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Abstract
To achieve high performance of the electro-hydraulic servo system (EHSS), how to well handle system uncertainties is
quietly meaningful in designing various controllers. As a result, the state-space representation of the EHSS is established by
considering system uncertainties including the external load force, the friction force, the parameter uncertainties, the structural
vibrations, and the unmodeled characteristics. Based on the state model, an extended sliding mode observer (ESMO) for the
EHSS is detailly designed to estimate and compensate for the matched and the mismatched system uncertainties. Proper
saturation functions are employed in the ESMO to deal with the high-frequency interferences caused by the chattering
phenomenon. With two estimation values from the ESMO, an output constraint nonlinear control scheme (OCNCS) is
designed for the position output constraint control of the EHSS based on the barrier Lyapunov function (BLF). The state-
space model and the proposed control algorithm are then developed in MATLAB/Simulink. Subsequently, some simulation
studies are conducted to verify the control performance. What’s more, an experimental bench is established and the control
algorithms are then downloaded into the target computer through the internet to drive the bench in real-time. The results
from simulation and experiment indicate that the proposed control method outperforms the extended sliding mode observer
(ESMO)-based robust adaptive backstepping controller (RABC), the OCNCS, and the backstepping controller (BC). The peak
tracking error is reduced by 99.11%, 51.93%, and 37.46% in simulation and 93.54%, 78.98%, and 15.89% in experimental
compared to the ESMO-based RABC, the OCNCS, and the BC, respectively.
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1 Introduction

Electro-hydraulic servo systems (EHSSs) are widely used in
various industrial applications due to their high-power den-
sity, fast response, and precise control capabilities. Despite
significant nonlinearities, uncertainties, dead zones, con-
straints, saturation, and other complex behaviors, the devel-
opment of advanced closed-loop controllers for hydraulic
systems has been relentless. These sophisticated controllers
aim to address the uncertainties, including both uncertain
nonlinearities and parametric uncertainties, to fulfill the ever-
growing demands for precise control performance. Adaptive
control methods [1–3], have been innovated to counter-
act parametric uncertainties effectively. However, they fall
short when it comes to handling uncertain nonlinearities that
encompass modeling errors and external disturbances. These
nonlinearities,when theybecomedominant, can significantly
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degrade the tracking accuracy of the EHSS. To bolster the
robustness of adaptive control and to enhance tracking per-
formance, an integration of robust and adaptive controls
has been pursued. This integrated approach has given rise
to a number of advanced algorithms, such as robust adap-
tive control [4], RISE-based adaptive control [5, 6], adaptive
sliding mode control [7, 8], neural network control [9, 10],
which have been effectively applied to hydraulic systems.
One of the challenges with these methods is their reliance
on high-gain feedback to achieve desired performance out-
comes. However, high-gain feedback is generally avoided
in practical scenarios due to its propensity to amplify high-
frequency dynamics and measurement noise. Consequently,
control strategies tend to be overly conservative, particu-
larly when the system encounters large disturbances [11,
12]. To improve the systems’ ability to withstand distur-
bances, an array of disturbance rejection control strategies
has been derived[13, 14]. Disturbance observers are par-
ticularly favored due to their simplicity and compatibility
with various control methods. These observers [9–16], aid in
enhancing control performance by estimating and compen-
sating for parametric uncertainties and disturbances, which
are treated as lumped disturbances, thereby mitigating their
impacts without resorting to high-gain feedback mecha-
nisms. In addition, these estimation values directly from
analog sensors usually have heavy noise, which will increase
the control input ripples and result in poor steady track-
ing performance. A notable example is the extended state
observer (ESO) [17]. The ESO excels in disturbance esti-
mation with minimal reliance on model information and is
distinguished by its simple structure with only a handful of
parameters that are straightforward to tune. This has led to
its widespread application in the field, as seen in references
[18–20].

Another significant achievement is the extended slid-
ing mode observer (ESMO) [21], which is derived from
sliding mode observers with the concept of sliding mode
control. Therefore, the ESMO has an inherent robustness to
disturbances. The initial ESMO in [21] employs

(
xi − x̂i

)

with properly tuning gains to compensate for the estima-
tion error in system states estimations and discontinuous
function sign

(
xi − x̂i

)
with control gains to improve the

estimation accuracy in the extended states. Subsequently,
the enhanced ESMO is proposed with discontinuous func-
tions sign

(
xi − x̂i

)
to compensate for both the system states

and the extended states [22]. The ESMO is also compared
with disturbance observers in [4] and the ESO in [23, 24],
whose results prove that the ESMO’s estimation values have
less noise than disturbance observers and the ESMO con-
ducts a better performance than the ESO. The ESMO gives
researchers a basic alternative requirement when designing
the disturbance rejection control schemes.

Despite these advances, a critical limitation remains: these
controllers often overlook the output constraint of hydraulic
systems. Addressing this gap presents a key opportunity for
future research and development in hydraulic control sys-
tems. Output constraint control is of great significance in
practical applications, as it guarantees the safety and stability
of the controlled system [25]. In recent years, considerable
research efforts have been devoted to the development of
control strategies for EHSSs to address these challenges
[9–26]. The enforcement of the output constraint is effec-
tively realized through the use of a barrier lyapunov function
(BLF), as an alternative to the conventional quadratic lya-
punov function. The efficiency of the BLF has been proved
in many quality controls of hydraulic systems. D. Won [15]
employs the BLF combined with disturbance observers to
constrain the output in a desired boundary. Furthermore, the
research presented in [27, 28] proposes a state-constrained
control approach for single-rod hydraulic actuators, designed
tomaintain the stateswithin prescribed limits in the channels,
even in the absence of disturbances. The important aspect is
the design of control schemes that can handle system uncer-
tainties and ensure the satisfaction of output constraints. In
practical engineering, especially, in real hydraulic servo sys-
tems, the BLF gives an explosive calculation to the computer.
It requires a computer with large memory and a high-speed
processor, which increases the cost of the actual system.

The anticipated outcome of the proposed controller is to
ensure that the system’s control performance indices—such
as overshoot, steady-state tracking error, and convergence
speed—alignwith the actual performance requirements [28].
Nevertheless, there appears to be a lack of focus on the
system’s transient tracking performance, even though the
aforementioned controllers can secure commendable steady-
state control performance. In this study, an extended sliding
mode observer (ESMO)-based control scheme is proposed
for EHSSswith system uncertainties. The ESMO is designed
to estimate the matched and mismatched unmeasured states
of the EHSS, which are essential for feedback control.
By incorporating the estimated states into the control law,
the proposed scheme is capable of compensating for sys-
tem uncertainties and achieving accurate tracking of desired
output trajectories. Furthermore, the control scheme incor-
porates output constraint enforcement to ensure that the
controlled EHSS operates within predefined limits. This is
achieved by designing appropriate control laws that regu-
late the output of the actuator while maintaining stability
and performance. Some simulation and experimental stud-
ies are conducted in the presence of system uncertainties
to verify the performance of the proposed controller. Com-
parative results show the efficiency of the proposed control
scheme. With the ESMO’s compensation, the maximum
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position tracking error is 9.6837 × 10–5 m in the experi-
mental study, which is almost the measurement noise of the
analog displacement sensor.

The remainder of this paper is organized as follows: Sect.
2 provides the problem formulation and preliminaries for
the EHSSs and the challenges associated with their control.
Section 3 details the theoretical derivation of the ESMO and
the output constraint nonlinear control scheme (OCNCS)
based on the BLF. Simulation results and discussions are
presented in Sect. 4. Finally, conclusions and future research
directions are outlined in Sect. 5.

Through the development of this control scheme, it is
expected that enhanced control performance, robustness
against system uncertainties, and improved output constraint
enforcement can be achieved for EHSSs. These advance-
ments will contribute to the effective utilization of EHSSs in
various industrial applications.

2 Problem Formulation and Preliminaries

Figure 1 presents the configuration schematic of the EHSS.
By applyingNewton’s second law, the force balance equation
yields

−mẍp − Bp ẋp + Ap pL = FL+FF (1)

where,m—the mass of the load, xp—the piston rod displace-
ment,Bp—the viscous damping coefficient of the oil,Ap—the
effective area, pL—the load pressure pL = p1-p2, FL—the
external load force, FF—the coulomb friction force.

With the flow continuity equation, the load flow QL from
the servo valve to two actuator chambers yields

QL = (Q1 + Q2)
/
2=Ap ẋp + Ctl pL + ṗLVt

/
4βe (2)

where,QL—the load flow from the servo valve to the actuator
chambers, Ctl—the total leakage coefficient, V t—the total
volume of two champers, βe—the effective bulk modulus of
the oil.

The load flow of the hydraulic cylinder is determined by
the servo valve spool displacement.

QL = Cdwxv
√[

ps − sign(xv)pL
]/

ρ (3)

where„ xv—the servo valve spool displacement,Cd—the dis-
charge coefficient of the servo valve, w—the area gradient
of the servo valve spool, ρ—the density of the oil, ps—the
pressure of the supply of oil.

According to [4], the EHSS’s control input for the servo
valve can be presented as

uL = umax

√
�pr

/[
ps − sign(QL)pL

]
QL

/
Qr (4)

2Q1Q

2p

pA px

sp

m

vx

The servo valve

Load
Hydraulic cylinder

LF

1p

Fig. 1 Configuration schematic of the EHSS

where, uL—the control voltage, umax–the maximum control
voltage, �pr—the rated load pressure of the servo valve,
Qr—the rated flow of the servo valve.

Define the system state vector as x = [x1, x2, x3]T=
[xp, ẋp, pL]T , therefore, the state space representation of the
EHSS yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = θ1x3 − θ2x2︸ ︷︷ ︸

f1(x2, x3)

+�θ1x3 − �θ2x2 − FL
/
m − FF

/
m + μ

︸ ︷︷ ︸
�1

ẋ3 = −θ3x2 − θ4x3︸ ︷︷ ︸
f2(x2, x3)

+θ5QL −�θ3x2 − �θ4x3︸ ︷︷ ︸
�2

�̇1 = ϒ1

�̇2 = ϒ2

y = x1
(5)

where, θ1 = Ap/m, θ2 = Bp/m, θ3 = 4Apβe/V t, θ4 =
4Ctlβe/V t, θ5 = 4βe/V t, Actually, the viscous damping coef-
ficient of the hydraulic oil Bp, the effective bulk modulus of
the oil βe and the total leakage coefficient of the hydraulic
actuator Ctl in real hydraulic system are all estimated values.
Due to the measurement errors in the physical parameters
of the hydraulic cylinder and the errors in other parameters
(such as the viscosity damping systemBp of the hydraulic oil,
the total leakage coefficientCtl of the hydraulic cylinder, and
the volume elasticity modulus βe of the hydraulic oil), there
are differences between the parameters in the system state
equation and the actual physical system. Therefore, param-
eter variations are considered in the system’s state equation,
where�θ1,�θ2,�θ3 and�θ4 represent the parameter vari-
ations of θ1, θ2, θ3 and θ4, respectively. In addition, the
structural vibration caused by the movement of the piston
rod and some unmodeled characteristics of the hydraulic
oil nonlinearity (collectively represented as μ) are included.
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Collectively,�1 represents the system uncertainty caused by
external disturbance forces, friction forces, parameter vari-
ations, structural vibrations, and unmodeled characteristics,
�1 = -FL/m-FF/m + �θ1x3-�θ2x2 + μ. �2 represents the
system uncertainty caused by parameter variations of θ3 and
θ4, �2 = -�θ3x2-�θ4x3. �1 represents the load fluctuation
of the hydraulic cylinder piston rod caused by system uncer-
tainty, and �2 represents the pressure fluctuation in the two
chambers of the hydraulic cylinder caused by system uncer-
tainty. ϒ j are variation rates of �j. y = x1 is the output of
the displacement output, f 1(x2, x3) = θ1x3-θ2x2, f 2(x2,x3)
= -θ3x2-θ4x3.

Assumption 1 The desired displacement of the EHSS yd,
and its first, second, and third-order time derivative ẏd, ÿd
and

...
y d are all bounded. �j, and their variation rate ϒ j are

all bounded, i.e., � j ≤ � j max, ϒ j ≤ ϒ j max.

Assumption 2 Functionsf j(x2, x3) are Lipschitz with respect
to x2 and x3. There exist four Lipschitz constants γ 1i, γ 2, γ 3

and γ 4, which makes the following inequations hold.

∣∣∣ f1(x2, x3) − f̂1
(
x̂2, x̂3

)∣∣∣

=
∣∣∣ f̂1

(
x̂2, x̂3

)∣∣∣ ≤ γ1
∣∣x2 − x̂2

∣∣ + γ2
∣∣x3 − x̂3

∣∣

= γ1|x̃2| + γ2|x̃3| (6)

∣∣
∣ f2(x2, x3) − f̂2

(
x̂2, x̂3

)∣∣
∣

=
∣∣∣ f̃2(x̃2, x̃3)

∣∣∣ ≤ γ3
∣∣x2 − x̂2

∣∣ + γ4
∣∣x3 − x̂3

∣∣

= γ3|x̃2| + γ4|x̃3| (7)

where, x̂i and x̃i , i= 1,2,3.Will be defined in the next section.

3 Controller Design

3.1 Development of the ESMO

With the state representation (5), consider the following five-
order ESMO.

⎧
⎪⎨

⎪⎩

˙̂x1 = x̂2 − L1sign
(
x1 − x̂1

)

˙̂x2 = θ1 x̂3 − θ2 x̂2 − L2sign
(
x2 − x̂2

) + �̂1˙̂x3 = −θ3 x̂2 − θ4 x̂3 + θ5QL − L3sign
(
x3 − x̂3

) + �̂2

˙̂
�1 = L4L2sign

(
x2 − x̂2

)

˙̂
�2 = L5L3sign

(
x3 − x̂3

)

(8)

where, x̂i are estimation values of xi , �̂ j are estima-
tion values of �j, L1, L2, L3, L4 and L5 are the con-

trol gains of the ESMO. X̃ =
[
x̃1, x̃2, x̃3, �̃1, �̃2

]T =
[
x1 − x̂1, x2 − x̂2, x3 − x̂3, �1 − �̂1, �2 − �̂2

]T
, one can

obtain the estimation error dynamics yields

⎧
⎪⎨

⎪⎩

˙̃x1 = x̃2 − L1sign(x̃1)
˙̃x2 = θ1 x̃3 − θ2 x̃2 − L2sign(x̃2) + �̃1
˙̃x3 = −θ3 x̃2 − θ4 x̃3 − L3sign(x̃3) + �̃2

˙̃
�1 = L4L2sign(x̃2) − ϒ1

˙̃
�2 = L5L3sign(x̃3) − ϒ2

(9)

Lemma [4] If the control gains L1, L2, L3, L4 and L5 are
selected large enough such that L1 > |x̃2| + σ1, L2 >

γ1|x̃2|+γ2|x̃3|+
∣∣∣�̃1

∣∣∣+σ2, L3 > γ3|x̃2|+γ4|x̃3|+
∣∣∣�̃2

∣∣∣+σ3,

L4 > 0, L5 > 0, and σi are three small positive real
constants, which can guarantee the estimation error X̃ con-
vergence to zero in a finite time T > 0.

Proof Consider the following three sliding mode surfaces
as Si = x̃i . According to the estimation error dynamics (9),
the time derivative of Si yield.

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ1 = ˙̃x1 = x̃2 − L1sign(x̃1)

Ṡ2 = ˙̃x2 = f̃1(x̃2, x̃3) − L2sign(x̃2) + �̃1

Ṡ3 = ˙̃x3 = f̃2(x̃2, x̃3) − L3sign(x̃3) + �̃2

(10)

If we focus specifically on the first equation in (10), the
following inequality can be derived:

S1 Ṡ1 = x̃1 ˙̃x1 = x̃1
[
x̃2 − L1sign(x̃1)

] ≤ |x̃1|
[|x̃2| − L1

]

(11)

Therefore, if one properly selects the control gain L1 as
L1 > |x̃2| + σ1, where σ1 is a small positive real constant,
then Eq. (11) can be rewritten as

S1 Ṡ1 < σ1|x̃1| ≤ 0 (12)

One can conclude that S1 will reach a sliding mode mani-
fold in a finite time T1 > 0, and x̃1 = ˙̃x1 = 0. We can further
derive

x̃1 = ˙̃x1 = x̃2 − L1sign(x̃1) = 0 (13)

then,

x̃2 = L1sign(x̃1) (14)
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The following inequality can be derived in terms of the
dynamics of S2 in (10).

S2 Ṡ2 = x̃2 ˙̃x2 = x̃2
(
f̃1(x̃2, x̃3) − L2sign(x̃2) + �̃1

)
(15)

Based on Assumption 2 (6), thus one can obtain

S2 Ṡ2 ≤ |x̃2|
[∣∣∣ f̃1(x̃2, x̃3)

∣∣∣ − L2 +
∣∣∣�̃1

∣∣∣
]

≤ |x̃2|
[
γ1|x̃2| + γ2|x̃3| − L2 +

∣∣
∣�̃1

∣∣
∣
]

(16)

If the control gain L2 is properly selected such that

L2 > γ1|x̃2| + γ2|x̃3| +
∣∣∣�̃1

∣∣∣ + σ2 (17)

where σ2 is a small positive real constant. By substituting
Eq. (17) into Eq. (16), one can derive the following equation.

S2 Ṡ2 < −σ2|x̃2| ≤ 0 (18)

Therefore, the estimation error x̃2 will converge to zero in
a finite time T2 > 0 and x̃2 = ˙̃x2 = 0. The dynamics of x̃2 in
(9) can be rewritten as

˙̃x2 = θ1 x̃3 − θ2 x̃2 − L2sign(x̃2) + �̃1 = 0 (19)

Then, θ1 x̃3 + �̃1 = −L2sign(x̃2). With the above results,
the dynamics of �̃1 in (9) becomes

˙̃
�1 = L4L2sign(x̃2) − ϒ1 = L4

(
−�̃1 − θ1 x̃3

)
− ϒ1 (20)

Likewise, consider the dynamics of S3, one can derive the
following inequality.

S3 Ṡ3 = x̃3 ˙̃x3 = x̃3
(
f̃2(x̃2, x̃3) − L3sign(x̃3) + �̃2

)
(21)

Based on Assumption 2 (7),

S3 Ṡ3 ≤ |x̃3|
[∣∣∣ f̃2(x̃2, x̃3)

∣∣∣ − L3 +
∣∣∣�̃2

∣∣∣
]

≤ |x̃3|
[
γ3|x̃2| + γ4|x̃3| − L3 +

∣∣∣�̃2

∣∣∣
]

(22)

Therefore, if we properly select the control gain L3 as

L3 > γ3|x̃2| + γ4|x̃3| +
∣∣∣�̃2

∣∣∣ + σ3 (23)

where σ3 is a small positive real constant. Then S3 Ṡ3 <

−σ3|x̃3| ≤ 0, x̃3 will converge to zero in a finite time T3 > 0
and x̃3 = ˙̃x3 = 0. Therefore, the dynamics of x̃3 in (9) can
be rewritten as

˙̃x3 = −θ3 x̃2 − θ4 x̃3 − L3sign(x̃3) + �̃2 = 0 (24)

Furtherly, one can derive �̃2 = −L3sign(x̃3), with
˙̃
�2 =

L5L3sign(x̃3) − ϒ1 in (9), the following equation can be
obtained.

˙̃
�2 + L5�̃2 + ϒ1 = 0 (25)

It can be seen that ˙̃
�2 + L5�̃2 + ϒ1 = 0 is a first-order

derivative equation, the solution for Eq. (25) is

�̃2 = e−L5t
(
C +

∫
ϒ1e

−L5t dt

)
(26)

As long as the control gain L5 > 0, �̃2 will converge to
zero in a finite time T4 > 0. Obviously, the convergence of x̃3
is irrelated to that of ˙̃

�1, therefore, Eq. (20) can be rewritten
as

˙̃
�1 = L4

(
−�̃1 − θ1 x̃3

)
− ϒ1 = −L4�̃1 − ϒ1 (27)

Similar to Eq. (25), both of them are first-order derivative
equations. Therefore, as long as the control gain L4 > 0, �̃1

will converge to zero in a finite time T5 > 0. Define a new
variable T as

T = sup{T1, T2, T3, T4, T5} (28)

From all above, x̃ will converge to zero in a finite time T
> 0. The ESMO is finite-time stable. End of the proof.

Remark 1 The principle of equivalence and saturation func-
tions can be employed in the ESMO, and the final formula
of the ESMO can be presented as [4]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = x̂2 + L1
x1 − x̂1∣∣x1 − x̂1

∣∣ + δ1

v2eq = L1
x1 − x̂1∣

∣x1 − x̂1
∣
∣ + δ1

˙̂x2 = θ1 x̂3 − θ2 x̂2 + L2
v2eq∣∣v2eq
∣∣ + δ2

+ �̂1

˙̂x3 = −θ3 x̂2 − θ4 x̂3 + θ5QL + L3
x3 − x̂3∣∣x3 − x̂3

∣∣ + δ3
+ �̂2

˙̂
�1 = L4L2

v2eq∣∣v2eq
∣∣ + δ2

˙̂
�2 = L5L3

x3 − x̂3∣∣x3 − x̂3
∣∣ + δ3

(29)

where, δi are three small positive real constants, which can
eliminate the chattering phenomenon in sliding mode sur-
face.
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Remark 2 It needs to be emphasized that even if the satu-
ration function can suppress high-frequency disturbances in
the ESMO, there will inevitably be estimation noise in the
estimated values of the observer. The main reasons are as
follows:

1. TheESMOinherently uses a discontinuous control action
to drive the system states onto the sliding surface Si. This
can result in high-frequency oscillations around the slid-
ing surface, known as chattering, which may manifest as
noises in the estimation.

2. The real hydraulic control system depends on analog
feedback sensors (the displacement sensor, and two pres-
sure sensors). Therefore, the ESMO also relies on these
sensors withmeasurement noises as inputs, this noise can
propagate through the observer dynamics and affect the
state estimates. Although ESMO is robust against dis-
turbances, it is not completely immune to measurement
noise.

3. According to the model of the EHSS, there are model
errors between the real hydraulic system dynamics and
the model used in the ESMO, especially these errors
might be dynamic or stochastic in nature. These factors
can introduce errors in the state estimation of the ESMO,
which might be perceived as estimation noise.

4. In addition, the ESMO’s too-large control gains, incom-
plete resistance to external disturbances, and, numerical
computational errors or computational delays could be
reflected as noise in the state estimation.

3.2 Development of the OCNCS

Define the system state tracking error vector as

z = [z1, z2, z3]
T = [x1 − yd, x2 − α1, x3 − α2]T (30)

where, z1 denotes the displacement tracking error and |z1|<
kb, kb is the system output tracking error constraint, and the
system output kcl < x1 < kcu, kcu is the system output upper
boundarykcu = yd + kb„ kcl is the systemoutput lower bound-
ary,kcl = yd-kb, α1 and α2 are two virtual control laws in the
controller design.

Theorem Combining the system state representation Eq. (5)
and two estimation values �̂1 and �̂2 from the ESMO, there
exists the following control law, which will make the output
tracking error meet |z1|< kb, ∀t > 0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = x1 − yd,

α1 = −k1z1
(
k2b − z21

)
+ ẏd,

z2 = x2 − α1,

α2 =
(
θ2x2 − k2z2 + α̇1 − z1

/(
k2b − z21

)
− �̂1

)/
θ1,

z3 = x3 − α2,

QL =
(
θ3x2 + θ4x3 − �̂2 + α̇2 − k3z3 − θ1z2

)/
θ5.

(31)

where, ki are three positive control gains. If control gains
Lj+3 are properly chosen such Lj+3 > 1/4kj+1, then, |z1|< kb,
and z enters in a bounded hypersphere ball Hr, and holds in
Hr, ∀t > 0, ∀t > t0.

Hr = −k1z
2
1 −

2∑

i=1

k j+1

(
z j+1 − 1

2k j+1
�̃ j

)2

−
2∑

j=1

ξ j

(
�̃ j − 1

2ξ j
ϒ j

)2

+
2∑

j=1

1

4ξ j
ϒ2

j max (32)

where, ξ j = Lj+3–1/4kj+1.

Proof Step 1: Consider the BLF as.

χ1=1

2
ln

k2b
k2b − z21

(33)

The time derivative of χ1 yields

χ̇1= z1 ż1
k2b − z21

(34)

The time derivative of z1 can be derived by Eq. (30).

ż1 = ẋ1 − ẏd = x2 − ẏd (35)

Therefore, Eq. (34) can be rewritten as

χ̇1= z1(z2 + α1 − ẏd)

k2b − z21
(36)

With the virtual control law α1 in (22), one can obtain

χ̇1 = −k1z
2
1 + z1z2

k2b − z21
(37)
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Step 2: Considering the tracking error z2 and the estima-
tion error �̃1, define the following Lyapunov function as

χ2 = χ1 + z22
2

+ �̃2
1

2
(38)

Given χ̇1 in (37), the time derivative of χ2 yields

χ̇2= − k1z
2
1 + z1z2

k2b − z21
+ z2 ż2 + �̃1

˙̃
�1 (39)

The ż2 can be derived from Eq. (30).

ż2 = ẋ2 − α̇1 (40)

With the dynamics ẋ2 = θ1x3 − θ2x2 + �1 in (5) and
�1 = �̂1 + �̃1, Eq. (40) can be rewritten as

ż2 = θ1x3 − θ2x2 + �̂1 + �̃1 − α̇1 (41)

Equation (39) can be rewritten in terms of Eq. (41).

χ̇2 = −k1z
2
1 + z1z2

k2b − z21
+ z2

(
θ1z3 + θ1α2 − θ2x2

+ �̂1 + �̃1 − α̇1

)
+ �̃1

˙̃
�1 (42)

With the virtual control lawα2 in (22) and
˙̃
�1 = −L4�̃1−

ϒ1 in (27), one can obtain

χ̇2 = −k1z
2
1 − k2z

2
2 + θ1z2z3 + z2�̃1 + �̃1

(
−L4�̃1 − ϒ1

)

(43)

Step 3: The following Lyapunov function can be defined
in terms of the tracking error z3 and the estimation error �̃2.

χ3=χ2 + z23
2

+ �̃2
2

2
(44)

Given χ̇2 in (43), the time derivative of χ3 yields

χ3 = −k1z
2
1 − k2z

2
2 + θ1z2z3 + z2�̃1

+ �̃1

(
−L4�̃1 − ϒ1

)
+ z3 ż3 + �̃2

˙̃
�2 (45)

ż3 in (45) can be obtained by Eq. (30).

ż3 = ẋ3 − α̇2 (46)

ẋ3 in (46) can be obtained byEq. (5), ẋ3 = −θ3x2−θ4x3+
θ5QL + �2, with �2 = �̂2 + �̃2, Eq. (46) can be rewritten
as

ż3 = −θ3x2 − θ4x3 + θ5QL + �̂2 + �̃2 − α̇2 (47)

Furtherly, Eq. (45) can be rewritten as

χ3 = − k1z
2
1 − k2z

2
2 + θ1z2z3 + z2�̃1 + �̃1

(
−L4�̃1 − ϒ1

)

+ z3
(
−θ3x2 − θ4x3 + θ5QL + �̂2 + �̃2 − α̇2

)
+ �̃2

˙̃
�2

(48)

With the real control law QL in (31) and ˙̃
�2 = −L5�̃2 −

ϒ2 in (25), one can obtain

χ̇3 = −k1z
2
1 − k2z

2
2 − k3z

2
3 + z2�̃1 − L4�̃

2
1 − �̃1ϒ1

+ z3�̃2 + �̃2

(
−L5�̃2 − ϒ2

)

= −k1z
2
1 − k2

(
z2 − 1

2k2
�̃1

)2

− k3

(
z3 − 1

2k3
�̃2

)2

− (L4 − 1/4k2)

(
�̃1 − 1

2(L4 − 1/4k2)
ϒ1

)2

− (L5 − 1/4k3)

(
�̃2 − 1

2(L5 − 1/4k3)
ϒ2

)2

+ 1

4(L4 − 1/4k2)
ϒ2
1 + 1

4(L5 − 1/4k3)
ϒ2
2 (49)

With ξ1 = L4 −1/4k2 and ξ2 = L5 −1/4k3, Eq. (49) can
be rewritten as

χ̇3 = −k1z
2
1 − k2

(
z2 − 1

2k2
�̃1

)2

− k3

(
z3 − 1

2k3
�̃2

)2

− ξ1

(
�̃1 − 1

2ξ1
ϒ1

)2

− ξ2

(
�̃2 − 1

2ξ2
ϒ2

)2

+ 1

4ξ1
ϒ2
1 + 1

4ξ2
ϒ2
2

= − k1z
2
1 −

2∑

j=1

k j+1

(
z j+1 − 1

2k j+1
�̃ j

)2

−
2∑

j=1

ξ j

(
�̃ j − 1

2ξ j
ϒ j

)2

+
2∑

j=1

1

4ξ j
ϒ2

j max (50)

Therefore, if we properly select control gains ki > 0 and

ξ j > 0, thus there is only one positive term
2∑

j=1

1
4ξ j

ϒ2
j max in

(50) and the other terms are all negative so that these negative
terms can guarantee χ̇3 < 0. The closed-loop is bounded
stable. The tracking error vector z can be guaranteed to enter
inHr in a finite time t1 > 0 and holds inHr, ∀t > t0; furtherly,
the system output tracking error |z1|< kb, ∀t > t0. End of the
proof.
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3.3 Stability of the Closed-loop

To prove the stability of the closed loop, we define an overall
Lyapunov function as

χh=1

2
ln

k2b
k2b − z21

+ z22
2

+ z23
2

+ �̃2
1

2
+ �̃2

2

2
+ S21

2
+ S22

2
+ S23

2
(51)

Thus, one can derive the time derivative of χh yields

χ̇h= z1 ż1
k2b − z21

+ z2 ż2 + z3 ż3 + �̃1
˙̃
�1 + �̃2

˙̃
�2

+ S1 Ṡ1 + S2 Ṡ2 + S3 Ṡ3 (52)

According to the stability proof for the ESMO, Eq. (52)
can be rewritten with results of Eq. (11), (16), and (22) yields

χ̇h <
z1 ż1

k2b − z21
+ z2 ż2 + z3 ż3 + �̃1

˙̃
�1 + �̃2

˙̃
�2

+|x̃1|
[|x̃2| − L1

] + |x̃2|
[
γ1|x̃2| + γ2|x̃3| − L2 +

∣∣∣�̃1

∣∣∣
]

+ |x̃3|
[
γ3|x̃2| + γ4|x̃3| − L3 +

∣∣∣�̃2

∣∣∣
]

(53)

Furtherly, based on the stability proof for the OCNCS,
Eq. (53) can be rewritten with Eq. (49) yields

χ̇h = −k1z
2
1 − k2z

2
2 − k3z

2
3 + z2�̃1 − L4�̃

2
1 − �̃1ϒ1

+ z3�̃2 + �̃2

(
−L5�̃2 − ϒ2

)
+ |x̃1|

[|x̃2| − L1
]

+ |x̃2|
[
γ1|x̃2| + γ2|x̃3| − L2 +

∣∣∣�̃1

∣∣∣
]

+ |x̃3|
[
γ3|x̃2| + γ4|x̃3| − L3 +

∣∣
∣�̃2

∣∣
∣
]

= −k1z
2
1 − k2

(
z2 − 1

2k2
�̃1

)2

− k3

(
z3 − 1

2k3
�̃2

)2

− ξ1

(
�̃1 − 1

2ξ1
ϒ1

)2

− ξ2

(
�̃2 − 1

2ξ2
ϒ2

)2

+ 1

4ξ1
ϒ2
1max + 1

4ξ2
ϒ2
2max+|x̃1|

[|x̃2| − L1
]

+ |x̃2|
[
γ1|x̃2| + γ2|x̃3| − L2 +

∣∣∣�̃1

∣∣∣
]

+ |x̃3|
[
γ3|x̃2| + γ4|x̃3| − L3 +

∣∣∣�̃2

∣∣∣
]

(54)

Thus, if one properly selects the control gains as ki >

0, L1 > |x̃2| + σ1, L2 > γ1|x̃2| + γ2|x̃2| +
∣∣∣�̃1

∣∣∣ + σ2,

L3 > γ3|x̃2| + γ4|x̃3| +
∣∣∣�̃2

∣∣∣ + σ3, ξ1 = L4 − 1/4k2 > 0

and ξ2 = L5 − 1/4k3 > 0, one can obtain

χ̇h < −k1z
2
1 −

2∑

j=1

k j+1

(
z j+1 − �̃ j

/
2k j+1

)2

−
2∑

j=1

ξ j

(
�̃ j − ϒ j

/
2ξ j

)2 +
2∑

j=1

ϒ2
j max

/
4ξ j

−
2∑

i=1

σi |xi | (55)

It can be seen that only the term
2∑

j=1
ϒ2

j max

/
4ξ j is pos-

itive, other terms are all negative. These negative terms can
guarantee the stability of the closed-loop in the presence of
2∑

j=1
ϒ2

j max

/
4ξ j .

Remark 3 The convergence of the proposed controller

depends on the positive term
2∑

j=1
ϒ2

j max

/
4ξ j . There is only

one positive term in χ̇h, other terms are all negative. If all
the control gains are properly selected large enough, which
will shrink the hypersphere ball Hr, the convergence of the
proposed control scheme can be guaranteed. In addition, if
the system uncertainties � j vary slowly or are two constants
so that ϒ j ≈ 0, thus Eq. (55) becomes.

χ̇3 ≈ −k1z
2
1 −

2∑

j=1

k j+1

(
z j+1 − 1

2k j+1
�̃ j

)2

−
2∑

j=1

ξ j

(
�̃ j − 1

2ξ j
ϒ j

)2 2∑

i=1

σi |xi | ≤ 0 (56)

Therefore, the closed-loop is bounded stable. Therefore,
the overall architecture of the proposed control scheme can
be presented.

4 Comparative Simulation and Experimental
Study

In the simulation and experimental study, the desired dis-
placement yd is a sine wave signal with an amplitude of
0.01 m and a frequency of 1 Hz. Table 1 presents the
key hydraulic parameters. In the simulation study, �1 =
2sin(2πωt), �2 = 2 × 109sin(2πωt) (Fig. 2).

i. The BC: With the state representation, the control law
is α1 = −k1z1 + ẏd, α2 = (k2z2 + z1 + θ2x2 + α̇1)

/
θ1,

QL = (θ1z2 + k3z3 + α̇2 + θ3x2 + θ4x3)
/

θ5,where,α1 and
α2 are the virtual control law in the BC. In the simulation
study, k1 = 319, k2 = 300, k3 = 300. In the experimental
study, k1 = 130, k2 = 125, k3 = 110. Results are presented
in Fig. 3 (simulation) and Fig. 9 (experiment) respectively.
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Table 1 Key hydraulic parameters

Params values/unit Params values/unit

Ap 1.88 × 10–3 / m2 V t 0.38 × 10–3 / m3

M 500 / Kg umax 10 / V

�pr 21 / MPa ps 8 / MPa

Bp 7500 / N/(m/s) Qr 30 / L/min

Ctl 6.9 × 10–13 / m3/s/Pa βe 6.9 × 108 / Pa

ii. The OCNCS: With �̂ j = 0, the OCNCS is conducted
on the EHSS. In the simulation study, k1 = 200, k2 = 2000,
k3 = 200. In the experimental study, k1 = 130, k2 = 400,

k3 = 130. Results are presented in Fig. 4 (simulation) and
Fig. 10 (experiment) respectively.

iii. The ESMO-based RABC: This controller was pre-
sented in [4], and its control law yields.

The ESMO:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x1 = x̂2 + L1
(
x1 − x̂1

)/ (∣∣x1 − x̂1
∣
∣ + δ1

)

v2eq = L1
(
x1 − x̂1

)/ (∣∣x1 − x̂1
∣∣ + δ1

)

˙̂x2 = θ1 x̂3 − θ2 x̂2 + L2v2eq
/(∣∣v2eq

∣
∣ + δ2

) + �̂1˙̂x3 = −θ3 x̂2 − θ4 x̂3 + θ5QL + L3
(
PL − x̂3

)/ (∣∣PL − x̂3
∣
∣ + δ3

) + �̂2

˙̂
�1 = L4L2v2eq

/(∣∣v2eq
∣
∣ + δ2

)

˙̂
�2 = L5L3

(
x3 − x̂3

)/ (∣∣x3 − x̂3
∣
∣ + δ3

)

(57)

Fig. 2 The overall architecture of the closed loop

Fig. 3 The BC’s tracking
performance
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Fig. 4 The OCNCS’ tracking
performance

Fig. 5 The ESMO-based
RABC’s tracking performance

Fig. 6 The ESMO-based
OCNCS’s tracking performance

The RABC control law:

⎧
⎪⎪⎨

⎪⎪⎩

[z1, z2, z3]T = [
x1 − xpr , x2 − α1, x3 − α2

]T

QL = 1
θ5

(
−k3z3 + θ1z2 + θ̂3x2 + θ̂4x3 − �̂2 + α̇2c

)

˙̂
θ2 = τ2ϕ2,

˙̂
θ3 = τ3ϕ3,

˙̂
θ4 = τ4ϕ4

(58)

where, L1 = 5, L2 = 0.8, L3 = 30, L4 = 45, L5 = 4 × 109,
δ1 = 0.001,δ2 = 0.003, δ3 = 0.0005, k1 = 130, k2 = 125, k3
= 120 and τ 2 = τ 3 = τ 4 = 1 × 10–15. Results are presented
in Fig. 5 (simulation) and Fig. 11 (experiment) respectively.

iv. The ESMO-based OCNCS (proposed): With estima-
tion values of �̂ j from the ESMO, the proposed control law
is conducted on the EHSS. In the simulation study, L1 = 70,
L2 = 5 × 103, L3 = 9 × 109, L4 = 400, L5 = 200, δ1 = δ2
= 0.01, δ3 = 0.05, k1 = 200, k2 = 2000 and k3 = 200. In the
experimental study, L1 = 5, L2 = 0.8, L3 = 30, L4 = 45, L5
= 4 × 109, δ1 = 0.001,δ2 = 0.003, δ3 = 0.0005, k1 = 130,

k2 = 400 and k3 = 130. Results are presented in Fig. 6, Fig. 7
(simulation) and Fig. 12, Fig. 13 (experiment) respectively.

Remark 4 It’s crucial to recognize that some experimen-
tal system parameters are not directly measured, but rather
inferred from estimates. Some key parameters such as the
viscous damping coefficient of the hydraulic oil Bp, the
effective bulk modulus of the oil βe, and the hydraulic actu-
ator’s total leakage coefficient Ctl are all based on estimated
values. Consequently, the EHSS is subject to parameter
uncertainties due to variations in these estimates. The unac-
counted disturbance, denoted as qt, originates from pressure
fluctuations within the hydraulic cylinder chambers. These
fluctuations are attributed to several factors, including dis-
crepancies between the modeled and actual parameters of
the EHSS experimental setup, vibrations of the mechanical
structure tied to the piston rod’s motion, and the nonlinear
behavior of the hydraulic oil. Frictional forces referred to as
FF, occur at the contact interface between the piston rod and
the cylinder. In parallel, an external disturbance force FL, is
induced by a 2 V control signal applied by the control system
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Fig. 7 The ESMO’s
performance: a the estimation of
x1, b the estimation of x2, c the
estimation of x3, d the estimation
of �1, e the estimation of �2
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Table 2 The performance
indicator for four controllers Controllers PE of |z1| / m RMSE / m R-squared NSE RSR

The BC 0.0022 0.0015 0.9996 0.9512 1.2176

The OCNCS 4.0509 × 10–5 2.8648 × 10–5 0.9998 0.9914 0.9951

The ESMO-based RABC 3.1136 × 10–5 2.2011 × 10–5 1 1 1.0031

The proposed controller 1.9471 × 10–5 1.3766 × 10–5 1 1 0.9981

Table 3 The statistical properties of four controllers

Controllers mean median skewness kurtosis CV CI

The BC − 2.485 ×
10−6

− 3.782 ×
10−5

0.0048 1.4999 - 620.142 [− 7.0394 × 10−5 ~
6.3405 × 10−5]

The OCNCS 3.5243 ×
10−9

5.1693 ×
10−8

− 3.5834 × 10−4 1.4999 8.1309 × 103 [− 1.2133 × 10−6 ~
1.2765 × 10−6]

The ESMO-based
RABC

2.2138 ×
10–10

5.1729 × 10–8 − 3.0169 × 10−5 1.5007 9.9451 × 104 [− 9.294 × 10−7 ~
9.8403 × 10−7]

The proposed
controller

1.4018 ×
10−9

1.454 × 10–9 − 3.0159 × 10−4 1.5005 9.8227 × 103 [− 5.8447 × 10−7 ~
5.8445 × 107]

Experimental bench

The hos t computer

TCP/IP

D/A ACL 6126A/D PCI-1716

The target  computer

Signal conditioning system

Pumping station

The hydraulic cylinder

The servo valve
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Fig. 8 The real control system of the EHSS

to the force-loading hydraulic cylinder, adding another layer
of complexity to the system’s dynamic behavior.

4.1 Comparative Simulation Results

As is shown in Fig. 3, it can be seen that the BC can’t
constrain the tracking error within kb = 0.001 m in the pres-
ence of sinusoidal disturbances, which reveals the BC has

poor robustness. As is shown in Fig. 4, the OCNCS has
strong robustness when faced with sinusoidal disturbances,
which robustly confines the tracking error within a thresh-
old of kb = 0.001. As is shown in Fig. 5, the ESMO-based
RABC employs the ESMO to estimate and compensate for
the sinusoidal disturbances. Therefore, it conducts an excel-
lent tracking performance. Likewise, as is shown in Fig. 6,
the proposed controller also shows excellent tracking perfor-
mance due to the ESMO estimating and compensating for
the system uncertainties (Fig. 7).

The peak error (PE) and root mean square error (RMSE)
can illustrate the performance of four controllers.

PE = max
1→n

{|z1|}, RMSE =

√√√
√√

n∑

i

(
Rin, i − Rout , i

)2

n
(59)

where Rin,i denotes the reference signal, Rout,i denotes the
displacement sensor signal, and n denotes the length. The PE
of |z1| and the RMSE results are presented in Table 2. In addi-
tion, the R-squared, the NSE (Nash–Sutcliffe efficiency) and
the RSR (ratio of standard deviation) of the four controllers
are also presented in Table 2. What’s more, the mean, the
median, the skewness, the kurtosis, the CV (Coefficient of
Variation) and the CI (confidence intervals) are also analyzed
in Table 3. As is present in Table 2 and Table 3, the compre-
hensive performance metrics demonstrate that the proposed
controller outperforms the ESMO-basedRABC, theOCNCS
and the BC in the simulation study.

Remark 5 It can be seen that in the estimation of x1, x2, x3,
�1, and �2 of the ESMO, noise appears to varying degrees.

123



Arabian Journal for Science and Engineering

Fig. 9 The BC’s tracking
performance

Fig. 10 The OCNCS’s
performance

Fig. 11 The ESMO-based
RABC’s tracking performance

Most of the noise is concentrated at the peak positions,
with the estimation of × 2 being the most severely affected
because the true feedback value of x2 is derived directly from
the differentiation of x1. The emergence of noise is mainly
due to the following aspects: 1) The ESMO inherently uses
a discontinuous control action, 2) The ESMO’s high con-
trol gains, 3) Incomplete resistance to external disturbances,
4) Basically, the normal operation of the ESMO relies on
the controller trying to maintain the consistency between the
system feedback displacement and the ideal displacement.
However, the OCNCS needs great computation, especially
under kb = 0.001 m, which will bring unexpected computa-
tional errors or computational delays. These factors could be
reflected as noise in the ESMO’s estimation.

4.2 Comparative experimental results

Figure 8 presents the real control system. The real control
system’s hardware consists primarily of a host computer, a

target computer, an A/D board PCI-1716, a D/A board ACL-
6126, and a signal conditioning system. The displacement
signal from the displacement sensor and two pressure sig-
nals from two pressure sensors with current signals from 4
to 20 mA will be optimized by the signal conditioning sys-
tem and converted into voltage signals from 2 to 10 V, then
these will be acquired by the PCI-1716 board in the target
computer. The control input voltage from -10 V to 10 V
from the ACL-6126 board, which is conducted by the con-
trol algorithm, will be optimized by the signal conditioning
system and converted into a current signal from − 40 mA
to 40 mA to drive the servo valve. Based on the MATLAB
xPC target fast prototyping technology, the host computer is
connected with the target computer (IPC-610) by the TCP/IP.
To operate the experimental bench in real-time, the control
algorithm, which was created by the MATLAB/Simulink in
the host computer, will be converted into a C program and
then downloaded into the target computer. The sample time
of the control system is 1 ms.
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Fig. 12 The ESMO-based
OCNCS’s tracking performance

Fig. 13 The ESMO’s
performance: a the estimation of
x1, b the estimation of x2, c the
estimation of x3, d the estimation
of �1 and �2
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Table 4 The performance
indicators for four controllers Controllers PE of |z1| / m RMSE / m R-squared NSE RSR

The BC 0.0015 7.0124 × 10−4 0.9925 0.9902 1.0153

The OCNCS 4.6075 × 10−4 2.3704 × 10−4 0.9992 0.9989 1.0035

The ESMO-based RABC 1.1513 × 10−4 5.323 × 10−5 1 0.999 1.0045

The proposed controller 9.6837 × 10−5 3.7659 × 10−5 1 1 1.0033

Table 5 The statistical properties of four controllers

Controllers mean median skewness kurtosis CV CI

The BC − 3.1117 × 10−4 − 3.0722 × 10–4 − 0.1066 1.7345 2.02 [− 3.3831 × 10−4 ~
− 2.8341 × 10−4]

The OCNCS − 1.3154 × 10−4 − 1.298 × 10−4 − 0.0173 1.5474 1.4995 [− 1.4062 × 10−4 ~
− 1.2277 × 10−4]

The ESMO-based RABC 5.7202 × 10−6 5.6463 × 10−6 − 0.0209 1.1874 9.2542 [3.4615 × 10–6 ~
7.8823 × 10–6]

The proposed controller − 2.0344 × 10−5 − 1.5603 × 10−5 − 0.218 1.9164 − 1.5581 [− 2.17 × 10−5 ~
− 1.9016 × 10−5]

As is shown in Fig. 9, just as in the simulations, the BC
is unable to maintain the tracking error within the range
of kb = 0.001 in the experiments. Whereas, the OCNCS
can robustly hold the tracking error within kb = 0.001 m,
which shows better robustness (Fig. 10). With the ESMO
compensating for the system uncertainties, the ESMO-based
RABCproduces an excellent tracking performance (Fig. 11).
Combining the inherent robust OCNCS, the ESMO-based
OCNCS also conducts an excellent tracking performance
with smaller tracking errors. The performance indicators
and the statistical properties are presented in Tables 4 and
5 respectively. The data from both Tables 4 and 5 all point
to the conclusion that the performance of the proposed con-
troller is better than the ESMO-based RABC, the OCNCS,
and the BC.

In summary, we can conclude from the simulation and the
experiment that the tracking performance of the proposed
control scheme is better than that of the ESMO-basedRABC,
the OCNCS, and the BC.

Remark 6 It can be seen that the noise in the experiment
is more severe than that in the simulation. In experiments,
the reasons for the noise are more complex. The main reason
is that the analog sensors used in the experiments contain
a large amount of measurement noise. Similarly, in experi-
ments, the value of x2 is obtained by directly differentiating
the analog displacement sensor. However, the ESMO has a
filtering effect, therefore, the estimated values contain less
noise than the actual values. The estimation error of x3 is
larger, mainly due to the differences between the theoretical
model and the actual system model. In addition, complex
data calculations, computational errors, delays in network

data transmission, and the computational speed of comput-
ers in the actual control system can all exacerbate the noise
in the estimated values (Fig. 12).

5 Conclusion

The paper presents a comprehensive study on the challenges
of system uncertainties in EHSSs and proposes an innova-
tive solution to mitigate these issues using advanced control
methods. The core of the proposed solution is the ESMO,
which is a sophisticated tool capable of discerning not only
the complete state of the system but also differentiating
between the types of uncertainties the system encounter-
s—namely, matched and mismatched uncertainties. The
ESMO’s ability to estimate both types of uncertainties
presents a novel approach to online estimation that is par-
ticularly useful for dynamic systems like EHSS that need
real-time adjustments to maintain high performance.

In conjunction with the ESMO, the paper discusses the
integration of a BLF. This approach is rooted in nonlinear
control theory and is particularly effective in dealing with
output constraints. BLF is typically used to methodically
achieve desired control objectives and, when combined with
the ESMO’s estimation capabilities, forms a robust control
strategy.

The advancement brought forth by the paper is encap-
sulated in the OCNCS for EHSS. OCNCS is designed to
optimize the system’s performance in the face of uncer-
tainties, ensuring the hydraulic system functions efficiently
and effectively. The paper validates the proposed con-
trol scheme through rigorous simulation and experimental
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studies, demonstrating its superior performancewhen bench-
marked against existing control methods such as ESMO-
based RABC, the standalone OCNCS, and the BC. The
outcome of this research presents a significant leap in the
EHSS’s ability to operate with higher accuracy, stability, and
reliability, which is critical in applications where precision
and responsiveness are paramount (Fig. 13).

Finally, the paper outlines the trajectory for future
research. The authors express an intention to combine the
ESMO with a full state constraint control methodology,
whichwould provide an evenmore robust framework for han-
dling uncertainties by accounting for all possible states of the
system. Additionally, the paper hints at exploring fractional-
order extended sliding mode observers, which represent an
extension to the traditional sliding mode control techniques
and have the potential to offer finer control over system
dynamics due to their non-integer order differentiation capa-
bility. This exploration into fractional-order control methods
indicates a forward-thinking approach to control theory,
pushing the boundaries of how precision can be achieved
in systems with inherent uncertainties such as EHSS.
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