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Abstract
Using high-order shear and normal deformation theory (HSNDT), this study analyzes the dynamic response and time history
of the impact force of the sandwich plate with the auxetic core under low-velocity impact. The impact was modeled using
a two-degree-of-freedom mass and spring model, and the Hertz linearized model was utilized to derive the contact force’s
time history. The rectangular sandwich panel has simple supported boundary conditions and consists of three layers: two
aluminum top face sheets and one auxetic core layer with a negative Poisson’s ratio. Using the energy technique, the system’s
governing equations are derived. The equilibrium equations were solved by the analytic approach of the Navier method in
the space domain and the numerical method of Newmark in the time domain. The use of HSNDT distinguishes this article
from others on similar topics, and the flexibility of the thick core in the thickness direction is considered. The Effects of
different geometric and material properties have been investigated, and the results have been compared with those of other
similar papers and studies for validation. The data indicate that the greater the degree of inclination of the cell, the longer the
impact period and the lower the peak impact force. Moreover, the larger angle of the auxetic cell reduces the deflection at
the impact site. In terms of minimizing deflection, the auxetic honeycomb sandwich panel is 25% superior to the non-auxetic
honeycomb panel.

Keywords Low-velocity impact ·Higher-order shear and normal deformation theory ·Auxetic material ·Mass-spring model ·
Sandwich panel

1 Introduction

Due to the extensive usage of sandwich panels in the pro-
duction of various structures, it is crucial to understand their
mechanical characteristics. In themajority of instances, sand-
wich panel face sheets can bear in-plane normal (bending)
stresses, while the core can withstand shear and transverse
normal stresses. The core is the most crucial component
of sandwich construction. The core material should have
qualities such as low density to reduce the weight of the
structure, a high vertical Young’s modulus to avoid exces-
sive deformation along the thickness, and a quick decrease
in bending stiffness [1]. Sandwich panels are susceptible to
impact damage due to the lack of a reinforcing component
in the thickness direction. Typically, sandwich panels are
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subject to impacts from exterior components such as bird
and stone strikes. Low-velocity impact damage is crucial in
aerospace applications because, although it is undetectable
during standard inspections, it may reduce the compressive
strength of sandwich panels by 30 to 40 percent [2]. The
impact often causes warping, cracking of the matrix, and
breaking of the fibers in the tops, as well as core failure and
separation of the top from the core [3].

The law of impact, which links the equations of motion of
the impacting objects, describes the connection between the
indentation and the collision force [4]. Hertz [5] conducted
the first study on the subject of the law of static impact; he
examined the issue of the impact between two homogeneous
isotropic elastic masses. Sveklo’s impact law is another con-
sidered impact law. This impact rule is also known as the
Hertz–Sveklo theory due to the many similarities between
Sveklo’s method for the issue of contact loading of non-
isotropic substances and Hertz’s theory in many respects
(Mittal &Khalili [6]). The low-velocity impact reactions and
crashworthiness of various aluminum foam-core sandwich
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constructions were examined by Huo et al. [7]. Guo et al. [8]
have carried out thorough examinations on sandwich struc-
tures subjected to different impact loads.

There are several mathematical approaches for simulating
impact, including the energy balancemodel and themass and
spring model. Lal [9] introduced a mass and spring design
with two degrees of freedom, where the second degree of
freedom added to the preceding design is the impactor’s
stiffness. He analyzed the sheet’s bending, shearing, and col-
lision stiffnesses. Khalili [10] examined the orthotropic sheet
subjected to impact stress. He employed the Hertz–Sveklo
hypothesis for the impact, assuming that the sheet was
infinitely big. He also used classical sheet theory and Fourier
transformations to get the dynamic response of the sheet ana-
lytically. Malekzadeh et al. [11, 12] employed innovative
mass-spring-damper vibration designs with three degrees of
freedom to calculate and derive the dynamic response of
a sandwich sheet by considering transverse flexibility and
structural damping. Bagheri et al. [13, 14] conducted a study
where they examined the response of sandwich structures
with a polypropylene core reinforced with nanoparticles to
low-velocity impacts. The investigation involved both exper-
imental and numerical methods.

Due to their exceptional mechanical qualities, which
include low mass, high specific stiffness or strength,
outstanding energy absorption capacity, and other multi-
functional qualities, lightweight metallic cellular materials
(MCMs) have been used in many technical applications to
date [15, 16]. Materials having a negative Poisson ratio have
drawn the attention of academics in recent years as one of
these novel situations. This indicates that, owing to axial
stress, their transverse length increases [17]. Lakes [18] trans-
formed a regular material into an auxetic for the first time by
employing heating, cooling, condensation, and regeneration
time. Based on the huge deviation theory, Wan et al. [19]
provided a theoretical technique for calculating Poisson’s
ratio of honeycomb networks. Zhang et al. [20] examined
the influence of auxetic honeycomb cell microstructure on
in-plane stochastic behavior and energy absorption using
the finite element technique. Huang et al. [21] introduced a
novel design for the auxetic honeycomb, including a hexag-
onal component and a thin plate. Prawoto [22] has explored
the mechanical characteristics and applications of auxetic
materials. Qin et al. [23] conducted an investigation into
novel failure modes when dynamically compressing metal
honeycomb-like hierarchical structures featuring perforated
walls.

The impact response of sandwich panels has been ana-
lyzed using a variety of methods. The first-order shear
deformation theory (FSDT) and the higher-order shear defor-
mation theory (HSDT) disregard the transverse flexibility
of the core and the interaction between the processes and
the flexible core [24, 25]. Zhang et al. [26] conducted an

investigation into the effects of a large mass at low velocity
on sandwich beams consisting entirely of an affixed metal
foam core and fiber-metal laminate face sheets. Frostig et al.
[27] provided a high-order theory (HSAPT) for a sandwich
beam with a flexible transverse core based on the laws of
change. The longitudinal and lateral changes of the core
were determined using the fundamental equations of the
isotropic material and compatibility criteria in the com-
mon face, as well as nonlinear expressions for the thickness
coordinates. By updating Frostig’s higher-order theory of
sandwich plates, Malekzadeh et al. [28] developed a revised
and enhanced higher-order theory of sandwich plates. In this
theory, the contribution of the plane forces of the top and
lower surfaces of the sandwich sheet and the equivalent con-
sumption factor of the sandwich sheet was estimated, and
for the study of vibrations, the damping of the system was
also explored. Zhang et al. [29] investigated the effects of
a large mass on constrained square sandwich plates (SSP)
composed of fiber-metal laminate (FML) face sheets and a
metal foam core subjected to low-velocity impact. Addition-
ally, they examined the response of fully clamped multilayer
sandwich beams with metal foam cores under low-velocity
impact conditions. They employed analytical, experimental,
and numerical techniques in their investigation [30].

Yang et al. [31] studied the vertical impact resistance
of a sandwich panel with an auxetic core. In their study, a
sandwich panel with an aluminum foam core and an auxetic
honeycomb was investigated numerically (using a finite ele-
mentmethod) and then experimentally (an impact test). Allen
et al. [32] did an experimental study on open-cell auxetic
foam and regular PU foam subjected to quasi-static and low-
velocity impacts. Chang et al. [33] studied experimentally
and statistically the impact resistance of sandwich panels
with an aluminum shell and an auxetic internal honeycomb
core and determined that the auxetic internal honeycomb
is more resistant than other forms of auxetic honeycomb.
Beharic et al. [34] investigated the amount of energy absorbed
by different sandwich panels with auxetic honeycomb cores,
including mesh, interior, and truss, during a drop weight
impact test. Hou et al. [35] performed an experimental
study on the impact resistance of auxetic and non-auxetic
composites subjected to low-velocity loads. Multiscale mod-
eling and nonlinear impact analysis of sandwich panels with
graphene-reinforced composite faceplates and functionally
graded (FG) three-dimensional auxetic lattice cores were
reported by Li et al. [36]. Plastic failure modes were mea-
sured by Qin et al. [37], who conducted experiments on
sandwich plates that were entirely fastened and subjected to
low-velocity impact from a drop hammer featuring a hemi-
spherical muzzle.

For the analytical solution of sandwich panels, there are
several theories, including first-order and higher-order shear
deformation theories, the zigzag theory, the layered theory,
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Fig. 1 Schematic of an internal auxetic honeycomb sandwich panel

and the sinusoidal theory, among others [38–40]. Excellent
research on sandwich panels under load. Nevertheless, fewer
of these investigations have viewed the core as auxetic.

As mentioned, numerous studies have been conducted in
the area of low-velocity impacts of sandwich panels with
auxetic cores, but fewer of these researches are parametric
studies and analytical. In this article, an effort will be made
to determine the dynamic response of a low-velocity impact
on a sandwich panel with an auxetic core using high-order
shear and normal deformation theory (HSNDT) with trans-
verse flexibility along the panel’s thickness. The impact force
history is computed using two degrees of freedomof themass
and spring model and the linearized Hertz model.

2 Modeling the System and Getting its
Governing Equations

The schematic of the rectangular sandwich panel under inves-
tigation is shown in Fig. 1. Cartesian coordinates (x, y, and
z) are used to indicate spatial coordinates and displacement
components of object points, as seen in this diagram. The
proposed sandwich panel is a rectangular sheet with dimen-
sions a and b and a uniform thickness of h and two isotropic
surfaces and a soft and flexible auxetic central core. In the
dynamic analysis of the sheet, modest displacements are
considered, and the linear elastic range is assumed for the
analysis. The layers and the central core are integrally linked,
and the strain functions are continuous at the connecting sur-
faces of the layers. The coordinate system is defined so that
the x–y plane coincides with the plane in the center. The
thickness of the top layer, the middle layer, and the bottom
layer are ht , hc, and hb, respectively.

2.1 Auxetic Core

As shown in Fig. 1, the core employed in this sandwich
panel is a sort of concave or inward honeycomb auxetic core.
Figure 2 depicts the schematic of a core unit cell of the inter-
nal auxetic honeycomb and geometric parameters.

Fig. 2 Schematic representation of the unit cell core of an internal aux-
etic honeycomb [41]

As shown in the figure, l1 and l2 are the lengths of the
cellular’s straight and sloping walls, t1 and t2 are their thick-
nesses, and θ is the cellular’s inclined angle.

The equivalent elastic properties of the core layer are
determined from the bending and tensile deformations of the
core cells using the following formulas [42]:

E (2)
1 � Es

η33(η1 − sin θ )

cos3 θ [1 + (tan2 θ + η1 sec2 θ )η23]
(1)

E (2)
2 � Es

η33

cos θ (η1 − sin θ )(tan2 θ + η23)
(2)

G(2)
12 � Es

η33

η1(1 − 2η1) cos θ
(3)

G(2)
23 � Gs

η3 cos θ

η1 − sin θ
(4)

G(2)
31 � cos

η3

2 cos θ

[
η1 − sin θ

1 + 2η1
+

η1 + 2 sin2 θ

2(η1 − sin θ )

]
(5)

ν
(2)
12 � − sin θ (1 − η23)(η1 − sin θ )

cos2 θ
[
1 + (tan2 θ + sec2 θη1)η23

] (6)

ν
(2)
21 � − sin θ (1 − η23)

(tan2 θ + η23)(η1 − sin θ )
(7)

ρ(2) � ρs
η3(η1 + 2)

2 cos θ (η1 − sin θ )
(8)

where η1 � l2
l1
, η2 � t2

t1
, and η3 � t1

l1
. In the above relations,

superscript 2 indicates that the material properties are related
to the second layer (core). In addition, the values of Es , ρs ,
and Gs correspond to the coefficients of elastic modulus,
shear modulus, and density of material that makes up the
core.

2.2 HSNDT Displacement Field

To obtain the sandwich panel’s equations of motion, Hamil-
ton’s principle and HSNDT are used, in which deflection in
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the direction of the constant thickness is not considered and
flexibility of the core in the direction of thickness is con-
sidered. So, based on the sandwich panel’s characteristics,
HSNDT is a more realistic theory than the other classical
theories. This theory divides deflection into three phases:
bending, shearing, and thickness stretching. This theory has
five unknown general variables, compared to six or more in
other shear and normal deformation theories. According to
this theory, the displacement field is supposed to be as follows
[43]:

u(x , y, z, t) � u0(x , y, t) − z
∂wb

∂x
− f (z)

∂ws

∂x

v(x , y, z, t) � v0(x , y, t) − z
∂wb

∂y
− f (z)

∂ws

∂y

w(x , y, z, t) � wb(x , y, t) + ws(x , y, t) + g(z)ϕ(x , y, t)
(9)

In the preceding relationship, u0 and v0 represent mid-
plane displacement along x and y axis, respectively. Also,wb,
ws and ϕ are transverse deflection due to bending, shearing,
and deformation along the thickness, respectively.

And:

f (z) � z − h sinh
( z
h

)
+ z cosh

(
1

2

)

g(z) � cosh
( z
h

)
− cosh

(
1

2

) (10)

Sandwich plate strain–displacement relations are given as
the following equations:

(11)

⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭ �

⎧⎪⎨
⎪⎩

ε0x
ε0y

γ 0
xy

⎫⎪⎬
⎪⎭ + z

⎧⎪⎨
⎪⎩

kbx
kby
kbxy

⎫⎪⎬
⎪⎭ + f

⎧⎪⎨
⎪⎩

ksx
ksy
ksxy

⎫⎪⎬
⎪⎭ ,

{
γyz

γxz

}

� g

{
γ 0
yz

γ 0
xz

}
, εz � g′ε0z

where:

⎧⎪⎨
⎪⎩

ε0x
ε0y

γ 0
xy

⎫⎪⎬
⎪⎭ �

⎧⎪⎨
⎪⎩

∂u0
∂x
∂v0
∂x

∂u0
∂y + ∂v0

∂x

⎫⎪⎬
⎪⎭,
⎧⎪⎨
⎪⎩

kbx
kby
kbxy

⎫⎪⎬
⎪⎭ �

⎧⎪⎪⎨
⎪⎪⎩

− ∂2wb
∂x2

− ∂2wb
∂y2

−2 ∂2wb
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭
,

⎧⎪⎨
⎪⎩

ksx
ksy
ksxy

⎫⎪⎬
⎪⎭

�

⎧⎪⎪⎨
⎪⎪⎩

− ∂2ws
∂x2

− ∂2ws
∂y2

−2 ∂2ws
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭
,

{
γ 0
yz

γ 0
xz

}
�
{

∂ws
∂y + ∂ϕ

∂y
∂ws
∂x + ∂ϕ

∂y

}
, ε0z � ϕ (12)

The constitutive relations for the orthotropic state are as
follows [6]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(k)

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C (k)
11 C (k)

12 C (k)
13 0 0 0

C (k)
12 C (k)

22 C (k)
23 0 0 0

C (k)
13 C (k)

23 C (k)
33 0 0 0

0 0 0 C (k)
44 0 0

0 0 0 0 C (k)
55 0

0 0 0 0 0 C (k)
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(13)

where in the above relation, σi j , εi j and Ci j are the stress,
strain, and three-dimensional elastic constants, respectively.
Moreover, index k (� 1,3) subscript represents the first to
the third layer. The following equations provide the three-
dimensional constants of elasticity:

C (k)
11 � C (k)

22 � C (k)
33 � (1 − ν(k))

ν(k)
λ(k), C (k)

12 � C (k)
13 � C (k)

23 � λ(k)

C (k)
44 � C (k)

55 � C (k)
66 � G(k) � μ(k) � E (k)

2(1 + ν(k))

C (2)
11 � E (2)

1

1 − ν
(2)
12 ν

(2)
21

, C (2)
22 � E (2)

2

1 − ν
(2)
12 ν

(2)
21

C (2)
66 � G(2)

12 , C
(2)
44 � G(2)

23 , C
(2)
55 � G(2)

13 , C
(2)
12 � C (2)

21
(14)

where in the aforementioned relationship, the parameters are:

λ(k) � νE (k)

(1 − 2ν(k))(1 + ν(k))
, μ(k) � G(k) � E

2(1 + ν)
(15)

2.3 Governing Equations

Hamilton’s principle for obtain the equations of motion is as
follows [44]:

∫ t

0
(δU + δK − δT )dt � 0 (16)

where δU , δK , and δT indicate variations in strain energy,
potential energy, and kinetic energy, respectively.

Variations of the strain energy is computed as follows:

δU �
∫

v

[
σx δεx + σyδεy + σzδεz + τxyδγxy + τyzδγyz + τxzδγxz

]
dV

�
∫
A
[Nx δε

0
x + Nyδε

0
y + Nzδε

0
z + Nxyδγ

0
xy + Mb

x δkbx + Mb
y δk

b
y + Mb

xyδk
b
xy

+ Ms
x δk

s
x + Ms

yδk
s
y + Ms

xyδk
s
xy + Ssyzδγyz + Ssxzδγxz ]d A (17)
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where stress resultants N , M, and S in the aforementioned
relationship are as follows:

⎧⎪⎨
⎪⎩

Nx Ny Nxy

Mb
x Mb

y Mb
xy

Ms
x Ms

y Ms
xy

⎫⎪⎬
⎪⎭ �

3∑
n�1

∫ hn+1

hn
(σx , σy , τxy)

(n)

⎧⎪⎨
⎪⎩

1
z
f

⎫⎪⎬
⎪⎭dz

Nz �
3∑

n�1

∫ hn+1

hn
(σz)

(n)g′dz

(
Ssxz , S

s
yz

)
�

3∑
n�1

∫ hn+1

hn
(τxz , τyz)

(n)gdz

(18)

In the above relations, the parameters hn+1 and hn are the
locations of the top and bottom layers of the nth layer in z
direction.

Variations of potential energy of applied loads are
expressed in the following format:

δk � −
∫
A
qδ(wb + ws + wst )d A (19)

In the aforementioned connection, q represents the con-
centrated transverse load.

Variations of the plate’s kinetic energy may be expressed
as follows:

δT �
∫
V
[u̇δu̇ + v̇δv̇ + ẇδẇ]ρdV

�
∫
A

{I0(u̇0δu̇0 + v̇0δv̇0 + (ẇb + ẇs)(δẇb + δẇs))

− I1

(
u̇0

∂δẇb

∂x
+

∂ẇb

∂x
δu̇0 + v̇0

∂δẇb

∂y
+

∂ẇb

∂y
δv̇0

)

− J1

(
u̇0

∂δẇs

∂x
+

∂ẇs

∂x
δu̇0 + v̇0

∂δẇs

∂y
+

∂ẇs

∂y
δv̇0

)

+ I2

(
∂ẇb

∂x

∂δẇb

∂x
+

∂ẇb

∂y

∂δẇb

∂y

)
+ K2

(
∂ẇs

∂x

∂δẇs

∂x
+

∂ẇs

∂y

∂δẇs

∂y

)

+ J2

(
∂ẇb

∂x

∂δẇs

∂x
+

∂ẇs

∂x

∂δẇb

∂x
+

∂ẇb

∂y

∂δẇs

∂y
+

∂ẇs

∂y

∂δẇb

∂y

)

+ J s1 ((ẇb + ẇs)δϕ̇ + ϕ̇δ(ẇb + ẇs)) + Ks
2 ϕ̇δϕ̇}d A (20)

In the above relations, ρ represents the plate’s density,
and:

(21)

(I0, I1, J1, J
s
1 , I2, J2, K2, K

s
2)

�
3∑

n�1

∫ hn+1

hn
(1, z, f , g, z2, z f , f 2, g2)ρdz

After somemathematical efforts and some simplifications,
final definition of five equations of motion is as follow:

(22)

δu0 : A11d11u0 + A66d22u0 + (A12 + A66)d12v0 − B11d111wb

− (B12 + 2B66)d122wb

− (Bs
12 + 2Bs

66)d122ws − Bs
11d111ws + Ld1ϕ

� I0ü0 − I1d1ẅb − J1d1ẅs

(23)

δv0 : A22d22v0 + A66d11v0 + (A12 + A66)d12u0 − B22d222wb

− (B12 + 2B66)d112wb

− (Bs
12 + 2Bs

66)d112ws − Bs
22d222ws + Ld2ϕ

� I0v̈0 − I1d2ẅb − J1d2ẅs

δwb : B11d111u0 + (B12 + 2B66)d122u0 + (B12 + 2B66)d112v0

+ B22d222v0

− D11d1111wb − 2(D12 + 2D66)d1122wb

− D22d2222wb − Ds
11d1111ws

− 2(Ds
12 + 2Ds

66)d1122ws − Ds
22d2222ws

+ Ls(d11ϕ + d22ϕ) + q � I0(ẅb + ẅs)

+ I1(d1ü0 + d2v̈0) − I2(d11ẅb + d22ẅb)

− J2(d11ẅs + d22ẅs) + J s1 ϕ̈

(24)

δws : B
s
11d111u0 + (Bs

12 + 2Bs
66)d122u0 + (Bs

12 + 2Bs
66)d112v0

+ Bs
22d222v0

− Ds
11d1111wb − 2(Ds

12 + 2Ds
66)d1122wb

− Ds
22d2222wb − Hs

11d1111ws

− 2(Hs
12 + 2Hs

66)d1122ws − Hs
22d2222ws + As

44d11ws

+ As
55d22ws

+ R(d11ϕ + d22ϕ) + As
44d11ϕ + As

55d22ϕ + q

� I0(ẅb + ẅs)

+ J1(d1ü0 + d2v̈0) − J2(d11ẅb + d22ẅb)

− K2(d11ẅs + d22ẅs) + J s1 ϕ̈

(25)

δϕ : L(d1u0 + d2v0)− Ls(d11wb + d22wb) + (R− As
44)d11ws

+ (R − As
55)d22ws

+ Rsϕ − As
44d11ϕ − As

55d22ϕ � J s1 (ẅb + ẅs) + Ks
2 ϕ̈

(26)

In the above relationships, di j , di jl , and di jlm are differ-
ential operators with the following definitions:

(27)

di j � ∂2

∂xi∂x j
, di jl � ∂3

∂xi∂x j∂xl
, di jlm

� ∂4

∂xi∂x j∂xl∂xm
, (i , j , l, m � 1, 2)
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In addition:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L
Ls

R
Rs

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�
3∑

n�1

∫ hn+1

hn
λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
z
f

g′ 1−ν
ν

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
g′dz (28)

In the equations ofmotion (21)-(26), the stiffnessmatrices
are derived as follows:

(29)

⎧⎪⎨
⎪⎩

A11 B11 D11 Bs
11 Ds

11 Hs
11

A12 B12 D12 Bs
12 Ds

12 Hs
12

A66 B66 D66 Bs
66 Ds

66 Hs
66

⎫⎪⎬
⎪⎭

�
3∑

n�1

∫ hn+1

hn
λ(1, z, z2, f , z f , f 2)

⎧⎪⎨
⎪⎩

1−ν
ν

1
1−2ν
2ν

⎫⎪⎬
⎪⎭ dz

(A22, B22, D22, B
s
22, D

s
22, H

s
22) � (A11, B11, D11, B

s
11,

Ds
11, H

s
11)

As
44 � As

55 �
3∑

n�1

∫ hn+1

hn
μ (g)2 dz

2.4 Exact Solution

In the present study, the boundary conditions of the sandwich
plate at the lateral edges are simple supports, and Navier’s
techniquemay be employed in the space domain to discretize
the differential equations of system. In order to satisfy the
boundary conditions, the displacement field variables are
addressed in the following double Fourier sinusoidal series
form [24]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0
v0

wb

ws

ϕ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�
∞∑

m�1

∞∑
n�1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(t) cos(αx) sin(βy)
v(t) sin(αx) cos(βy)
wb(t) sin(αx) sin(βy)
ws(t) sin(αx) sin(βy)
ϕ(t) sin(αx) sin(βy)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(30)

In the following connection, u(t), v(t), wb(t), ws(t), and
ϕ(t) indicate the time parameters of the dynamic response
and:

α � mπ/a β � nπ/b (31)

where parameters a and b are the sheet’s length and width.
Moreover, the transverse load q is expanded as follows in the
double Fourier sinusoidal series:

q(x , y, t) �
∞∑

m�1

∞∑
n�1

qmn sin(αx) sin(βy) (32)

The term qmn , which is considered to represent a con-
centrated load, will be discussed in the section on impact
modeling.

By substituting Eqs. (30) into the equations of motion
(22)-(26), the following differential equations are obtained
from which we may determine the dynamic reaction of the
sheet:

[M]{χ̈} + [K ]{χ} � {Q} (33)

[M] and [K ] are themass and stiffnessmatrices of the sys-
tem, respectively, and {Q} represents the impact force. The
analytical solution to the above problem is obtained through
the Newmark time integral solution method. The values of
ai j and mi j are given in the appendix.

In addition, eigen-frequency associated with the (m,n)th
mode is obtained from solution of following eigen-value
problem:

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15
a12 a22 a23 a24 a25
a13 a23 a33 a34 a35
a14 a24 a34 a44 a45
a15 a25 a35 a45 a55

⎤
⎥⎥⎥⎥⎥⎦

− ω2

⎡
⎢⎢⎢⎢⎢⎣

m11 0 m13 m14 0
0 m22 m23 m24 0

m13 m23 m33 m34 m35

m14 m24 m34 m44 m45

0 0 m35 m45 m55

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Umn

Vmn

Wbmn

Wsmn

�mn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� 0 (34)

whereUmn , Vmn ,Wbmn ,Wsmn , and�mn are arbitrary param-
eters associated with (m,n)th eigen-vector mode.

3 Impact Modeling:

Two degrees of freedom of mass and spring model is used to
calculate the impact force and the transverse deflection of the
sheet at the point of impact [12, 45]. This vibration method
is used when the boundary conditions are only applied to the
surfaces, the surfaces and the middle core of the sheet are in
the elastic area at the moment of impact, and the middle core
of the sheet is not crushed. Figure 3 depicts the two-degree-
of-freedom system under consideration.

In Fig. 3, Mp
ef f represents the effective mass of the sand-

wich panel, mI represents the projectile mass, K ∗
c indicates

the linearized contact stiffness, and Kg indicates the sand-
wich panel’s equivalent stiffness.

The impactor is assumed to impact the middle of the sand-
wich sheet with an initial velocity of V0. By using Newton’s
second law, the following equations ofmotionmaybederived

123



Arabian Journal for Science and Engineering (2024) 49:11683–11697 11689

Fig. 3 Two-degree-of-freedom mass and spring configuration [12]

for two-degree-of-freedom system:

{
mI �̈1 + K ∗

c (�1 − �2) � 0
Mp

ef f �̈2 + K ∗
c (�2 − �1) + Kg�2 � 0

(35)

The effective mass of the panel for the simple support
mode is equal to one-fourth of the sandwich panel’s overall
mass [12]. The relationship (36) describes the vertical dis-
placement of the impacting mass and the effective mass of
the sandwich panel.

�1 � A1 sin(ωt + ϕ)

�2 � A2 sin(ωt + ϕ)
(36)

The equivalent stiffness at the impact pointmay be derived
from the static analysis using the higher-order theory of sand-
wich sheets [12] and, in the special case when the impact
occurs in the center of the surface, from the following rela-
tionship [11]:

Kg � Mtotω
2
11 (37)

where ω11 is the frequency of the first mode of vibration,
which is found using equation)34(. The following equation
will be used to get the value of the contact stiffness for the
enhanced Hertz contact law.

Kc � 4

3
ER

1/2 (38)

In the preceding relationship, E and R represent the plate’s
elasticity coefficient and radius of curvature, as follows:

1

R
� 1

R1
+

1

R2
,
1

E
� 1 − ν2e f f

Ee f f
+
1 − ν2imp

Eimp
(39)

In the above connection, R1 and R2 represent the curvature
of the impactor and the plate, respectively, while Eimp, νimp,
Eef f , and νe f f represent the effective elasticity and Pois-
son coefficients for the impactor and the plate, respectively.

Moreover:

Eef f � h
ht
E33t

+ hb
E33b

+ hc
E33c

νe f f � ν13t

(
ht
h

)
+ ν13b

(
hb
h

)
+ ν13c

(
hc
h

) (40)

By linearizing the relationship (38) about the maxi-
mum impact force and the maximum relative shape change
between the impactor and the target, the following relation-
ship can be expressed [11]:

K ∗
c � K

1
n
c F

n−1
n

max (41)

where Kc represents the enhancedHertz contact stiffness and
is determined by Eq. (38). The value of n is often 1.5. The
maximumcontact forcemay be determined using the concept
of energy conservation by equating the initial kinetic energy
of the impactor with thework done or the strain energy stored
in the springs:

F2
max

2Kg
+

F
1+ 1

n
max

(n + 1)K
1
n
c

� 1

2
mI V

2
0 (42)

By replacing the Eqs. (36) in the formula (35), and by
sorting and converting to the matrix multiplication mode, it
is obtained:

[
−mIω

2 + K ∗
c −K ∗

c

−K ∗
c −Mp

ef f ω
2 + K ∗

c + Kg

][
A1

A2

]
� 0 (43)

To solve the given system of equations, the determinants
of the matrix of coefficients must be made equal to zero,
resulting in:

(mI M
p
ef f )ω

4 + (−mI K
∗
c − mI Kg − K ∗

c M
p
ef f )ω

2 + K ∗
c Kg � 0

(44)

By solving the preceding equation, we get two values for
ωn1 and ωn2. We represent the values of elements of Eigen-
vector A1 associated with ωn1 as A

(1)
1 , A(1)

2 and elements of

Eigen-vector A2 associated withωn2 as A
(2)
1 , A(2)

2 . The ratios

of r1 � A(1)
2

A(1)
1

and r2 � A(2)
2

A(2)
1

may be found given the values of

ωn1 and ωn2 using the following relations:

r1 � A(1)
2

A(1)
1

� −mIω
2
n1 + K ∗

c

K ∗
c

� K ∗
c

−Mp
ef f ω

2
n1 + K ∗

c + Kg

(45)
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r2 � A(2)
2

A(2)
1

� −mIω
2
n2 + K ∗

c

K ∗
c

� K ∗
c

−Mp
ef f ω

2
n2 + K ∗

c + Kg

(46)

The natural states of oscillatory motion associated with
ω2
n1 and ω2

n2 may be described as relations (47), based on the
ratios derived from relations (45) and (46).

�ϕ(1) �
{
A(1)
1

A(1)
2

}
�
{

A(1)
1

r1A
(1)
1

}
�ϕ(2) �

{
A(2)
1

A(2)
2

}
�
{

A(2)
1

r2A
(2)
1

}

(47)

The system’s overall motion at time t may be described as
follows:

{
�1

�2

}
� C1 �ϕ(1) sin(ωn1t + ψ1) + C2 �ϕ(2) sin(ωn2t + ψ2)

(48)

The unknown coefficients C1, C2, ψ1, and ψ2 may be
found by applying the initial conditions listed below:

{
�1(t � 0) � 0
�2(t � 0) � 0

}
,

{
�̇1(t � 0) � V0
�̇2(t � 0) � 0

}
(49)

We have, by applying the initial conditions:

ψ1 � ψ2 � 0

C1 � V0r2
ωn1(r2 − r1)

C2 � −r1ωn1

r2ωn2
C1

(50)

The contact force functionmay be determined by knowing
the unknowns in Eq. (48):

F(t) � K ∗
c (�1 − �2) (51)

Applying the aforementioned relationship, the contact
force history may be calculated. To compute the history of
the sheet’s deflection, we model the contact force function
as a concentrated load at the sheet’s center:

qmn � 4F(t)

ab
sin

mπx0
a

sin
nπy0
b

(52)

According to the equation presented, x0 � a
2 and y0 � b

2 .
Now, we insert Eq. (52) into Eq. (32) and solve Eq. (34) using
Newmark’s time integral to get the deflection history in the
center of the sheet.

Table 1 Geometric characteristics of sandwich panel with auxetic core

a(m) b(m) htot(m) hc(m)

0.2 0.2 0.01 0.009

Table 2 Physical characteristics of aluminum sheet surfaces

E(GPa) G(GPa) ρ(kg/m3) ν

69 27 2700 0.3

4 Discussion and Results

In this section, the numerical findings’ analysis is described.
Before reviewing new results, we will confirm all the offered
approaches, including the natural frequency of free vibration
of the sandwich sheet, the two-degree-of-freedom mass and
springmodel, and the sheet’s deflection based on the supplied
theory. Lastly, we will compare the effects of the auxetic and
non-auxetic cores on the impact response and investigate the
parameters that influence the history of deflection and contact
force of the sandwich sheet with the auxetic core.

The geometric specifications used for the sandwich panel
with the auxetic core and aluminum face sheets are listed in
Table 1. The physical properties of the aluminum top face
sheets, the auxetic core, and the non-auxetic core are listed
in Table 2 and 3. In addition, the specifications of the steel
impactor with a steel spherical head are listed in Table 4.

4.1 Verification

4.1.1 Natural Frequency

To confirm the results, we first compare the fundamental
frequency obtained from the HSNDT with those obtained
from the study by Yuan et al. [47] for sandwich sheets with
aluminum tops and honeycomb cores using finite element
analysis. The material and geometric properties of the sand-
wich sheet used for the research by Yuan et al. are reported
in Table 5, 6, 7 and the results of the two methods are listed
in Table 8.

As Table 8 shows, the natural frequency found by the
current method is very close to the natural frequency found
by Yuan et al. [47]., which proves that the current method is
accurate for finding the sheet’s natural frequency.

4.1.2 Force’s Time History and Impact Site’s Deflection

To validate the accuracy of the two-degree-of-freedom mass
and spring model, the force history of a steel ball hitting
the center of a square steel sheet at a low speed with simple
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Table 3 Physical properties of the auxetic and non-auxetic cores at various tilt angles [46]

θ E1(GPa) E2(GPa)ν12 ν21 G12(GPa) G23(GPa) G31(GPa) ρ(kg/m3)

30° 0.1547 0.1547 − 0.9612 − 0.9612 0.0079 1.5588 1.7666 415.6921

45° 0.2403 0.0747 − 1.7240 − 0.5360 0.0097 1.4766 2.7086 590.6716

60° 0.5639 0.04043 − 3.5035 − 0.2511 0.0138 1.1905 4.7791 952.4022

− 30° 0.2578 0.0928 1.6019 0.5766 0.0079 0.9353 1.5588 249.4153

Table 4 Characteristics of the
steel impactor with the steel
spherical head

R(m) mI(kg) Eimp(GPa) νimp V (ms )

0.01 1.8 206 0.3 1

Table 5 Geometric
characteristics of the sandwich
sheet with honeycomb core [47]

a(mm) b(mm) ht(mm) hb(mm) hc(mm)

1828.8 1219.2 0.4064 0.4064 6.35

Table 6 Material characteristics of the sandwich sheet tops with hon-
eycomb core [47]

E(GPa) ρ(kg/m3) G(GPa) ν

68.948 2768 25.924 0.33

Table 7 Material properties of the honeycomb core [47]

E(GPa) ρ(kg/m3) Gyz(GPa) Gzx(GPa) ν

0.3211 121.83 0.05171 0.13445 0.33

Table 8 Comparison between the fundamental frequency of the alu-
minum sandwich sheet with honeycomb core [47]

The present method Yuan et al. [43]

23.45 (Hz) 23.41 (Hz)

Table 9 Material and geometrical characteristics of square steel sheet
[48]

a(m) b(m) h(m) E(GPa) ρ(kg/m3) ν

0.2 0.2 0.008 206.8 7810 0.3

boundary conditions on all four sides is compared to the force
history obtained by [48]. Material and geometric properties
of the steel sheet are shown in Table 9; the steel ball has a
radius of curvature of 10 mm and an initial velocity of 1 m/s.

According to Fig. 4, the results of the current approach in
the mass and spring model and the theory utilized to derive

Fig. 4 A comparison of the temporal evolution of the impact force
exerted on the simply supported plate by the steel sphere [48]

the time history of the impact force agreewell with the results
acquired from the reference.

In Fig. 5, time history of the plate’s deflection obtained by
current research and those obtained by Shariayat et al. [49]
are compared. The material and geometric properties of the
sheet are shown in Table 10, and the steel ball has a radius of
curvature of 10 mm and an initial velocity of 1 m/s. As can
be observed, the outcome of this study is in excellent accord
with that of Shariayat et al.

4.2 Effects of the Auxetic Core

Asknown, the auxeticmaterials are characterized by negative
Poisson’s ratio. So, they have different behavior in bending
compared to normal materials. To show this, we expose a
monolayer auxetic core with simple support conditions to a
static distributed load as shown and compare it with a normal
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Fig. 5 A comparison between the present study by Shariayat et al. [49]
regarding the time history of deflection due to low-velocity impact

Table 10 Material and geometrical features of rectangular steel sheet
[49]

a(m) b(m) h(m) E(GPa) ρ(kg/m3) ν

0.5 0.4 0.002 206.8 7810 0.3

Table 11 Geometric properties of auxetic and honeycomb single-layer
materials

a(m) b(m) h(m)

0.2 0.2 0.01

regular honeycomb monolayer. The geometric characteris-
tics of the single-layer sheet can be found in Table 11, and
thematerial specifications of the auxetic and honeycombcore
can be found in Table 3. Figure 6 displays the amount of dis-
placement along the x-axis for the auxetic single layer and the
ordinary honeycomb due to bending. As seen in the diagram,
in contrast to the honeycomb core, the bending displacement
of the auxetic core is inversed.

4.3 Numerical Results

In this section, the new numerical results analysis is
described. This section’s objective is to examine the influence
of various factors on the time histories of dynamic deflection
and impact force in the ideal sandwich plate with auxetic
core.

Figure 7 illustrates the time evolution of sandwich panel
force for three different angles of inclination of the auxetic
honeycomb cell. Evidently, the internal angle of the core
has a major influence on the time history of the impact
force. The smaller the angle of the auxetic cell, based on
Eqs. (2), the transverse stiffer the auxetic core becomes.
This enhancement of the core stiffness increases the abil-
ity to resist deformation of the struts. Consequently, when a
sandwich panel experiences an impact force, a core with a
larger angle of the auxetic cell will exhibit increased stiff-
ness, thereby reducing deflection at the point of impact. As a
result, the greater the cell’s degree of inclination, the longer
the duration of impact and the lower the maximum impact

Fig. 6 Displacement in the x direction owing to the extensive load in the single layer of a normal and b auxetic honeycombs
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Fig. 7 Time history of impact force on the sandwich plate with different
auxetic core internal angles

Fig. 8 Time history of the sandwich plate impact site deflection in aux-
etic cores with different internal angles

force. In addition, Fig. 8 shows the effect of the angle of
inclination of the auxetic honeycomb cell on the time his-
tory of the impact site’s deflection. As can be observed, the
larger angle of the auxetic cell causes a smaller deflection of
the impact site. This is because raising the cellular slope of
the auxetic core improves the elasticity coefficient, thereby
increasing the sandwich panel’s stiffness and decreasing its
deflection. Figure 8 indicates that the core with an internal
angle of θ � 60

◦
is more effective in reducing the deflection

amplitude.
Figures 9 and 10 compare the time histories of the impact

force and impact site deflection for sandwich panels with
auxetic and non-auxetic honeycomb cores, respectively. As
shown inFig. 9, the sandwichpanel of the auxetic honeycomb
has a longer collision time and a lower maximum contact
force than the honeycomb panel with a positive Poisson
ratio. Figure 10 demonstrates that the auxetic core deflects
less than the non-auxetic core. The auxetic honeycomb core
demonstrates a negative Poisson’s ratio, which implies that it
expands sideways when subjected to longitudinal stretching.

Fig. 9 Time history of the impact force of the sandwich panel with
the auxetic honeycomb core at a 45

◦
tilt angle and the non-auxetic

honeycomb core at a −30
◦
tilt angle

Fig. 10 History of the impact site deflection of the sandwich panel with
the auxetic honeycomb core at a 45

◦
tilt angle and the non-auxetic

honeycomb core at a −30
◦
tilt angle

This distinctive characteristic enables the core to efficiently
absorb and distribute impact energy. In the event of a col-
lision, the auxetic core undergoes controlled deformation,
leading to an extended duration of the collision. Additionally,
the expansion of the core aids in decreasing the maximum
contact force by dispersing it across a wider surface area,
thereby minimizing the occurrence of localized stress con-
centrations and potential damage.

In the following, we will continue with the material
properties of auxetic honeycomb sandwich panel with 300

inclined angle.
Figure 11 illustrates time history of the impact force at

various impact velocity. It can be observed, as the impactor’s
velocity rises, so does the maximum impact force, but the
duration of the impact reduces. These phenomena are a result
of the impactor’s increased kinetic energy. A combination of
an increase in the maximum impact force and a reduction in
impact duration allows for a higher quantity of the impactor’s
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Fig. 11 Time history of impact force of the sandwich panel with the
auxetic core for different speeds

Fig. 12 Time history of deflection at the impact site of the sandwich
panel with the auxetic core for different speeds

kinetic energy to transfer to the sandwich sheet with a shorter
duration, which causes a shock to the structure.

Figure 12 depicts the time history of the deflection of the
impact site for low-velocity impacts at various velocities.
According to this graphic, as the impactor’s velocity rises,
so does the amount of deflection at the point of impact. The
impact force is proportional to the rate ofmomentum change,
which depends on the mass and velocity of the object caus-
ing the impact. When the velocity increases, both the rate
of momentum change and the applied force increases corre-
spondingly. The greater force exerted on the target material
leads to a more pronounced deflection response.

Figures 13 and 14 illustrate the influence of the impacting
mass on the time history of the impact force and the deflection
of the impact site, respectively. The solution is found for
various ratio of the impactor mass to the overall mass of the
sheet; it is assumed that the total mass of the sheet to be
around 0.256 kg. As seen from Fig. 13, when the mass of the
impactor increases, both the maximum impact force and the
duration of the impact increase. An increase in the impacting

Fig. 13 Time history of the impact force of the sandwich panel with the
auxetic core for different ratios of the impact mass to the total mass of
the sheet

Fig. 14 Time history of deflection at the impact site of the sandwich
panel with the auxetic core for different ratios of the impact mass to the
total mass of the sheet

mass increases the kinetic energy, which in turn raises the
maximum force of the impact, resulting in an extension of the
impact’s duration. Also, Fig. 14 shows that as the impactor’s
mass goes up, so does its kinetic energy and, as a result, does
the deflection at the impact site. This makes the duration of
the impact longer.

Figure 15 depicts the time evolution of the impact force
on the sandwich panel of the auxetic honeycomb for various
ratios of the core thickness to the overall thickness. It is evi-
dent that the thicker core causes to the lighter mass of the
sheet, reduces stiffness of the sheet, increases the maximum
contact force and minimizes contact duration. In addition,
Fig. 16 illustrates the time history of the deflection under
low-velocity impact force for various ratios of core thick-
ness to total thickness (hc/h). According to this diagram, it
is evident that the greater the core thickness, the greater the
range of lateral displacements under the same load. Since
the sandwich plate’s overall thickness is constant, when the
ratio of core thickness to total thickness (hc/h) increases, the
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Fig. 15 Time history of the impact force of the sandwich panel with
the auxetic core for different ratios of the core thickness to the total
thickness

Fig. 16 Time history of deflection at the impact site of the sandwich
panel with the auxetic core for different ratios of the core thickness to
the total thickness

face sheet thickness decreases. This leads to a decrease in
the flexural stiffness of the sandwich plate, an increase in the
maximum deflection at the collision site, and a subsequent
reduction in the collision duration.

5 Conclusion

In the current research, the time history of the impact force
and the history of the impact site’s deflection caused by
a low-velocity impact on a sandwich panel with the aux-
etic core were investigated. The effect of auxetic core and
other geometrical parameters on the dynamic response of the
sheet and the time history of impact force was explored. The
low-velocity impact was modeled using the two-degree-of-
freedom spring andmassmodel. UsingHamilton’s principle,
the equations governing the dynamic response of the system
were derived. In order to solve partial differential govern-
ing equations taking into account the boundary conditions

of simple supports, the analytical approach of Navier was
utilized in the space domain and the numerical solution of
Newmark was used in the time domain. The outcomes of this
investigation are briefly discussed in the following section:

The results obtained from the two-degree-of-freedom
mass and spring model and the high-order shear and nor-
mal deformation theory used in this study to determine the
dynamic response and time history of the impact force are in
excellent agreement with those of prior studies.

The auxetic honeycomb sandwich panel outperforms the
non-auxetic honeycomb sandwich panel by 9.5% in mini-
mizing deflection.

When the impactor’s velocity rises, the maximum impact
force increases, the impact duration reduces, and the impact
point’s deflection increases.

An increase in the impactor’s mass increases the kinetic
energy and, thus, the maximum force; this, in turn, increases
the collision’s duration and the deflection of the impact site.

The greater the thickness of the core, the greater the maxi-
mum contact force and the shorter the duration of the impact.
Due to the lighter mass of the sheet, the equivalent stiffness
of the sheet decreases, causing an increase in the maximum
contact force, a decrease in the duration of the impact, and
an increase in the deflection of the impact site.

The greater the angle of tilt of the auxetic core cell, the
longer the duration of the impact, and the smaller the maxi-
mum time history of the contact force and deflection of the
impact site; thus, the auxetic core with an angle of 600 has
54.73 percent less deflection than the core with an angle of
300.

Appendix

The following terms apply to the matrix terms of Eq. (33).

a11 � −(A11α
2 + A66β

2), a12 � −αμ(A12 + A66)

a13 � α[B11α
2 + (B12 + 2B66)β

2], a14 � α[Bs
11α

2 + (Bs
12 + 2Bs

66)β
2]

a15 � Lα, a22 � −(A66α
2 + A22β

2)

a23 � β[(B12 + 2B66)α
2 + B22β

2], a24 � β[(Bs
12 + 2Bs

66)α
2 + Bs

22β
2]

a25 � Lβ, a33 � −
(
D11α

4 + 2(D12 + 2D66)α
2β2 + D22β

4
)

a34 � −
(
Ds
11α

4 + 2(Ds
12 + 2Ds

66)α
2β2 + Ds

22β
4
)

a35 � −Ls (α2 + β2), a44

� −
(
Hs
11α

4 + 2(Hs
12 + 2Hs

66)α
2β2 + Hs

22β
4
)
+ As

55α
2 + As

44β
2)

a45 �
−[As

55α
2 + As

44β
2 + R(α2 + β2)], a55 �

−(As
44α

2 + As
55β

2 + Rs )

m11 � m12 �
−I0, m13 � α I1, m14 � α J1, m23 � β I1, m24 � β J1
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