Structure

The first stage of this study involves modelling and simulat-
ing the 7-storey concrete frame structure (see Fig. 2). The
frame structure is modelled and designed using the Sap2000
structural analysis. According to ACI 318–14 [28], the dead
and live loads added to the beams are 20 and 10 kN/m, respec-
tively. The concrete material’s compressive strength is 25
MPa, and the steel grade is 60 ( fy=420 MPa). The seismic
design of the 7-story concrete frame structure is conducted
following ASCE 7–16 seismic load provision and assumed
the following parameters for spectral acceleration at 0.2 and
1 s periods as follows: 0.75 and 0.3, respectively. The study
considered a medium stiff soil class (D), R response mod-
ification factors � 8, system over strength factors � 2 and
deflection amplification factors � 4 following ASCE 7–16
Table 12.2–1. The design outcome of the frame structure is
two-column sections with a cross-sectional size of 400×600

mm for the first four floors and 300 ×500mm for the subse-
quent floors. The beam cross-sectional size is 300× 350mm,
the optimal section selected for beams. The reinforcement
details for the beam and column sections are presented in
Fig. 3.

2.2 Steel Frame Structure

Another steel structure was modelled and simulated under
incremental nonlinear time history (IDA) analysis [29] to test
the deep learning algorithms with different structure datasets
[29]. The steel frame structure is modelled and designed
utilizing Sap2000. According to Eurocode-3–2005 [30], the
dead and live loads added to the beams are 20 and 10 kN/m,
respectively. The seismic design of the 7-story steel frame
structure is conducted following ASCE 7–16 seismic load
provision and assumed the following parameters for spec-
tral acceleration at 0.2 and 1 s periods as follows: 0.75 and
0.3, respectively. The study considered a very dense soil and
soft rock (C) and R response modification factors � 3, sys-
tem over strength factors � 2 and deflection amplification
factors � 4 following ASCE 7–16 Table 12.2-.The design
outcome of the frame structure according to the Eurocode-
3–2005 under the dead and live loads is six-wide flange
columns sections with a sectional size as the following in
inches and weighs in Ib/ft W12 ×62, W12 ×72, W12 ×58,
W12 ×45, W12 ×40, W12 ×35 and W12 ×30. The beam
sections of two sizes are W12 ×45 and W12 ×40, the opti-
mal section selected for beams. Figure 4 shows the frame
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Fig. 2 Seven-story concrete
frame structure with 3d view; all
dimensions are in mm

width and height, and the 3d view shows the frame sections
and the structural levels.

In order to extract acceleration response signals and their
corresponding damage levels, the method involves subject-
ing the structure to different earthquake varies in frequency
content. Thus, each structure joint is assigned plastic hinges
to the end of the columns and beams to evaluate the perfor-
mance level of different structure elements. Hinges represent
amember’s localized force–displacement ormoment rotation
relationships through its elastic and inelastic phases under
seismic loads. For example, the plastic hinges represent the
moment rotation of structural elements during their elas-
tic and inelastic phases. The hinge types from ASCE/SEI
41–17 Tables 10.7–10.9 inside SAP2000 software are cho-
sen depending on the section types and materials. M3-type
plastic hinges are selected for beams to consider bending in
beams, while in the case of columns, P-M2-M3-type plas-
tic hinges are chosen to take into account the axial force
and biaxial moment. In this study, four different datasets
were utilized to examine the CNNs: The dataset for the con-
crete frame structure (with different seismic records as in
Sect. 2.3), steel frame structure (with a different seismic
record as in Sect. 2.3), experimental benchmark and con-
crete frame structure dataset (conducted with nonlinear time
history analysis using Chi-Chi-TCU052 seismic record as its
different in it earthquake properties such as∇t� 0.005, dura-
tion). Different datasets were generated using nonlinear time
history analysis except for experimental benchmark datasets
that were conducted using shaker vibration.

2.3 The Nonlinear Time History Analysis
with Hibler-Huges-Taylor Method

The nonlinear time history analysis is then subjected to the
structure to obtain the dynamic responses (i.e., accelera-
tion time history responses). For nonlinear dynamic analysis,
the implicit direct integration method is considered the
most effective method of solving the nonlinear equations
of motion [31]. The time integration method using Hibler-
Huges-Taylor (HHT) is utilized, with direct time integration
methods at each time step, which applies to the dynamic
response for linear and nonlinear systems [31].

The generalized algorithmwith the acceleration increment
and the improvements made by Hughes T [32] as Eqs. 1–2
are thoroughly explained for the linear system to show the
initial condition and the output of the method[33]:

Fa �
(
�̂1η̂M + �̂2γ̂ �tC + �̂3β̂�t2K

)
�a

+ K

[
da + �̂1�tva +

1

2
�̂2�t2aa

]

− �̂1(Fa+1 − pa) + Maa + C
[
va + �̂1�taa

]
(1)

sa+1 � sa + �tva + 1
2�t2aa + β̂�t2�av

,
va+1 � va + �taa + γ̂ �t�a,

aa+1 � aa + �a,

(2)

where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, aa is the acceleration, va is the velocity
and Sa is the displacement and Fa is the external load.
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Fig. 3 Typical beam and column
sections for a 7-storey steel
frame structure

Fig. 4 Steel structure 3d view
and elevation to show levels and
sections
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Fig. 5 Acceleration time history of the selected earthquake record for nonlinear time history analysis
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where

�̂1 � �̂2 � �̂3 � (1 + α), β̂ − 1

4
(1 − α)2,

γ̂ � 1

2
− α, η̂ � 1

(1 + α)

The initial condition for the Hilber, Hughes and Taylor
methods is the mass, stiffness and damping matrix devel-
oped frommodal analysis [34]. Then the Hilber, Hughes and
Taylor method for each time step can be solved. The modal
analysis characteristics for each structure are summarized in
Table 2 .

In order to extract acceleration response signals and their
corresponding damage levels, the methods involve subject-
ing the structure to different earthquake varies in frequency
content. Thus, each structure joint is assigned plastic hinges
to the end of the columns and beams to evaluate the perfor-
mance level of different structure elements. Hinges represent
the localized force–displacement or moment rotation rela-
tionships of a member through its elastic and inelastic phases
under seismic loads. For example, the plastic hinges repre-
sent the moment rotation of structural elements during their
elastic and inelastic phases. The hinge types fromASCE/SEI
41–17 Tables 10.7–10.9 inside SAP2000 software are cho-
sen depending on the section types and materials. M3-type
plastic hinges are selected for beams to consider bending in
beams. In the case of columns, P-M2-M3-type plastic hinges
are selected to take into account the axial force and biaxial
moment.

2.4 The Selected Earthquake Records

The generalization of the proposed algorithm is influenced
by the wide range of earthquake records needed to train
the 1D-CNNs (Fig. 5). In order to show the earthquake
dynamic characteristics and provide a wide range of earth-
quake records, the main selected parameter used in this study
is the peak ground acceleration to velocity ratio (A/V) [35].
Valuable information can be extracted from the (A/V) ratio
related to the strong earthquake frequency content and dura-
tion as its correlationwith other factors such asM(earthquake
magnitude) and R (epicentral distance). Using 45 earthquake
acceleration response spectra on 5% damping, Tso et al. [35]
examined the relation between the frequency content and
A/V. Three significant subdivisions using A/V ratio param-
eters in which the low range group having A/V < 0.8 g/m/s,
while the high range and intermediate group having A/V >
1.2 g/m/s, 0.8 g/m/s < A/V < 1.2 g/m/s, respectively. Their
result indicates that for 0.7 s or longer, the three groups have
the same mean spectral acceleration; for short periods, how-
ever, the A/V with low value has the lowest mean spectral

Fig. 6 The plastic hinge performance level points on the moment-
rotation curve of a typical plastic hinge

acceleration or vice versa. On the other hand, the relation-
ship between the A/V ratio and magnitude and epicentral
distance can be established as follows: In the small and mod-
erate earthquake area, the A/V ratio was found to be high
value. While at large distances from small and moderate
earthquakes, the obtained A/V values were found to be low
and intermediate values. The selected ten earthquake records
are varied in A/V ratio, which is summarized in Table 3, and
their acceleration time history is presented in Fig. 5.

2.5 Seismic Damage Level

The outcome of the time history analysis is the acceleration
responses and the categories of the damage level for different
joints according to FEMA356 (Federal EmergencyManage-
ment Agencies) [36] and ASCE 41–17 [37]. Tables 10–7 in
ASCE 41–17 provide rotation values for reinforced concrete
beams, while Tables 10.8 and 10.9 offer values for reinforced
concrete columns at points a, b, c, IO, LS and CP in radians,
as illustrated in Fig. 6 [33]. The variation in these points
depends on factors such as the amount of transverse and
longitudinal reinforced steel, material properties and forces
acting on the beam, column, axial and shear forces. Five key
points, namely A, B, C, D and E, are presented to define
plastic hinge behaviours along the moment-rotation curve,
serving as pivotal points for the backbone curve. In Fig. 6,
line AB represents the linear elastic range, extending from
the unloaded point A to the effective yield at point B. The
subsequent segment from B to C denotes the inelastic but
linear response characterized by reduced (ductile) stiffness.
This phase is termed the nonlinear state of the hinges, with
its limitations defined from the ’immediate occupancy’ level,
where structural components experienceminimal damage, to
the collapse prevention (CP) level, where the structure sus-
tains significant damage but remains standing.
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Table 2 Modal analysis of
dynamic characteristic natural
frequencies and time periods for
different mode shapes and
structures used in this study

Structure/Mode shape Mode1 Mode2 Mode3

NF(Hz) TP(s) NF(Hz) TP(s) NF(Hz) TP(s)

Benchmark model 9.41 0.11 1.64 0.60 16.53 0.06

Steel frame structure 0.66 1.51 1.94 0.51 2.88 0.34

Concrete frame structure 0.77 1.29 11.79 0.084 3.2 0.13

Table 3 Different earthquake
records used for nonlinear time
history analysis

Earthquake
name

Station name Magnitude Peak ground
acceleration(g)

Peak ground
velocity(m/S)

A/V(g/m/s)

Parkfield,
California

Temblor No.2 5.6 0.27 0.145 1.86

San
Fernando

Pacoima Dam 6.6 1.075 0.577 1.86

Long Beach Subway
Terminal, L.A

6.3 0.097 0.237 0.41

Helena
Montana

CARROLL
COLLEGE

6 0.146 0.072 2.03

Lower
California

El Centro
Imperial
Valley

7.9 0.226 0.334 0.68

San
Fernando
Earthquake

2500 Wilshire
Blvd., L.A

6.6 0.101 0.193 0.52

Imperial
Valley
Earthquake

El Centro Site
Imperial
Valley

6.6 0.348 0.334 1.04

Kern County Taft Lincoln
School
Tunnel

7.6 0.179 0.177 1.01

Borrego
Mountain
Earthquake

San Onofre Sce
Power Plant

7.6 0.156 0.157 0.99

Chi-Chi
Taiwan

Tcu052 7.62 0.396 1.66 0.238

(B-IO) is considered safe or at the operational level.
(IO-LS) is considered immediate occupancy.
(LS-CP) is considered life safety.
(CP-C) is considered collapse prevention.

2.6 The Preprocessing and Forming of the Damage
Matrix

Before processing the time series acceleration data through
the deep learning algorithm, the data must be formed in the
data structure recognizable by theDLNNs algorithm. The 1D
CNNs recognize 1D signal data, while 2D CNNs extract fea-
tures from the 2D image, different acceleration responses and
their associated damage detection categories are formed; for
example, if the dataset is R, the training datasets for concrete
frame structuresR140×900, the validation dataset is R560×900,

formed as a tensor of a 2d array.While the datasets in the steel
frame structures areN, the training datasets areN 112×900, and
the validation datasets are N 448×900. When the datasets for
both structures are combined into one dataset for examin-
ing the two structures Z1260×900 in the one damage matrix.
The preprocessing stage includes forming the data from
SAP2000 into one damage matrix. The data from SAP2000
were extracted in the form of tables containing earthquakes,
joint numbers and acceleration responses. All the data are
essential for data postprocessing techniques to examine dif-
ferent earthquake characteristics, as shown in Sects. 3.5 &
3.6. However, to form the one damage matrix, acceleration
response from IDA and its damage detection labels are used.
Different Python libraries, such as NumPy and Panda, are
used to convert to this form.An automated algorithm that per-
forms the iteration over the different acceleration response
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Fig. 7 Young’s modulus of the steel as dependent on temperature [38]

signals is coded to form the required matrix and be executed
for different structures obtained from the same FEM soft-
ware.

2.7 Simulating Environmental Effect

The environmental effect can lead to misdiagnosis of the
damaging effect on the structure.Different damage diagnoses
will result from changes in the temperature as changes in the
acceleration responses. In order to account for environmen-
tal effects, different temperature variances are adapted along
with the nonlinear time history analysis process. The tem-
perature is considered a variable to be uniformly distributed
between 10 °C and 35° C. The elasticity modulus is assumed
to be temperature-dependent, as illustrated in Fig. 7 [38].
The collected acceleration responses are then used to form
the one-damage-matrix and tested separately alongwith their
damage categories; their result is illustrated in a separate
Sect. 3.3

2.8 The Effect of the Noise

After collecting the time series acceleration response signals
and merging them into a one-damage matrix, given a dam-
aged matrix containing the acceleration response without a
noise, each element inside the original matrix was calculated
as its means and squared to calculate the signal power. Noise
power is then calculated based on Noise power (n)� signal
power/SNR_linear.

SNR_linear is the linear value of the signal-to-noise ratio
after converting it from decibels to linear scale.

A � X + N

N � Z(R(X)).

where Ã is the noisy datasets, X is the original datasets, N is
the Gaussian white noise, Z generated value with standards
normal distribution with the shape of the original signals
matrix Ra×b where is the number of row, b length of row.

To examine the proposed algorithm under different envi-
ronmental effects, different noise levels were used to pollute
the one-damage matrix, with 10dB, 5 dB and 2.5dB signal-
to-noise (S/N) ratios. The error increasedwith different levels
of noise. For example, the highest accuracy is shown in the
model with 10 dB S/N, followed by the models with 5 dB
S/N and 2.5 dB S/N.

2.9 The Deep Learning Algorithms and Traditional
Neural Architecture

2.9.1 Convolutional Neural Networks Layers

2.9.1.1 One-Dimensional Convolutional Layer The one-
dimensional convolutional layer algorithm executes two
operations through the input array (the damage matrix). In
detail, the operation on the input array is considered an
element-by-element multiplication by the kernel and the
product is then summed as presented in Equation (3). The
added value and the bias are fed into the activation func-
tion, which is the ReLU activation function. The process is
repeated through the array sequence (see Figure 8) and fed
into the activation function, which considers another layer of
the ReLU activation function. The kernel is the samewidth as
the input array. The kernel weight is the trainable parameter
and can be optimized by the training algorithm, as the Adam
optimizer is used as the most efficient training algorithm
examined for optimal CNNs model over different training
algorithms such as gradient descent and adaptive gradient
descent. Figure 8 presents the process inside the 1D con-
volutional layer; it only shows integer values and different
actual parameters are considered in CNN’s models.

F(i) �
∫ ∞

−∞
X(i) R(n − i)dn (3)

In CNNs, the X(i) function is called the input function,
and the function R(n-i) is the kernel or filter, and the output
of this process is the feature maps.

2.9.1.2 Rectified Linear Unit (ReLU) Layer The activation
process is an essential part of the neural networks in which a
transformation process to a nonlinear mapping from a linear
one is considered. A simple RELU activation function form
is f(x) � max(0, x) (Fig. 9) and its derivative is zero for x
< 0. It has some advantages; at the right side of the func-
tion, the gradient can be preserved rather than vanishing.
This brings a better training time than the use of the sigmoid
function. However, the advantages of using ReLU, it suffers
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Fig. 8 The process of the 1D convolutional layer of the sequential acceleration array

Fig. 9 ReLU left and leaky ReLU right

from significant disadvantages, known as the dying ReLU in
training; during the process of training, some neurons do not
give any values rather than zeros; they, in fact, die and do
not give any output. To solve the significant disadvantages,
the use of LeakyReLU [39] f(x) � max(αx, x)(see Eq. 4).
The hyperparameter α is defined for x < 0 and helped escape
dying ReLU by the nonzero gradient when the neurons get
inactive. The LeakyReLU activation function is proposed in
this study to face the major disadvantages of other activation
functions.

f(x) �
{
x if x > 0
αx

(4)

2.9.1.3 Batch Normalization (BN) In neural network train-
ing, Batch Normalization is a specialized layer that removes
the effect of the so-called internal covariate shift problem. In
short, the internal activation distribution varies as the net-
work weights change during training. This results in low
convergence as the learning rate is forced to adapt unstable
distributions to each training step [40]. With a low computa-
tional cost, the BN layer is meant to overcome this issue. In
detail, the batch normalization layer could be initialized after
each layer as a strategy to reduce the danger of exploding
gradient problems. At every batch of training data, a cal-
culation of the mean batch X̂ and variance σ2B is processed
during the batch normalization layer training. It does so by
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evaluating the input variance over the current mini-batch.
Finally, the shifted data â(i) are assigned a weight γ and bias
β. The calculation of the batch normalization layer is given
from Eqs. 5–8.

X̂ � 1
mB

∑mB
i�1 a(i) (5)

S.D2 � 1
mB

∑mB
i�1 (

a(i) − X̂
)2 (6)

â(i) � a(i) − X̂√
S.D2 + ε

(7)

z(i) � γ ⊗ â(i) + β (8)

where
â(i) is the zero-centred vector input normalized over the

instance i.
X̂ is calculated input vector means over the entire mini-

batch.
S.D is the input vector standard deviation.
mB is the number of instances in the mini-batch.
γ Scale parameters vector output.
⊗ Element-wise multiplication.
B is the one shit parameter output offset for the input.
ε is a small number to avoid multiplication by zero.
z(i) is the rescaled and shifted output version for the inputs.

2.9.1.4 Global 1D Pooling Layer Pooling operation provides
a reduction of the dimension of the feature maps, and one
famous example of the pooling layers is max pooling and
average pooling. The 1D average pooling is a downsampling
technique that improves statistical efficiency and reduces
computational effort. It is similar to the convolutional layer;
instead of the matric multiplication, it computes the mean
of each entire feature map within its "kernel size" along the
time series direction. After pooling, the output is translated
to a single number per feature map.

2.9.1.5 Fully Connected Layer It can be considered as the
hidden layer in the traditional neural networks. The process
involved a multiplication of the input value xIby the weight
wji and it summed with the bias as shown in Eq. (9) and Step
4. Theweight and the biases are trainable parameters, and the
ReLU activation function is used in this layer in this study.

y j � ϕ

(∑
i

w j i xi + b

)
(9)

2.9.1.6 Dropout Layer The dropout layer [41] is an effective
solution to the overfitting problems experienced during train-
ing and validation of the CNNs as regularization techniques.
The process involves the inactivation operation of some

neurons at every training step (excluding output neurons)
and reactivates them during validation. The hyperparameter
probability "p" or the dropout rate in which the neuron is
simply "Dropped out" or ignored during the training process
and normally can be introduced between 10 and 50%. An
improvement of the overall performance of the CNNs was
utilized as the introduction of that technique, and the vali-
dation result was boosted for the optimal CNNs model from
85% to 87% in validation accuracy as the overfitting was
reduced.

2.9.1.7 SoftMax Output Layer This is the final stage, as
shown in Step 4, in which different categories are classi-
fied. The classification can be achieved by calculating the
probabilities of each input and dividing them by the sum
of each exponential of the other inputs. The probabilities of
each structural damage class are evaluated, and the structural
damage condition with high possibilities is the final output,
as shown in Equation (10).

yi � exp
(
x (i)

)
∑n

i�1exp
(
x( İ)

) (10)

2.9.2 1D Convolutional Neural Network Architecture

Convolutional Neural Networks (CNNs) as a deep learning
algorithm (DLNN) and a subclass of Feed Forward Neural
Networks (FFNN) are capable of extracting features from
1D signals or images. They are mainly used in computer
vision or pattern recognition problems. The convolutional
stage in the neural training process is an operator that multi-
plies a value from another function to the primary function.
This is followed by obtaining a new function and aggregat-
ing it against the interval [42]. The three main components
of CNNs are the convolutional, max-pooling and activa-
tion functions. The hidden layer’s complexity determines the
neural network’s ability to solve complex problems. Recent
studies have focused on using CNNs for sequential pattern
recognition. The CNNs architecture comprises three main
layers: pooling (helps in dimensionality reduction), convo-
lutional (helps to extract features) and fully connected layers
for classification purposes.

To classify different input signals and their correspond-
ing level of performance, the optimal design architecture
of CNNs is found to consist of four stacks of layers con-
taining the following convolution 1DLayer, Leaky-ReLU
Layer, Batch Normalization Layer, dropout layer, followed
by Global Average Pooling 1D Layer, fully Connected
Layer, with SoftMax activation function (see Figure 10).
The following sections explain each layer’s procedures on
the one-damage matrix. The evaluation matrix is measured
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Fig. 10 The architecture of the
CNN in detail

with sparse categorical accuracy, and the loss is evalu-
ated using sparse categorical cross-entropy loss. Different
learning algorithms are examined to conclude that the best
performance is the Adam optimization algorithm. The learn-
ing rate is 0.001, the number of epochs is 1000, and the batch
size is 32. Early stopping introduces epochs with a monitor-
ing function of validation loss value.

2.9.3 The Long, Short-TermMemory (LSTM)

One of the main functionalities of the LSTM is the devel-
opment of long-term dependencies and the generation of
a future prediction. The main reason for the LSTM devel-
opments is the significant problem of gradient vanishing or
exploding of Recurrent Neural Networks, which prevents the
RNNs from capturing a long-term dependency [43]. In the
traditional neuron cells, a memory cell takes place (Fig. 11).
LSTM is capable of learning long-term dependencies in
sequential data, and different gates require different activa-
tion functions. Forget gate is used to selectwhich information
should be discarded through the sigmoid activation function
[44]. In the input gate, clarification of the information that
needs to be stored, the hyperbolic tangent function is used
to construct the candidate vector. Finally, the tanh function
is used in the output gate to obtain the final output produced
from the element-wise product of Ot which is established

through the sigmoid activation function of ct as explained in
the sequence of equations as follows [44]:

(a) Forget gate (see Fig. 11a forget process)

gt � S
(
Wf

[
Zt−1, xt

]
+ Cg

)
(11)

S represents the sigmoid activation function, Zt−1 is the
previous LSTM cell output, W f is the weight, and C f rep-
resents the biased quantity.

(b) Input gate

It � S
(
Wi

[
Zt−1, xt

]
+ Ci

)
(12)

C̃t � tanh
(
WC

[
Zt−1, xt

]
+ cc

)
(13)

whereWi andWC represent the weight, and bi and bc denote
the bias term.

(c) Update gate

Ct � gt ∗ Ct−1 + It ∗ C̃t (14)
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Fig. 11 Long short-term memory
architecture LSTM cell, LSTM
architecture

where * is the element-wise product. The element-wise prod-
uct of Ct − 1 and gt representing the portion of the previous
cell that required to be retained, and the element-wise prod-
uct of it, and Ct represents the new information that needs to
be added.

(d) Output gate.

ot � S
(
Wo

[
Zt−1, xt

]
+ Co

)
(15)

Zt � ot ∗ tanh(Ct), (16)

The LSTM is examined in this study to provide a com-
parative analysis of the best performance deep learning
compared to other DLNNmodels, and the result is presented
in Sect. 3.1. The evaluation matrix is measured with sparse
categorical accuracy, and the loss is measured with sparse
categorical cross-entropy loss. The optimization algorithm is
the Adam optimization algorithm; the total epochs is 1000,
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Fig. 12 Spectrogram representation of the first signals from the 7-storey
concrete structure datasets

batch size equals 32, and learning rate is 0.001. Early stop-
ping is introduced with the monitor of the validation loss.
Three different blocks of LSTM layers with memory cells
(64,128,512) in a gradual increase in each block, respec-
tively, followed by batch normalization and dropout layers.
These three blocks of LSTMs are followed by three blocks
of fully connected layers with two dense layers with a num-
ber of neurons equal to 256 and 128 and ReLU activation
function and one dense layer of softmax activation function.

2.9.4 2D-Dimensional Convolutional Neural Networks (2D)

In order to provide a comparison with the other DLNN algo-
rithms, 2D convolutional neural networks were examined
with the spectrogram of the signals after the conversion into
the frequency domain. The spectrogram is the visual repre-
sentation of the spectrum of the signal as it varies with time.
The study chose a low pass filter with a maximum signal
frequency. The fast Fourier transform properties are imple-
mented to convert to the frequency domain for the whole
datasets as hamming windows, length of windows signals
� 512 Hz. The spectrogram of the first signals inside the
datasets is presented in Fig. 12. The shape of the input for
the first image from 700 images inside one damage matrix to
2D CNNs with 3d tensor with the shape of R100×70×4 where
100× 70 is the dimension for spectrograms, and 4 is theRGB
channels. The chosen 2D CNNs are commonly well-known
VGG convolutional neural networks with five blocks and 21
layers (see Fig. 13) [45]. The best training algorithm found
among different other DLNNs (Adam, SGD, Vcorps) is the
SGD with learning rate � 0.001 and momentum � 0.9.

2.9.5 Misclassified/Truly Classified Signal Arrays

Improving the effectiveness of this study in the real-time
scenario requires further localization tasks and investigation
of the misclassified acceleration signals ( \* MERGEFOR-
MAT Figs. 14 & \*MERGEFORMAT 15); an algorithm that
compares the truly and misclassified acceleration response
signals with the original damage matrix is utilized for that
purpose. In order to deal with big data involved in differ-
ent matrices, the process involves utilizing different libraries
such as Panada, Matplotlib and NumPy. After quantifying
the damage, the location on each level is unknown or needs
an automated process showing the location. The basic princi-
ple of the localization algorithm is when y_pred[i] (predicted
labels) � y_val[i] (validated labels); the algorithm will dif-
ferentiate two different arrays (the truly classified signals
and misclassified signals) (see Fig. 15). In case the two
arrays are similar, the algorithm picks the sequence and the
associated level numbers. This algorithm is helpful in two
tasks: localizing the truly classified acceleration signals and
their corresponding damage level to the associated floors
automatically without the need for manual comparison and
localization and studying the wrongly classified signal by
appending them into one matrix. These misclassified accel-
eration response signals are investigated in their correlation
with other parameters, such as their frequencies on each floor
and earthquake record characteristics (time steps and record
length (see result Sects. 3.5 & 3.6)).

2.9.6 Examples of Decision-Making on Retrofitting

Postearthquake decisions can be made based on the predic-
tivemodel,which considers different criteria, such as the load
path and each joint state. The definition of the structural per-
formance level according to FEMA356 [36] from immediate
occupancy to collapse prevention is as follows: Immediate
occupancy (IO) means that the structure elements remain
safe to occupy and there is minimal structural damage has
occurred; some minor structural repair may be appropriate.
On the other hand, collapse prevention means the structure
elements continue to support gravity loads, but repairing the
structure may not be technically practical. While life safety
is at a postearthquake damage level, such as damage to struc-
tural components but maintaining margin against partial or
total collapse, it should be possible to repair the structural
damage to the elements. The examples are articulated to
show the damage levels, and the decision can be made based
on the FEMA 356 [36] retrofitting of the exciting building
postearthquake after the prediction ofDLNNs for the damage
control of the level performance (see Fig. 16).
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Fig. 13 The examined 2D
Convolutional Neural
Networks(VGGNets)

Fig. 14 Improving the effectiveness of this study in the real-time scenario with an automated algorithm for localization and studying the
truly/misclassified damage levels

2.9.7 Experimental Dataset

To examine the CNN algorithm with experimental data, the
study is examined with the University of British Columbia-
IASC-ASCE Benchmark dataset (Fig. 17) [46]. The dimen-
sions of the structure are considered as 2.5 × 2.5 m length
by width and 3.6 m tall which is established as a benchmark

SHM problem, and the hot-rolled grade structure members
are considered with 300 W steel. The structural columns are
consideredB100X9 sections and S75X11 for the beams. The
mass distribution on each floor is 1000 kg on the first and
second floors and 750 kg on the fourth and third floors. The
structurewas excitedwith an electrodynamic shaker attached
with 81.6 kg of mass to the body of the shaker to add to the
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Fig. 15 The main principle of the
searching and appending process
of the localization algorithms

structure’s totalmass. The shaker’smechanical properties are
as follows:

311 N maximum capacity, 19mm stroke and 2.5 m/sec
achievable velocity.

Four accelerometer types were allocated to the structure,
and to measure the shaker mass displacement relative to the
structure, a linear variable displacement transformer (LVDT)
was utilized for this purpose [46]. A series of tests were con-
ducted on the structure to generate various damage scenarios.
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A simulation of different damage scenarios is examined by
structural braces removal or by the bolt losing at the beam-
columns connection. In case A, the braces are all in place
without any removal, the normal state of the structure. For
case B and all the subsequent tests, additional mass is added
to the structure.

For the shaker experiment considered for examining the
CNNs algorithm, nine different damage scenario configura-
tions were conducted as follows (Fig. 17):

Configure 1: Fully braced scenario without any bracing
removal or bolt loss.

Configure 2: Remove all bracing on the east side.
Configure 3: On the southeast corner bay, all braces on all

floors were removed.
Configure 4: On the southeast corner bay, braces on the

first and fourth floors were removed.
Configure 5: On the southeast corner bay, braces on the

first floor were removed.
Configure 6: All braces on the east face and the second-

floor braces on the north face were removed.
Configure 7: All braces were removed.
Configure 8: All bolts on the first to fourth floors were

loosened.
Configure 9: On the first and second floors, all bolts were

loosened.
The acceleration data from different levels are collected,

preprocessed and combined in different scenarios. Three lev-
els of damage for each scenario are assigned, from safe,
partial and fully damaged, to simulate the different levels of
damage from the numerical study consistently. These dam-
age levels are as follows: in the sensor location where no
damage is introduced, the state of the joint is healthy. In case
the braces are removed at the sensor location, the accelera-
tion responses are given the state of fully damaged. If the bolt
is loosed at the joint where sensors are installed, partial dam-
age is considered at this location. The acceleration responses
are combined into the one-damage matrix with three damage
levels to train and validate the proposed CNNs and examine
the algorithm on different structures with different natural
frequencies and stiffness.

2.9.8 T-SNE Stochastic Neighbours Embedding Techniques
for Reduced 2DMaps of the High-Dimensional
Concrete Frame Structure Acceleration Data

To get a better understanding of the data, the "t-SNE"
technique is employed [47]. The higher-dimensional data
considered in this study are the acceleration data of the con-
crete frame structure. In order to create a 2-D or 3-D map
of the high-dimensional data, the ’t-SNE’ is employed (see
Fig. 18). The global and local structure of the data can be
kept by t-SNE visualization techniques. The basic princi-
ple of the "t-SNE" technique is that nearby points in the

original high-dimensional space are also close by in the low-
dimensional space, and vice versa. Stochastic Neighbour
Embedding (SNE) works by the high-dimensional Euclidean
distance conversion into similar representational conditional
probabilities.

The 2d maps of the predicted damage level for the
tested data from 0 to 3 where 0—immediate occupation,
1—life safety, 2—safe and 3—collapse prevention. The 2D-
dimensional reduced maps have a 2-axis t-SNE axis-1 and
t-SNE axis-2. The ’t_SNE’ technique is implemented to
find the best presentation of the relationship of the original
high-dimensional dataset. The visualization maps show the
clustering of the predicted categories set by CNNs in differ-
ent colours. The testing data in case of no noise introduction
show no intervention between different clusters, and each
cluster holds different positions on t-SNE maps except for
one point from the safe categories, which lies in the different
categories.

In order to show how the algorithm handles noise, the
TSNE algorithm was implemented on noisy datasets; the
result is presented in Fig. 18.With high noise-to-signal ratios
in Fig. 18 a and b, there appears to be a clear gap between
the same points in the same cluster, indicating noise, specif-
ically, 0-IO noise level. However, with the scenario of the
low noise-to-signal ratio, there is one point that appears in
the other clusters, and the TSNE algorithm shows less abil-
ity to form a cluster compared to the original dataset with no
noise (big gap between the same point in the same cluster)
with the other two noisy scenarios.

3 Results and Discussion

3.1 The Results of the Examined Concrete Frame
Structure and IASC-ASCE Benchmark Dataset

The study examines a 7-storey concrete frame structure
through different NNs architectures and highlights the
method’s accuracy in predicting and classifying damage lev-
els, as shown in Fig. 19. The model is also examined on
the experimental IASC-ASCE Benchmark dataset to show
the model’s robustness in classifying different damage with
their associated damage level, and the result is presented
in Table 5. A comparative analysis is formed in Fig. 19,
Tables 4 and \*MERGEFORMAT 5 to show the effectiveness
of the methods compared to other algorithms in different cri-
teria (time efficiency, overall prediction accuracy). Figure 19
shows the confusion matrix result for 1d-CNNs, LSTM, 1-
layerMLPNNs, 2-layerMLPNNs, 2d CNNs and DNNs. The
MLPNNs with one layer and two layers present the lowest
prediction accuracies. On the time efficiency scale, theDNNs
are of the best time efficiency followedby theCNNs; for other
1 and 2 layers MLPNNs and LSTM,2D CNNs showed the
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Fig. 16 (a) Example of safe structure for occupation after earthquake,
according to FEMA356 [32] damage control of structural performance,
(b) example of structure after an earthquake with minor structural

repairs at second and third floor of the structure, (c) example of the
structure where it is not technically practical to repair the structure as a
collapse prevention damage level control shown at level 2, 3,4, 7

lowest time efficiency with 615 s (see Table 4). On the over-
all accuracy scale, the 1d-CNNs showed the best validation
accuracies, followed by DNNs with an accuracy of 85.7%
and the LSTM with an overall validation accuracy of 80%.
Although both concrete frame structure and IASC-ASCE
Benchmark have different natural frequencies and time peri-
ods, the CNNs were able to classify the damage with high
cross-validation accuracy. However, due to the lack of label
data in the IASC-ASCE Benchmark dataset, the algorithm
showed a reasonable accuracy, as shown in Tables 4 and 5.

Damage-matrix method has proven very effective in dam-
age classification with high accuracy, especially in massive
dataset scenarios. The influence of the noise on the numerical
model examines the environmental impact of different noise
levels, as highlighted in Sect. 3.2. The result is bounded by
the localization algorithm’s performance and its robustness
in accurately localizing various signals to their respective
joints and structural levels. Additionally, the algorithm’s
ability to distinguish between correctly classified and mis-
classified damage levels significantly influences the obtained
results. The algorithm was further examined with the effect
of environmental variables presented in temperature vari-
ation on the 7-storey steel structure, and the validation

accuracy showed 80%, as presented in Sect. 3.3. To further
examine the one-damage matrix, the study combines two
structures that are different in their physical properties into
a one-damage matrix. Their result is presented in Sect. 3.4,
which proves that NNs learn by being exposed to different
examples, which improves their generalization. A specific
earthquake group was selected for investigation—compris-
ing acceleration responses from theChi-Chi earthquake. This
choice aimed to explore the relationship between validation
accuracy outcomes and earthquake characteristics such as
duration and time intervals. The validation accuracy of the
(1D-CNNs) for that specific earthquake group examination
is illustrated in Fig. 25.

Three different equations (see Eqs. 18) are performed on
7-storey concrete frame structures in addition to the IASC-
ASCE Benchmark dataset to evaluate the robustness of the
CNNs model to classify different signals with their associ-
ated damage categories. For a specific class, True positive is
the number of outcomes where the model truly forecasts the
class. True Negative (TN) represents the number when the
acceleration time series comes from different classes, and the
model avoids assigning the true labels. Simply, a False Pos-
itive (FP) occurs when a model wrongly identifies an input
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Fig. 17 Different damage scenario configurations for IASC-ASCE experimental model at the University of British Columbia

123



Arabian Journal for Science and Engineering

Fig. 18 TSNE algorithm for different level of noise for examining the concrete frame structure: (a) 2.5 dB, (b) 5dB, (c) 10dB, (d) without noise

as belonging to a specific category when it does not belong
to that category. False Negative (FN) occurs when the model
fails to identify an input as belonging to a specific category,
even though it does belong to that category. Precision (P),
recall (R) and F1-score are metrics used to evaluate the per-
formance of a model. Precision measures how accurate the
model is when identifying inputs belonging to a specific cate-
gory, while recall measures how well the model identifies all
inputs that belong to that category. F1-score is a combination
of both precision and recall. The results for the 7-story con-
crete frame structure using 1DCNNs are presented in Fig. 19
and Table 4. The numbers 0,1,2,3 present the different dam-
age scenarios from IO, LS, S and CP, respectively. The truly

positive acceleration signals are presented on the true posi-
tive and true negative axes, which are 50,10, 37 and 23. The
accuracy of the model can be calculated with Eq. 18–20.
This result presents the actual frame structure without any
noise addition or extraction of specific earthquake groups,
as demonstrated later in sections. The 7-storey frame con-
crete structure results from the mispredicted damage levels
without noise injection for each earthquake and incremental
nonlinear time history loading (Fig. 24). The segmentation
of each earthquake type and incremental loading is con-
ducted to study the effect of each earthquake acceleration
response group on the performance of the CNNs algorithm
to predict the labels correctly. The three major earthquakes
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Fig. 19 Confusion matrix for different deep learning and tradi-
tional neural networks architecture performed over the 7-storey con-
crete frame structure datasets to show the performance of NNs

architecture (a) CNNs, (b) LSTM, (c) 1-layer MLPNNs, (d) 2-layer
MLPNNs, (e) DNNs, (J) 2D CNNs
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Table 4 Model precision, recall and F1-score for the damage-level clas-
sification

Model Precision (%) Recall (%) F1-score
(%)

Concrete frame
structure
(1D-CNNs)

87 86 86

Concrete frame
structure (1–3
Layer- MLPNNs)

80 80 80

The IASC-ASCE
Benchmark dataset

55 74 63

in which the CNNs algorithmmisclassified their acceleration
response signals are the Long Beach earthquake, El Cen-
tro Site Imperial Valley and the San Fernando earthquake.
The result showed the intensive measurements of the seismic
records, such as the Chi-Chi earthquake, which has 18,000
record points in 90 s with∇t� 0.005, the accurate the CNNs
algorithm in predicting the class of the damage (Fig. 24a).
For the incremental dynamic loading, the study showed a
higher correlation between the mispredicted damage levels
and the higher dynamic loading (> 1g), which accounts for
80% of the mispredicted damage levels.

The accuracy for each class for the 1d-CNNs algorithm is
as follows from S-IO-LS-CP 94.87, 82%, 76, 9% and 85%
as calculated in Eq. 19, respectively; this accuracy presents a
slightly higher accuracy for the lower damage class as S and
IO. In order to test the efficiency of 1 D-CNNs, other tradi-
tional or shallow neural networks, deep learning algorithms
(LSTM) and deep neural networks were tested on 7-storey
concrete frame structure datasets. A comparative analysis is
formed in Fig. 19, Table 4 and 5 to show the effectiveness of
the methods compared to other algorithms in different crite-
ria (time efficiency, overall prediction accuracy). Figure 19
shows the confusion matrix result for 1d-CNNs, LSTM, 1-
layer MLPNNs, 2-layer MLPNNs, 2d CNNs and DNNs.
The MLPNNs with one layer and two layers present the
lowest prediction accuracies. On the time efficiency scale,
the DNNs are of the best time efficiency followed by the
CNNs; other 1 and 2 layers MLPNNs and LSTM showed the
lowest time efficiency with 615 s (see Table 4). On the over-
all accuracy scale, the 1d-CNNs showed the best validation
accuracies, followed by DNNs with an accuracy of 85.7%
and the LSTM with an overall validation accuracy of 80%.
Although both concrete frame structure and IASC-ASCE
Benchmark have different natural frequencies and time peri-
ods, the CNNs were able to classify the damage with high
cross-validation accuracy. However, due to the lack of label
data in the IASC-ASCE Benchmark dataset, the algorithm
showed a reasonable accuracy, as shown in Tables 4 and 5.

Table 5 Model training, testing accuracy and training time

Model Training
accuracy (%)

Testing
accuracy (%)

Training
time(s)

Concrete frame
structure
(1D-CNNs)

92.27 87 98.4945 s

Concrete frame
structure
(LSTM)

96 80 615.565 s

Concrete frame
structure (Deep
neural
Networks (Four
dense layers))

90 85.7 90 s

Concrete frame
structure (2D
CNNs (Vgnet))

90 75.4 12 h

The IASC-ASCE
Benchmark
dataset
(1D-CNNs)

77.77 74 366.97 s

P � T P
T P+FP
.

(18)

R � T P

T P + FN

F1 � 2
1
P + 1

R

Accuracy for Class S � 45

55
� 81.18% (19)

Accuracy for Class I O � 44

49
� 89.7%

Accuracy for ClassLS � 12

16
� 75%

Accuracy for ClassCP � 20

20
� 100%

overall accuracy � T P+T N
T P+FP+FN+T N

� 86.4% (20)

3.2 The Influence of Noise on the Performance
of the 7-Storey Concrete Frame Structure

Figure 20 shows the effect of the noise on the model’s accu-
racy in predicting the damage to the concrete frame structure.
The optimal model is the one with the low signal-to-noise
ratio of 10 dB as the optimal model, and the training and
testing accuracy is the highest among the other models with
the highest level of noise-to-signal ratio. The model can dis-
tinguish the damage severity to the four identified labels: S,
IO, LS and CP. When the noise level increases, the model
performance decreases, and the effect of the noise level on
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Fig. 20 The confusion matrix for different levels of noise (a)10, (b) 5, (c) 2.5dB

Table 6 Model with different noise levels and their corresponding train-
ing and testing accuracies

Noise level Training
accuracy (%)

Testing
accuracy (%)

Training time
(s)

10 99.82 79.2 397.173

5 100 69.9 242.883S

2.5 99.82 69.9 245.392S

the algorithm identification. The data with a higher noise-
to-signal level 5 dB and 2.5 dB tend to have a similar result
with the benchmark model datasets as the noise level in both
datasets.

The optimal model result with the highest accuracy com-
paring the different noise levels is the 10dB model (Table 6).

Table 7 Noise-level S/N precision, recall and F1-score

Noise level (S/N) dB Precision (%) Recall (%) F1-score
(%)

10 79.2 79.2 79.2

5 68 70 69

2.5 70 70 70

The testing accuracy for the 10 dB S/N ratio model is 79.2%,
with 5% lower accuracy than the model without noise. The
model with 2.5 dB showed a testing accuracy of 69.9% and
less training time than the 10 dB model. Similarly, the 5 dB
model has the lowest accuracy among all the models and the
best training time (see Tables 6 and 7).
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3.3 The Influence of Environmental Variables
on the CNNs Algorithm Performance
of the 7-Storey Steel Frame Structure

The result presented in Fig. 21 in this section shows the
performance of the 1D-CNN algorithm when tested with
temperature effect as described in Sect. 2.7. The accelera-
tion response data used for testing groups are the result of
the nonlinear time history analysis conducted using the San
Fernando seismic record as presented in Table 3. The test-
ing accuracy proves the ability of the CNNs to detect the
damage level even though the effect of the temperature vari-
ance is from 10 °C to 35 °C. The testing accuracy is around
80%, proving the practicality of the deep learning algorithm
to work in real time with varying environmental effects.

3.4 The result of examining synthesis datasets
of two structures’ acceleration response
(concrete and steel frame structure)
into a one-damage-matrix

In order to implement the study in a real-time scenario,
another factor was used to examine the CNN’s performance
using a one-damage-matrix. This factor is the ability to distin-
guish the acceleration response in the presence of a synthesis
of structures that vary in their modal and material properties.
Two structures were combined into one-damage-matrix and
used to train and test the neural networks. The CNNs are
proven to learn if exposed to different examples, and the
result exceeded both structures when trained alone using the
same algorithm. Figure 22 and Table 8 show the confusion
matrix of the testing result of two structures combined into
one damage matrix with a validation accuracy of 91%. This

Fig. 21 The confusion matrix for testing the temperature effect on the
steel frame structure

Fig. 22 The confusion matrix of the combination of two structures into
the one-damage-matrix

Table 8 The training and testing accuracy of the combined structure
model and the training time

Method Training
accuracy

Testing
accuracy

Training time
(s)

Combining
two
structures

94.0179% 91.14% 687.4S

result proves that the one-damage matrix effectively works
when different structures are added to the same datasets and
shows the application’s performance as a system in real time.
Another examination is the ability to generalize to earthquake
groups not present in the same datasets. The numericalmodel
was examined with nonlinear time history analysis with dif-
ferent earthquake groups, and the acceleration time history
was used to examine the generalization of the trained model;
the agreements between the code and the numerical model
showed 90% similarities in different levels of damage.

3.5 The Result of the Localization Algorithm
for theMispredicted Damage Levels and their
Correlation with the Floor Number

The main principle behind the data classification to different
floors is to establish a correlation between themodel accuracy
to each class and their mispredicted damage level’s existence
on each floor. As a result, a decision could be made on each
group (e.g., changing the training algorithm for this mispre-
dicted instance). For the 7-storey frame structure without
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Fig. 23 The mispredicted damage level and their frequencies in each floor number for (a) the model without noise and (b) the model with different
S/N ratio

noise, the localization algorithm presents misclassified dam-
age levels and their frequency of occurrence in the validation
and testing set on each floor (Fig. 23). In the case where no
noise was injected into the damaged matrix, the frequencies
of the misclassified damage levels showed a higher correla-
tion with the lower floor numbers (Fig. 23a). For the base,
first, third and fourth floors, 75% of the mispredicted dam-
age levels were localized on those floors.When the noise was
injected with a 10 dB S/N, 5 dB S/N and 2.5 dB S/N ratio,
the localization algorithm captured no correlation with the
floor’s numbers (Fig. 23b).

3.6 The Results of the Localization Algorithm
for theMispredicted Damage Level and their
Correlation with the Earthquake
and the Incremental Dynamic Loading

The 7-storey frame concrete structure results from the mis-
predicted damage levels without noise injection for each
earthquake and incremental nonlinear time history loading
(Fig. 24). The segmentation of each earthquake type and
incremental loading is conducted to study the effect of each
earthquake acceleration response group on the performance
of the CNNs algorithm to predict the labels correctly. The
three major earthquakes in which the CNNs algorithm mis-
classified their acceleration response signals are the Long
Beach earthquake, El Centro Site Imperial Valley and the San
Fernando earthquake. The result showed that the intensive
measurements of the seismic records, such as the Chi-Chi
earthquake, which has 18,000 record points in 90 s with ∇t
� 0.005, the accurate the CNNs algorithm in predicting the
class of the damage (Fig. 24a). For the incremental dynamic
loading, the study showed a higher correlation between the
mispredicted damage levels and the higher dynamic loading
(> 1 g), which accounts for 80% of the mispredicted damage
levels.

To further examine each earthquake group’s 1D CNNs
accuracy prediction, the Chi-Chi earthquake is chosen to
be examined without the other groups with the same incre-
mental dynamic nonlinear time history analysis procedure.
The CNNs training and validation accuracy result showed
94.14% in validation and testing accuracy (Fig. 25), exceed-
ing the validation accuracy of 87% when the model was
subjected to different earthquake records. The result from
the Chi-Chi earthquake record highlighted the correlation
between the earthquake characteristics, such as duration
and time intervals, and the validation accuracy. The rea-
son behind the improvement is the fact that the time step
in Hilber-Hughes-Taylor methods is critical for the accu-
racy of integration methods. The Chi-Chi groups have the
smallest input ground motion time step ∇t � 0.005. Theo-
retically, however, the implicit direct integration method is
unconditionally stable for any time step for multi-degrees of
freedom system, a smaller time step can give more accurate
results in time integration; however, too small-time step size
will increase the computational time considerably with no
significant improvement [48].

In this study, we used exactly the same time step as the
input ground motion time step or smaller ∇t � 0.005, ∇t
� 0.01 for time step integration methods. Robert Ebeling
et al. [49] compared the accuracy of a single degree of
freedom systemwith the exact solution for the different step-
by-step direct integration methods for different time steps
for the input ground motion acceleration. The methods are
also applicable to multi-degree freedom systems. The result
showed a higher accuracy of ∇t � 0.005 when compared
to the exact solution with other time steps. The agreement
between the result and the previous fact highlighted the accu-
racy and superiority of the methods.

The reason behind the chosen CNNs methods instead of
the time series neural networks such as LSTM and the 2d-
CNNs is time efficiency, especially when the data get bigger
and cumulative in the real-time scenario, and this is proven
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Fig. 24 Mispredicted damage levels for (a) each earthquake group and (b) incremental dynamic loadings

Fig. 25 Training and validation accuracy and loss of Chi-Chi earthquake acceleration response groups

by comparative analysis in Sect. 3.1. The study chooses the
time series sensory data as direct input instead of convert-
ing it to a 3D time–amplitude sensor or 4D time–frequency
amplitude sensory data, as the latter requires higher compu-
tational power and comparatively much more training time,

especially in the case of real-time scenarios as demonstrated
in Sect. 2.9.4. Considering the conversion time and the higher
level of the 3D or 4D data processing time, these techniques
are time-consuming and less efficient in real-time scenarios.
The method also chooses the direct feed of the time series
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sensory data to the CNNs algorithm without changing the
domain, even though the frequency domain could result in
slightly improved accuracy. The reasonbehind that is the con-
sideration of the effectiveness of the methods and the need
for a system with high response to natural disasters.

The concept of the damage matrix is proved to be highly
effective with the result from the different NNs and the
localization algorithm. Considering ten earthquakes with
20 incremental dynamic loading to the level 2 g of the
earthquake and appending the acceleration responses to the
damage matrix is proven to be time and storage-efficient and
simulates the real-time scenario where the data flow into one
matrix that recognizes the damage to the structure.

4 Conclusion

A novel DCNN-based method was developed to quantify the
damage in different structures subjected to seismically and
vibration excitation methods. Unlike traditional neural net-
works and deep learning methods used in the literature, this
approach operates directly on the time series data without
requiring preprocessing tools and handcrafted feature selec-
tion methods. This makes it highly effective in real-time and
autonomous scenarios. The method was trained on a large
dataset consisting of 1260 arrays of time series accelerations
data for the combined datasets, 700 arrays for concrete struc-
ture and 560 arrays for the steel structure (each array contains
a signal which contains 900 points).

The influence of noise on a numerical 7-storey concrete
frame structure was also examined at three levels: 10 dB,
5 dB and 2.5 dB. When the DLNNs algorithm was examined
with the acceleration response data from the Chi-Chi earth-
quake records, the validation accuracy improved to 94.14%.
The study further examined the CNNs with a combination
of steel and concrete structures inside the same datasets, and
the result showed improvements beyond the accuracies of
each structure examined alone, with 91% validation accura-
cies. Another aspect that is examined to work in real-time
is its ability to work on a seismic record not presented in
the dataset, which is tested and shows 90% similarities with
the numerical models. In order to provide a sense of dif-
ferent deep learning NNs prediction accuracy compared to
1D-CNNs, including traditional MLPNNs, LSTM, DNNs
and 2DCNNs. the study provides a comprehensive compara-
tive analysis of 7-story concrete frame structures. The results
demonstrated the potential for applying these DLNNs algo-
rithms to different structureswith varying natural frequencies
and time periods, as shown by the time series acceleration
data collected from the IASC-ASCE Benchmark dataset and
seven-storey steel frame structures, and the results yielded
reasonable accuracies.

It achieved testing and validation accuracies of 87% for
the concrete frame structure, with confusion matrix scores
of 85% in precision, recall and F1-score. The concluding
remarks and results can be summarized in the following
points:

• The algorithm achieved testing and validation accuracies
of 93% for synthesis datasets.

• On the temperature effects, when examined with the steel
frame structure datasets, it achieved 80% validation accu-
racy.

• For the noisy datasets, on the three levels of noises, 10,
5, 2,5, the validation accuracy is 79%, and 69.9%, 69.9%,
respectively

• Comparative analyses are also formed on LSTM,
MLPNNs (with different layers), 2DCNNs(VGG) and
DNNs, and the validation accuracy of 80%, 80%, 75%
and 86.6%.

• The 1D CNNs were further examined on IASC-ASCE
Benchmark dataset experimental datasets, and the valida-
tion accuracy result was 74%.

• To localize different damage levels and to study the
influence properties on DLNNs performance such as
earthquake properties and structure heights and IDL, a
localization algorithm is also coded, while investigation
using segmentation approaches is also conducted

• Specific earthquake groups (Chi-Chi earthquake) were
also investigated to direct impact of the seismic record on
the DLNNs and the result showed improvements to 94%,
while the seismic properties such as time steps and dura-
tion hold a significant impact on the DLNNs performance

• The study examined the DLNNs generalisation on unseen
earthquake records, while the result showed 90% predic-
tion compared to the numerical result

• The study demonstrates postearthquake retrofitting with
three examples, according to FEMA 356.

The result demonstrates the performance of different
DLNNs and TNNs on different structures, while the direct
use of the time sensory has proven the best performance in
terms of time, resource and accuracy. The study investigates
different real-time factors such as noise effect, temperature
effect, synthesis datasets and generalization to unseen earth-
quake records. The study demonstrates the great implication
of the autonomous seismic-induced system on the decision-
making postearthquake retrofitting of the structure.

5 Future Research

Future research could investigate the generalization of the
DLNNs on unseen dataset scalability and topology of the
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structure. For example, if the structure has been changed to 5-
story structure, while the width and height are still the same,
how can the NNs generalize? Other factors could include
how wide the dataset includes different structures similar to
or close to the model properties. Other factors include the
examination of method scalability to larger-scale structures,
including infrastructures, in terms of the time resources per-
formance of the collected big data and how to handle this
huge flux of data while maintaining an efficient process.

This study provides guidance on the segmentation
approaches in improving the model accuracy when corre-
latedwith earthquake characteristics such as time interval and
earthquake record length. Further investigation using the seg-
mentation approaches utilizing data science approaches on
the different deep learning performance (2DCNNs, LSTMs
andDNNs) correlationwith different earthquake characteris-
tics such as frequency content and structure properties (e.g.,
levels heights—structure width and heights). The automated
algorithm for the preprocessing of the label data will be pro-
vided to facilitate the training in the same environment where
the FEM are established using SAP2000, and the extracted
acceleration and displacement sensory responses will be fed
to the DLNNs algorithm inside the TensorFlow environment.
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