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Abstract
Separating speech is a challenging area of research, especially when trying to separate the desired source from its combination.
Deep learning has arisen as a promising solution, surpassing traditional methods. While prior research has mainly focused on
the magnitude, log-magnitude, or a combination of the magnitude and phase portions, a new approach using the Short-time
Fourier Transform (STFT), and a deep Convolutional Neural Network named U-NET has been proposed. This method, unlike
others, considers both the real and imaginary components for decomposition. During the training stage, themixed time-domain
signal undergoes a transformation into a frequency-domain signal by using STFT, producing a mixed complex spectrogram.
The spectrogram’s real and imaginary parts are then divided and combined into a single matrix. The newly formed matrix is
fed through U-NET to extract the source components. The same process is repeated at testing. The resulting concatenated
matrix for the mixed test signal is passed through the saved model to generate two enhanced concatenated matrices for each
source. These matrices are then transformed back into time-domain signals using inverse STFT by extracting the magnitude
and phase. The proposed approach has been evaluated using the GRID audio visual corpuses, with results showing improved
quality and intelligibility compared to the existing methods, as demonstrated by objective measurement metrics.
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MP Multilayer perceptron
MSE Mean squared error
NMF Non-negative matrix factorization
NMF-DNN NMF-DNN-based SS method
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1 Introduction

In recent years, the field of audio signal processing has
witnessed significant advancements, particularly in the area
of source separation (SS). Single-channel source separation
(SCSS), also known as monaural source separation, refers
to the process of separating individual sound sources from a
mixed audio signal, typically captured by a single micro-
phone or channel. It has become a highly desirable and
challenging task in various applications, such as music pro-
duction, speech enhancement (SE), audio transcription, and
immersive audio systems [1–4]. Numerous potential benefits
exist for the segregation of mixed speech. In contemporary
speech processing, the role of SS is becoming increasingly
crucial, demanding a growing number of devices to effec-
tively perform this task.

While humans can effortlessly separate speech, con-
structing an automated system that emulates the human
auditory system proves to be exceptionally challenging. Con-
sequently, the pursuit of developing effective automatic SS
systems has consistently been a significant focus in speech
processing research. Conventionally, SS methods relied on
the assumption of having multiple microphones or channels
to exploit spatial information. However, in many real-world
scenarios, such as live concert recordings, teleconferencing,
or historical audio restoration, the availability of multiple
channels is limited or nonexistent. This limitation prompted
the development of SCSS [5–7] techniques that aim to
recover individual sound sources from a monoaural mixture.

Due to the increasing fascination with SS, several con-
ventional SCSS models have been suggested, taking into
account various factors such as phase, magnitude, frequency,

energy, and the spectrogram of the speech signal. A notable
success in separating individual speakers has been achieved
through the use of factorial hidden Markov models (HMMs)
[8]. Moreover, researchers are increasingly utilizing nonneg-
ative matrix factorization (NMF), a collection of methods in
multivariate analysis that involves decomposing amatrix into
two other nonnegative matrices based on their components
and weights to separate source signals in SCSS [9].

However, these conventional approaches often face lim-
itations when dealing with complex acoustic environments,
overlapping sources, and nonstationary signals. To overcome
these challenges, researchers have turned to deep learn-
ing (DL) algorithms [10, 11] and architectures to develop
data-driven approaches for SS and achieving unprecedented
performance improvements. SCSS focuses on learning a
mapping function that estimates individual source signals
from mixed audio inputs using a training dataset consisting
of paired mixtures and their corresponding source signals
[12].

In the context of audio SS, the Short-Time Fourier Trans-
form (STFT) [13] is widely used to analyze and manipulate
the audio signals. STFT represents a signal in the time-
frequency domain, decomposing it into a series of spectral
components. Each component is characterized by its mag-
nitude and phase information, which provide valuable cues
for separating the sources. In traditional as well as many DL
approaches, the magnitude spectrogram has received signif-
icant attention and has been the main focal point for SS.
However, phase information has also been recognized as an
important factor in performance.

In this study, we propose an approach for SCSS using
U-NET that considers both the real and imaginary parts of
the complex spectrum generated by the STFT. As a result,
the phase component should also be noteworthy in terms
of its magnitude. Our method aims to leverage the benefits
of DL and exploit the additional information contained in
the complex spectrum to enhance separation performance.
We have designed a modified U-NET architecture that can
effectively handle the complex input features and learn to
extract individual sources from the mixed audio signal.

The rest of the article is organized as follows: Sect. 2
provides a comprehensive overview of relative research in
this domain, focusing on the evolution of deep learning tech-
niques. Section 3 presents the U-NET architecture in detail,
elucidating its key components and highlighting the reasons
behind its suitability for audio SS. Section 4 presents the pro-
posed methodologies, describing the architectural choices,
proposed algorithm, training, and evaluation procedures.
Section 5 showcases the outcomes of the experiments con-
ducted and the subsequent analysis by encompassing both
the dataset employed in this study as well as the evaluation
metrics utilized to gauge the performance. Finally, Sect. 6
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concludes the article by summarizing the key findings and
outlining future research directions.

2 Relative Research

For supervised SS, there are two different categories of learn-
ing models: (1) methods that are traditional, like processes
based on models and voice improvement techniques; and (2)
innovative methods based on DNN. As a consequence of
the speech production process, the input characteristics and
desired outcomes of the SS process display an apparent spa-
tiotemporal structure. Deep models are ideal for modeling
due to these characteristics.

In speech separation, numerous deep models are actively
deployed. Sun et al. [14] devised a two-stagemethod employ-
ing two DNN-based algorithms to tackle the difficulty
of current speech separation systems’ performance. The
authors of [15] created new training aims in addition to cur-
rent magnitude training objectives, utilizing neural network
approaches to adjust for target phase in order to attain higher
separation performance.

In order to understand the temporal characteristics of geo-
graphic data, Zhou et al. [16] developed a separation system
based onRNNwith LSTM. The statistical properties of noise
are not constrained in supervised speech separation, and it
is not essential to know the spatial orientation of the sound
sources. It offers certain benefits and a bright future for study
when used in monaural, nonstationary, or in cases of poor
SNR [17, 18].

The Deep Recurrent Neural Network (DRNN) is a deep
learningmodel frequently used in speech separation. It excels
in usingMarkov models to identify the hidden states of RNN
units like LSTM [19] andGRU (Gated Recurrent Unit, GRU)
[20] in SS. Some past informationwill still be preserved from
the previous concealed state; however, the magnitude spectra
of mixed speech have a prolonged duration, causing loss in
sequence analysis, impacting both the separation of mixed
speech and the accuracy of speech prediction.

CNN has been commonly used in DL since Lecun et al.
[21] first presented it in 1998. CNN clearly has advantages in
2-D signal processing, and applications like picture recogni-
tion have shown off its impressive modeling abilities. CNN
is currently being used for SS and has outperformed speech
separation systems based on DNN in terms of removal effi-
ciency under identical circumstances.

[22] introduces a method for SCSS using deep, fully
convolutional denoising autoencoders (CDAEs). Trained to
extract specific sources from mixtures, CDAEs performs
well deep feedforward neural networks in SS. They learn
unique spectral–temporal patterns for successfully isolating
the sources in mixed signals. Additionally, it explores the
use of spectral masks to scale the mixed signal based on

each source’s contribution, ensuring an accurate estimation
of the mixed signal’s sources.

To address the problem of time-frequency masking, Luo
et al. [23] developed Conv-TasNet, a network for SS in the
time domain that utilizes fully convolutional techniques. Its
impressive modeling abilities have been shown in applica-
tions like picture recognition. To mitigate the disparity in
accuracy measures such as hit rate, error rate, and classifica-
tion accuracy, Wang et al. [24] modified the loss function of
CNN.

[25] suggests a system that addresses challenges like over-
smoothing and incomplete separation in SCSS by integrating
time-frequency non-negative matrix factorization (TFNMF)
and deep neural networks with sigmoid-based normalization
(SNDNN). TFNMF is utilized for feature extraction, and the
resulting classified features are transformed into softmax.

The paper [26] introduces VAT-SNet, a time-domain
music separation model that directly utilizes music wave-
form data as input. VAT-SNet enhances the network struc-
ture of Conv-TasNet by preserving deep acoustic features
through sample-level convolution in both the encoder and
decoder. Additionally, it incorporates vocal and accompa-
niment embeddings from an auxiliary network to enhance
the purity of the separation, aligning with the principles
of independent component analysis (ICA) and providing a
mathematical model for the separation process.

UFLSTM [27] is a deep learning model for speech
enhancement (SE). UFLSTM utilizes adaptive power law
transformation to redistribute energy, maintaining constant
total energy in speech signals for improved intelligibility and
quality, incorporating residual connections to prevent gradi-
ent decay, and adjusting the forget gate using an attention
process.

Although conventional and separation models based on
DNN have shown impressive results, they all have a few
flaws. Using CNN each element may absorb local features
without learning global characteristics in order to benefit
from the spatial connectivity of the input data, and in the
process of feature extraction, localized features are initially
identified and then combined to create more comprehensive
features at higher levels. Using weight sharing can improve
the speed of the model by reducing the number of parameters
that need to be computed for each neuron.

Various feature maps that can recognize the same type of
feature in various locations and partly assure the invariance
of displacement and distortion may be produced by combin-
ing a number of convolution filters. As a result, this study
provides a CNN-based approach to alleviate the issue of
mixed-language speakers’ loss of extended sequence infor-
mation. Our model may boost the speech separation impact
by concentrating on the timing sequence stage, which offers
the highest contribution, and by partially solving the diffi-
culty of the temporal model’s short memory.
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3 U-NET Architecture

In order to extract the features of the desired source from the
mixed coefficients, we employed the U-NET architecture.
Figure 1 presents a pictorial representation of the network
structure, comprising two main components: a contracting
path on the left side and an expansive path to the right.
The contracting path adheres to the typical architecture of
a convolutional network. The structure involves the iterative
utilization of two sets of 3 × 3 convolutions. Subsequently,
a Leaky rectified linear unit (LeakyReLU) and a 2 × 2 max
pooling operation with a stride of 2 are applied for down-
sampling. During each downsampling stage, the quantity of
feature channels is increased twofold.

Each iteration in the extensive trajectory involves enlarg-
ing the feature map through upsampling, followed by a 2×2
convolution that reduces the number of feature channels by
half. This is followed by combining the enlarged feature
map with the corresponding cropped feature map from the
contracting trajectory. Cropping is essential to address the
removal of border pixel elements during convolutions at each
step. At the last layer, a 1 × 1 convolution is employed to

transform each 16-component feature vector into the speci-
fied number of classes. Altogether, the network comprises 24
convolutional layers. To ensure the output segmentation map
can be seamlessly tiled, it is crucial to choose the input tile
size in such a way that all 2 × 2 max-pooling operations are
performed on a layer with both x- and y-dimensions being
even.

Huber loss is a robust alternative to mean squared error
(MSE) loss, which is commonly affected by outliers and sen-
sitivity issues. By balancing between quadratic loss for small
errors and linear loss for larger errors, Huber loss effectively
addresses these challenges and improvesmodel performance.
Huber loss combines squared loss for minor errors and abso-
lute loss for significant errors. By incorporating a parameter
called delta (δ), the loss function determines the threshold at
which the transition occurs from quadratic to linear. When
errors are smaller than δ, the loss function resembles MSE,
while for errors exceeding δ, it behaves similarly to MAE.
Mathematically, this loss function is represented as per Eq.
(1), where y denotes the actual or desired value, y′ signifies
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the predicted value, and δ represents the threshold parameter.

L(y, y′) =
{

1
2 (y − y′)2, i f |y − y′| ≤ δ

δ|y − y′| − 1
2δ

2, otherwise
(1)

The networks’ parameters were randomly initialized,
amounting to a total of 1,941,093. They underwent train-
ing using backpropagation and the Adam optimizer with a
learning rate of 0.001, employing the default settings for all
other parameters.

4 ProposedMethod

This section outlines the proposed SCSS technique and pro-
vides details about the substances it utilizes. In the context
of audio or time-series data, the signal is represented by the
STFT as a complex matrix, where each element corresponds
to a specific frequency and time bin index. The real part signi-
fies the magnitude or intensity of the frequency component,
while the imaginary part encodes phase information. Unlike
most SS systems that focus solely on the magnitude of the
STFT, neglecting the phase component, this article combines
STFT with U-NET, a deep CNN, taking both the real and
imaginary components into consideration. The utilization of
both components during U-NET training enables the model
to effectively capture complex-valued frequency information
in the input data.

It is important to note that no approach is universally
superior, and trade-offs exist. The associated trade-offs were
that the utilization of U-NET for SS introduced computa-
tional complexities, and its performancewas contingent upon
the quantity and quality of available data. Notably, there
were associated risks of overfitting, especially when con-
fronted with limited data, potentially limiting the model’s
interpretability. Furthermore, the implementation of U-NET
demanded substantial computational resources and pro-
longed training times.Achieving robust generalization across
diverse acoustic environments posed a significant challenge.
Therefore, a pivotal aspect in this methodology involved
striking a balance between U-NET’s model complexity and
the specific requirements of the application.

However, the trade-offs of the proposed method stated
earlier here include a breakdown of potential reasons for bet-
ter performance. Unlike others, incorporating both the real
and imaginary components together in the model yielded a
comprehensive representation of the audio signal, capturing
both the amplitude and phase details. This refined represen-
tation enhanced accuracy, especially in scenarios involving
overlapping speech. Besides, preserving phase information
was crucial for maintaining temporal attributes, leading to
more natural and intelligible speech output. The end-to-end

learning approach streamlined training, allowing the model
to autonomously learn relevant features and promoting bet-
ter generalization across speakers and acoustic environments.
Furthermore, supervised learningwith labeled data enhanced
adaptability to diverse acoustic environments, increasing
robustness in real-world scenarios. U-NET efficiency and
hardware acceleration allowed real-time audio processing,
crucial for low-latency applications like live streaming and
interactive platforms. The proposed SS method has two
stages, the training stage and the testing stage, which are
depicted in Fig. 2.

Algorithm 1Algorithm for the training and testing stages of
the proposed method
Training Stage
Input: Training setsm(t) and p(t)
Output: bMRI and WMRI RI
Step 1: Compute the complex spectrogram m1RI (τ, f ) , m2RI (τ, f ) ,....,
mnRI (τ, f ) and p1RI (τ, f ) , p2RI (τ, f ) ,...., pnRI (τ, f ) by applying STFT.
Step 2: Separate the real m1R(τ, f ) , m2R(τ, f ) ,...., mnR(τ, f ) and p1R(τ, f ) ,
p2R(τ, f ) ,...., pnR(τ, f ) and imaginary m1I (τ, f ) , m2I (τ, f ) ,...., mnI (τ, f ) and
p1I (τ, f ) , p2I (τ, f ) ,...., pnI (τ, f ) components of the complex spectrogram.
Step 3: Concatenate both the real and imaginary portions of the
complex spectrogram to make a single matrix MTrain

RI and PTrain
RI for

both ends.
Step 4: Train the network with the generated concatenated matrices.
Step 5: Determine the bias bMRI and weight matrices WMRI and
update the network.

Testing Stage
Input: Testing set m(t)
Output: Estimated the male and female sources p′(t) and q′(t)
Step 1: Compute the complex spectrogram m1RI (τ, f ) , m2RI (τ, f ) ,....,
mnRI (τ, f ) by applying STFT.
Step 2: Separate the real m1R(τ, f ) , m2R(τ, f ) ,...., mnR(τ, f ) and imaginary
m1I (τ, f ) , m2I (τ, f ) ,...., mnI (τ, f ) components of the complex spectrogram.
Step 3: Concatenate both the real and imaginary portions of the
complex spectrogram to make a single matrix MTest

RI .
Step 4: From the best training weights of the network,MTest

RI generated
the PEnhancedMatrix

RI matrix for the first source.
Step 5: Subtract PEnhancedMatrix

RI from MTest
RI to generate the second

PEnhancedMatrix
RI matrix.

Step 6: Separate both the real and imaginary parts from the first and
second sources.
Step 7: The re-complex matrices Precmplx and Qrecmplx are generated
by incorporating the real and imaginary parts with a complex number.
Step 8: The magnitude and phase parts are extracted from the
re-complex series for both sources.
Step 9: Obtain the estimated sources p′(t) and q′(t) by applying ISTFT.

4.1 Training Stage

During the training phase, we think about a signalm(t) called
the mixed, consisting of two different sources p(t) and q(t),
respectively.m(t) is utilized here as an input signal, and p(t)
is the corresponding label. The STFT processes both mixed
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Fig. 2 Block diagram of the
proposed SS approach
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and labeled signals to calculate the complex spectrograms
M(τ, f ) and P(τ, f ). These are denoted in Eqs. (2) and (3),
with τ and f indicating the time and frequency bin indices,
respectively.

M(τ, f ) = MR(τ, f ) + MI (τ, f )i (2)

P(τ, f ) = PR(τ, f ) + PI (τ, f )i (3)

The concatenated forms of the real and imaginary compo-
nents for bothMTrain

RI and PTrain
RI matrices are then forwarded

into the U-NETmodel. The networkmodel next decomposes
theMTrain

RI matrix into its bias and weight matrices as per Eq.
(4), where the terms WMRI and bMRI represent the weight
and bias matrices corresponding to the mixed source, and g
represents the nonlinear activation function.

MTrain
RI ≈ g(WMRI + bMRI ) (4)

Initially, the bias and weight metrics are assigned to zero
and random values, respectively. TheweightedmatrixWMRI

and the biasmetricsbMRI were updated continuously bymin-
imizing the cost betweenMTrain

RI and PTrain
RI using Eq. (5) with

the help of Eqs. (6) and (7), where α is called learning rate.
During training, the model was saved, and after completing
the training, the best bias and weights were fixed.

MRI (Error) = MRI (Label Output) − MRI (Predicted Output)

(5)

WMRI (New) = WMRI (Old) − α
∂MRI (Error)

∂WMRI (Old)
(6)

bMRI (New) = bMRI (Old) − α
∂MRI (Error)

∂bMRI (Old)
(7)

4.2 Testing Stage

During the testing phase, the signalm(t) in Eq. (8), which is a
combination ormixture of the signalsp(t) andq(t), undergoes
STFT to generate the complex spectrogram.

M(τ, f ) = MR(τ, f ) + MI (τ, f )i (8)

From the complex spectrogram of the mixed signal, the
real and imaginary components were separated and concate-
nated to constructMTest

RI , which is passed through the U-NET
saved model. The model then generated the enhanced con-
catenated matrices PE

RI for the first source. To compute the
enhanced concatenation matrix QE

RI for the second source,
we subtract PE

RI from MTest
RI as per Eq. (9).

QE
RI = MTest

RI − PE
RI (9)

From the initial estimation of the first enhanced concate-
nated matrix PE

RI , the real and imaginary components were
separated once again to reconstruct a complexmatrixPrecmplx

with the help of following Eq. (10).

Precmplx = PE
R + PE

I i (10)

Similarly, the real and imaginary components were sep-
arated from the female enhanced concatenated matrix to
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reconstruct another complex matrix Qrecmplx for the female
source as per Eq. (11).

Qrecmplx = QE
R + QE

I i (11)

From the reconstructed complex matrix Precmplx, the
magnitude and phase components PEmag and PEphase were
generated for the first source, respectively, with the aid of
following Eq. (12).

PEmag = magnitude(Precmplx)

PEphase = phase(Precmplx)
(12)

The magnitude and phase componentsQEmag andQEphase

for the other source were extracted from the reconstruct com-
plex matrix Qrecmplx as per Eq. (13).

QEmag = magnitude(Qrecmplx)

QEphase = phase(Qrecmplx)
(13)

As input for the first source, the newly generated enhanced
magnitude and enhanced phase as per Eq. (12) were fed into
the inverse STFT. The inverse STFT then transforms it into
a time-domain signal, and we get the first estimated source
as per Eq. (14). Similarly, the inverse STFT in Eq. (15), after
getting the enhanced magnitude and enhanced phase as per
Eq. (13), generated the second source as well.

p′(t) = ISTFT(PEmag × PEphase) (14)

q′(t) = ISTFT(QEmag × QEphase) (15)

5 Results and Discussion

This section offers experimental findings and discussions.
Initially, a brief overview of the experiment’s design and
evaluationmethodswill be given, followed by a discussion of
the metrics used to measure the results. Third, we examine
how the join features compare to the single-domain tech-
niques with regard to the SDR, SIR, fwsegSNR, STOI, and
HASQI scores. Fourth, we compared the general effective-
ness of our suggested approach to the CDAE, Conv-TasNet,
CASSM, NMF-DNN, VAT-SNet, and ULSTM techniques in
terms of PESQ, STOI, fwseqSNR, and SDR, SIR, and SAR.
To the end, the time domainwaveformand spectrogramof the
clear, mixed, and segregated male and female sounds were
provided.

5.1 Experimental Setup

To assess the efficiency of the suggested approach, we com-
pare the proposedmodelwithCDAE [22], Conv-TasNet [23],

CASSM [24], NMF-DNN [25], VAT-SNet [26], andULSTM
[27]. In this system, we collect the signal speech from GRID
audio visual corpuses [28], which were used for training as
well as testing data. There are 1000 utterances spoken by
thirty-four speakers (eighteen male and sixteen female). We
concatenate sentences all together for each speaker. For the
opposite gender speech separation, to form an experimen-
tal group, six male and six female speakers’ utterances are
exploited here. Each training signal lasts for about 25min,
and each test signal lasts for around 60s. These signals are
sampled at 8000 Hz. Like the speech-noise scenario, we con-
sider female as noise andmale as the speech signal.Wemixed
the female source with the male at −10, −5, 0, 5, and 10
dB.

5.2 EvaluationMetrics

The performances of the separated utterances are evaluated
through the SDR [29], SIR [29], SAR [29], fwsegSNR [30],
STOI [31], PESQ [32], HASPI [33], and HASQI [34] scores.
The SDR value, which is a measure of overall speech quality,
is calculated as the ratio of the strength of the input signal to
the power of the difference between the input and recon-
structed signals. Performance restoration is governed by
higher SDR scores. Along with SDR, SIR also detects errors
brought on by source separation process failures to eliminate
the interfering signal. Better separation quality is indicated
by a higher SIR value. Comparing the separated speech to
comparable clean speech allows for the evaluation of PESQ,
which results in scores between −0.5 and 4.5, with a greater
number indicating better quality. A higher STOI value allows
for more intelligibility. Short-time temporal wrappers, with a
score ranging from 0 to 1, are correlated with clean and sep-
arated speech. The intelligibility of the collected signal was
evaluated by fwsegSNR, and the greater the value, the better
the performance. The HASQI and HASPI are instruments
designed to measure how well hearing-impaired people and
hearing-unimpaired people perceive sound. Higher scores,
which range from 0 to 1, are related to greater sound quality
and understandability.

5.3 The Impact of Single Over Join Features

The source signals are characterized by being brief, unchang-
ing, and infrequent. The transformation of the signal into the
time-frequency domain using STFT resulted in the gener-
ation of its complex spectra, which were used for speech
separation techniques. There are certain methods that have
been described that solely consider the magnitude part of a
complex spectra, ignoring the real and imagined components.
In this contrast, the real and imaginary portions are indi-
vidually evaluated, even the magnitude section is evaluated
separately, and the real and imaginary portions are evaluated
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Fig. 4 Comparison of fwsegSNR for a male, b female source, respectively
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Fig. 5 Comparison of SDR for a male, b female source, respectively

jointly. SDR, SIR, fwsegSNR, HASQI, and STOI measure-
ment techniques are compared in Fig. 3. As we can see from
the figures that the method which uses the real and imaginary
portions together outperforms than others. As a result, in the
suggested technique, we examine the real and imaginary por-
tions simultaneously, which improves a SCSS’s quality and
intangibility.

5.4 Overall Performance of the Proposed Algorithm

In Fig. 4, the fwsegSNR performance of the proposed model
is comparedwith that of currentmodels. Based on the follow-

ing graphs, it appears that the suggested model outperforms
the other current techniques in all circumstances. Our strat-
egy boosts fwsegSNR by 9.65% for −10 SNR than the
presented approaches, 11.56% for −5 SNR, 13.69% for 0
SNR, for 5 SNR 15.31% and 17.09% for 10 SNR to sepa-
rate male sources. Similarly, our proposed approach gained
18.56%, 15.26%, 12.85%, 10.16%, 7.51% for−10 SNR,−5
SNR, 0 SNR, 5 SNR, and 10 SNR, respectively, for female
source separation.

We demonstrated that in Fig. 5, the proposedmodel’s SDR
achieves much superior outcomes compared to the alterna-
tives, notably CDAE, Conv-TasNet, CASSM, NMF-DNN,
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Fig. 6 Comparison of SIR for a male, b female source, respectively
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Fig. 7 Comparison of SAR for a male, b female source, respectively

VAT-SNet, and ULSTM for both male and female gender.
The suggested model’s SDR values are greater than the pre-
vious models in all circumstances of separation.

The suggested models increase SDR for 7.26 dB for −10
SNR, 8.53 dB for −5 SNR, 10.19 dB for 0 SNR, 11.78 dB
for 5 SNR, and 13.10 dB for 10 SNR to separate the male
sources. Accordingly, 13.02 dB, 11.43 dB, 9.84 dB, 7.63 dB,
and 4.84 dB for -10 SNR, −5 SNR, 0 SNR, 5 SNR, and 10
SNR, respectively, separate the female sources. Similarly in
Fig. 6 SIR values for predicted signals get higher than the
current models, as seen by this figure.

From Fig. 7, we examined that our proposed approach
performed in a better manner in terms of source to artifacts
ratio (SAR) for both of the male and female sources than the
other methods stated in this article.

Tables 1, 2, 3, and 4 compare the suggested technique’s
performance in termsofPESQandSTOI to those of other cur-
rent approaches. Our suggested technique improves PESQ
scores 2.25 for −10 dB, 2.40 for −5 dB, 2.63 for 0 dB, 2.81
for 5 dB, and 2.98 for 10 dB for separating the male source,
over the methods existing for comparisons. Likewise, a sep-
arate female source achieved 3.23, 2.98, 2.70, 2.35, and 1.97
for −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB, respectively.
Further, the table demonstrates that expected signals have a
higher STOI performance than do models that are already in
use.

Table 1 Comparison of PESQ scores for the male source with six dif-
ferent approaches

Methods −10 −5 0 5 10

CDAE [22] 1.98 2.03 2.10 2.23 2.52

Conv-TasNet [23] 2.10 2.19 2.41 2.51 2.81

CASSM [24] 2.01 2.07 2.33 2.46 2.77

NMF-DNN [25] 2.15 2.31 2.56 2.73 2.93

VAT-SNet [26] 2.19 2.23 2.44 2.64 2.84

ULSTM [27] 2.11 2.13 2.37 2.41 2.57

U-NET [Our] 2.25 2.40 2.63 2.81 2.98

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Table 2 Comparison of PESQ scores for the female source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 2.57 2.37 1.99 2.01 1.57

Conv-TasNet [23] 3.13 2.88 2.53 2.21 1.85

CASSM [24] 2.87 2.57 2.42 2.11 1.59

NMF-DNN [25] 3.17 2.89 2.63 2.29 1.91

VAT-SNet [26] 3.15 2.89 2.61 2.23 1.89

ULSTM [27] 3.02 2.58 2.57 2.19 1.88

U-NET [Our] 3.23 2.98 2.70 2.35 1.97
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Table 3 Comparison of STOI scores for the male source with six dif-
ferent approaches

Methods −10 −5 0 5 10

CDAE [22] 0.63 0.71 0.81 0.83 0.86

Conv-TasNet [23] 0.79 0.83 0.89 0.91 0.91

CASSM [24] 0.75 0.78 0.81 0.83 0.86

NMF-DNN [25] 0.79 0.84 0.89 0.92 0.94

VAT-SNet [26] 0.78 0.84 0.88 0.91 0.92

ULSTM [27] 0.76 0.83 0.87 0.88 0.90

U-NET [Our] 0.81 0.86 0.90 0.93 0.95

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Table 4 Comparison of STOI scores for the female source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 0.89 0.88 0.83 0.76 0.68

Conv-TasNet [23] 0.92 0.92 0.88 0.80 0.70

CASSM [24] 0.89 0.89 0.84 0.76 0.69

NMF-DNN [25] 0.93 0.91 0.88 0.80 0.71

VAT-SNet [26] 0.92 0.92 0.87 0.79 0.70

ULSTM [27] 0.91 0.90 0.87 0.77 0.68

U-NET [Our] 0.96 0.93 0.89 0.82 0.72

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Table 5 Comparison of HASPI values for the male source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 0.9985 0.9993 0.9995 0.9994 0.9995

Conv-TasNet [23] 0.9989 0.9995 0.9997 0.9998 0.9998

CASSM [24] 0.9986 0.9994 0.9995 0.9994 0.9995

NMF-DNN [25] 0.9990 0.9996 0.9998 0.9999 0.9999

VAT-SNet [26] 0.9989 0.9995 0.9997 0.9998 0.9999

ULSTM [27] 0.9988 0.9994 0.9995 0.9995 0.9996

U-NET [Our] 0.9990 0.9996 0.9998 0.9999 0.9999

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Tables 5, 6, 7, and 8 show the HASPI and HASQI find-
ings of several approaches, including CDAE, Conv-TasNet,
CASSM, NMF-DNN, VAT-SNet, and ULSTM for male and
female speech separation. Tables 5 and 6 show that U-NET
produces higher HASPI values in all scenarios of separation.
It can also be noted that in Tables 7 and 8 the HASQI findings
of our approach outperform the other three techniques in all
circumstances of separation.

Table 6 Comparison of HASPI values for the female source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 0.9994 0.9995 0.9993 0.9992 0.9989

Conv-TasNet [23] 0.9998 0.9997 0.9996 0.9994 0.9991

CASSM [24] 0.9995 0.9995 0.9994 0.9993 0.9990

NMF-DNN [25] 0.9999 0.9999 0.9997 0.9995 0.9992

VAT-SNet [26] 0.9998 0.9998 0.9997 0.9995 0.9992

ULSTM [27] 0.9997 0.9997 0.9995 0.9994 0.9989

U-NET [Our] 0.9999 0.9999 0.9997 0.9995 0.9992

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Table 7 Comparison of HASQI values for the male source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 0.4873 0.5652 0.6744 0.7433 0.8014

Conv-TasNet [23] 0.4957 0.6047 0.6931 0.7587 0.8189

CASSM [24] 0.4889 0.5663 0.6788 0.7477 0.8083

NMF-DNN [25] 0.5003 0.6099 0.6978 0.7641 0.8259

VAT-SNet [26] 0.4983 0.6074 0.6953 0.7588 0.8193

ULSTM [27] 0.4909 0.6059 0.6917 0.7599 0.8197

U-NET [Our] 0.5021 0.6123 0.7002 0.7688 0.8289

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

Table 8 Comparison of HASQI values for the female source with six
different approaches

Methods −10 −5 0 5 10

CDAE [22] 0.7339 0.7125 0.6439 0.6133 0.5146

Conv-TasNet [23] 0.7303 0.7111 0.6419 0.6259 0.5163

CASSM [24] 0.7375 0.7179 0.6498 0.6181 0.5177

NMF-DNN [25] 0.7323 0.7273 0.6531 0.6269 0.5207

VAT-SNet [26] 0.7309 0.71123 0.6441 0.6275 0.5174

ULSTM [27] 0.7307 0.7237 0.6509 0.6229 0.5191

U-NET [Our] 0.7459 0.7256 0.6595 0.6312 0.5216

Bold indicate all the approaches, both existing and proposed values.
The purpose of using bold text is to highlight and differentiate both the
existing approaches and our proposed approach

5.5 Time-Domain and Spectrogram Representation

Time-domain and spectrogram representation offers distinct
approaches to visualize and analyze signals, especiallywithin
the realm of signal processing. The time-domain representa-
tion depicts the signal’s temporal evolution, offering insights
into amplitude and serving as a valuable tool for comprehend-
ing temporal patterns and identifying specific events. On the

123



Arabian Journal for Science and Engineering (2024) 49:12679–12691 12689

Fig. 8 a Waveform, b
Spectrogram of Clean, c
Waveform, d Spectrogram of
Mixed and e Waveform, f
Spectrogram of Separated male
source, respectively
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other hand, a spectrogram serves as a graphical representa-
tion of a signal’s frequency spectrum over time. It introduces
an extra layer of information regarding frequency content
over time, facilitating the examination of evolving spectral
characteristics.

Figure 8 depicts the time-domain and spectrogram repre-
sentations of the clean, mixed, and separated signals for the
male source. In this case, we chose a male that performed
best, the corresponding mixed, and the estimated male sig-
nal. From the mentioned figures we see that our suggested
approach segregated the male source from the mixed one in
a pretty good way. In the similar fashion, we see from Fig.
9, the female source also separated from the mixed signal.

6 Conclusion

From the perspective of neural architecture, we developed
U-NET, a convolutional neural network architecture that
built on a few improvements in the original CNN design.
The model architecture was created with two principles in
mind. The initial concept was encoder connections, which
use strides 2’s max pooling layers to minimize data sizes.
We must further repeat the convolutional layers, including a
greater quantity of filters in the encoder block. The second
idea is to employ a decoder block and its associated connec-
tions. As we move closer to the decoder, we observe that the
quantity of filters in the convolutional layers begins to lessen,
followed by a continual up-sampling in the subsequent lay-
ers at upmost. We can also see the use of skip connections
to link the preceding outputs to the decoder blocks’ lay-
ers. Using this network architecture to separate the intended
sources, we get better performance in every SNR scenario. In
comparison with the outcomes of the other approaches men-
tioned in this article, the quality and understandability of
the separated speech signals are enhanced. The experimental
results show that the proposed speech separation model out-
performs the current models in terms of overall performance
in assessments of the improvement in the separated speech
signals using various evaluation methodologies. We intend
to research other training and testing procedures in the future
utilizing different deep neural networks.
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