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Abstract
Autism spectrum disorder (ASD) is characterized by divergent etiological factors, comorbidities, severity levels, genetic
influences, and functional connectivity (FC) patterns in the brain. In the literature, ASD classification based on age and
severity using fMRI data is extremely limited. This study explores the impact of age, symptom severity, and brain FC patterns
on the diagnosis of ASD using deep neural networks (DNNs). The ability to classify ASD by age and severity using fMRI data
is extremely limited. This study explores the impact of age, symptom severity, and brain FC patterns on the diagnosis of ASD
using deep neural networks (DNNs). The FC measures were extracted using Pearson’s correlation coefficient (PCC), fractal
connectivity (FrC), and nonfractal connectivity (NFrC) from the ABIDE I and II databases. We studied three age groups (6
to 11, 11 to 18, and 6 to 18 years) and two severity groups (ADOS score ≤ 11 and ADOS score > 11). The FC matrices
are constructed from blood oxygen level-dependent (BOLD) time series signals, and the heat maps are used to generate
features for the convolutional neural network (CNN), MobileNetV2, and DenseNet201 models. The MobileNetV2 classifier
achieved 76.25% accuracy, 77.09% sensitivity, and 79.77% precision in the age group of 6 to 11 years using NFrC feature
maps compared to other DNNs. According to ADOS total scores above 11, DenseNet201 demonstrated superior performance
with 83.45% accuracy, 87.3% sensitivity, and 79.13% precision. Connectivity measured by NFrC consistently outperformed
Frc measures. Various combinations of connectivity measures and classifiers consistently showed promising results for the
age group of 6–11 years and the severity group with an ADOS score of more than 11. ASD’s inherent heterogeneity can be
addressed effectively by developing diagnostic models tailored to age and severity.
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1 Introduction

As a neurodevelopmental disorder, autism spectrum disor-
der is characterized by impairments in social communication
and interaction, as well as constrained, repetitive patterns of
behavior, interests, or activities [1, 2]. There has been an
increase in its prevalence over the last decade [3],with projec-
tions ranging from one in 59 to one in 54 children in the USA
[4]. Despite its high prevalence, diagnosing ASD remains
challenging. There are a variety of diagnostic tools available
today, including psychological assessments, medical evalu-
ations, and caregiver interviews, which are highly subjective
and susceptible to misdiagnosis or overdiagnosis. In indi-
viduals with autism spectrum disorder (ASD), it is usually
associated with local underconnectivity or overconnectivity
in the cortex. In this sense, the automated identification of sig-
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nificant structural and/or functional biomarkers in the brain
is crucial to the diagnosis of autism spectrum disorders.

ASD is characterized by structural and functional abnor-
malities that are highly heterogeneous, making it difficult to
identify distinctive neural signatures [5]. The heterogeneity
of demographic samples has always posed a challenge to
understanding atypical neural architecture in ASDs, regard-
less of gender, age, severity of symptoms, or comorbidities
[6]. In recent years, there has been an exponential increase
in the number of children with autism spectrum disorder
(ASD), characterized by a complex behavior problem that
affects social skills, communication patterns, and motor
skills. Although autism spectrum disorder is linked to atypi-
cal brain connectivity across multiple systems, the nature of
these differences in young children remains unclear. Many
studies have attempted to reduce dataset heterogeneity by
identifying neural features associated with age [7, 8], gen-
der [9], severity [10], and site [1]. There has been no study
that analyzed functional abnormalities based on both age and
severity in the same dataset. Our study aims to determine
whether age- and severity-specific datasets can help us diag-
nose ASDs more accurately.

Neuronal connectivity and its characteristics can be stud-
ied using brain imaging methods such as resting-state func-
tional magnetic resonance imaging (rs-fMRI) [11]. Blood-
oxygen-level-dependent (BOLD) signals represent changes
in deoxyglobin concentrations captured at low frequencies
and characteristic of brain activity. By computing the correla-
tion betweenBOLD time series, functional connectivity (FC)
offers insight into the connectivity between brain regions
and the interaction between them [12, 13]. Numerous stud-
ies have used rs-fMRI to determine if individuals with ASD
demonstrate atypical neural development in the amygdala
[14], prefrontal cortex [15], cerebellum, inferior occipital
gyruses, and posterior inferior temporal gyruses [16, 17].
There is, however, a large disparity in the areas of interest
between these studies. Therefore, this study aims to diag-
nose ASD using brain FC calculated from fMRI data and
maximum brain regions parcellated from fMRI data.

Uddin et al. have conducted a study to classify the children
with ASD based on the symptoms of severity in 20 children
(Male: 16, Female: 4) using fMRI [18]. They achieved a
maximum mean classification rate of 83% and 78% using
saliency maps of different brain regions and BOLD signal,
respectively, using logistic regression classifier. Compared
to the saliency map-based features, the BOLD signal gives
more meaningful information related to ASD. The major
limitations of the study are limited sample size and chil-
dren with high FIQ are considered for experiment. Children
with ASD appear to have functional hyperconnectivity in the
brain, which may be a characteristic of the disorder. A major
limitation of earlier studies is that only a few female children
with ASD were considered compared to male children [19].

A recent study conducted an experiment with an increased
number of female and male children with ASD (n � 773) to
overcome the problem [19]. Both types of children’s fMRI
images were fed into a spatiotemporal deep neural network
(stDNN) and achievedmean classification rates of 86% in the
ABIDE dataset and 83.4% in the CMI-HBN dataset. It was
concluded that females with ASD have a different functional
organization compared tomaleswithASD.ASDseveritywas
classified using rest-state functional connectivity patterns
from fMRI using regression estimation methods by Liu et.al
using ABIDE-I dataset (n � 174) [20]. In classifying ASD
with typically developing and normal control (NC), Pear-
son correlation coefficient (PCC) values of 0.5 were found.
Additionally, the results indicate severe differences in func-
tional connectivity indices betweenNC andASD in typically
developing people. According to a recent study, researchers
recorded joint attention behaviors among 45 children with
autism spectrum disorder (ASD) ages 2–6 years and fed the
data into a deep neural network (DNN) (convolutional neu-
ral network–LSTM–attentionmechanism) for severity-based
ASD classification [21]. With the proposed model, initiation
of joint attention was predicted with a maximum AUROC of
99.6%, and symptom severity-based ASD classification was
predicted with a maximum AUROC of 93.4%. To the best of
our knowledge, numerous studies have utilized either open-
source fMRI data or their own fMRI dataset to diagnoseASD
using resting-state information based on fMRI. FMRI data
have been used very rarely for age- or severity-based diagno-
sis ofASD in the literature. The age and severity ofASDhave
not been considered together in an earlier study for a more
robust and reliable classification. Thus, the presentwork aims
to classify ASD based on both age- and severity-based fMRI
data using deep neural networks (DNNs).

Researchers have found that FC patterns and microscopic
synaptic connectivity can serve as biomarkers for autism
spectrum disorders. It has been proposed several methods for
constructing functional networks in FC modeling, including
Pearson correlation coefficient (PCC) [10], Pearson par-
tial correlation coefficient (PPCC) [22, 23], Spearman’s
rank correlation coefficient (SRCC)[24], mutual information
(MI)[25], and Gaussian covariance (GC) [26]. Traditional
correlation techniquesmay not capture the dynamics of spon-
taneous neuronal activity since non-neuronal physiological
operations can affect signals during the resting state [27,
28]. In both the time and frequency domains, rs-fMRI sig-
nals exhibit fractal behavior characterized by self-similarity
and power-law scaling [29–32]. Due to fractal behavior, non-
fractal connectivity has been proposed as a new method for
measuring FC in fMRI. As a result of this approach, the frac-
tal behavior of the signals is removed in order to obtain amore
accurate representation of spontaneous neuronal activity’s
correlation structure. In 2012, You et al. introduced fractal
and non-fractal connectivity for a multivariate fractionally
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integrated noise and proposed several wavelet-based estima-
tors for fractal and non-fractal connectivity [28]. The study
demonstrated that FC changes were related to Alzheimer’s
disease, ASD [33], ASD without language or intellectual
disabilities, ASD with language or intellectual disabilities,
pervasive developmental disorders, and typically develop-
ing (TD) (binary and multiclass classification) [34]. Both
binary and multiclass classification outperformed conven-
tional PCC-based connectivity, and these findings indicate
that non-oscillatory connectivity approaches have substan-
tial potential. Thus, PCC, fractal connectivity (Frc), and
non-fractal connectivity (NFrC)were used as functional con-
nectivity measures in the present work to investigate the
impact of age and severity on the diagnosis of autism spec-
trum disorders.

Machine learning algorithms are more popular in ASD
diagnosis using fMRI or sMRI or EEG data. Using ABIDE-I
data, the researchers have analyzed resting state functional
connectivity indices using an attention mechanism-based
extra tree algorithm to classify ABD in [35]. The maxi-
mum mean accuracy of 72.2% is achieved using CC200
atlas. Support vector machine (SVM) classifiers are used to
classify ASDs and NCs using features extracted from multi-
layer perceptron (MLP)networks [36].Researchers used four
different fMRI datasets and the Auto-Tune Model (ATM)
to fine-tune the hyperparameters of an SVM classifier to
achieve the highest classification rate. Thus, they achieved
a maximum mean accuracy of over 70% across all datasets.
According to the authors, they only discussed the classifi-
cation of ASD based on fMRI and not the severity-based
classification. Recently, researchers have used four different
machine learning algorithms, namely suport vector machine
(SVM), random forest (RF), multilayer perceptron (MLP),
and Naïve Bayes (NB), to classify ASDs using fMRI data
available in the ABIDE-I dataset [37]. They implemented the
SMOTE method to prepare a balanced dataset and achieved
an 89.23% classification rate compared with the state-of-
the-art methods reported in the literature. Machine learning
algorithms are used mostly for limited data, and the per-
formance of these algorithms is not superior when using
high-volume data to diagnose ASDs. The state-of-the-art
review on the use of unsupervised machine learning algo-
rithms in ASD classification can be found in [38]

Neurological conditions are reflected in high-dimensional
FC matrices constructed from different brain regions. Using
FC information, convolutional neural networks (CNNs)
effectively capture spatial patterns, extracting relevant dis-
criminative features for understanding autism-related brain
functioning differences. Studies have used different deep
learning models, such as stacked auto-encoders [1], single-
layer perceptron [39], recurrent neural networks (RNNs)
[40], RNNs with long short-term memory (LSTM) [41],
hybrid CNNmodels [42], multichannel deep attention neural

networks [43], configurable CNNs [44], graph neural net-
works [45], and hierarchical graph convolutional networks
[46] to extract patterns from FC matrices. A CNN model,
DenseNet201 [47, 48], has been employed to improve the
retrieval of information for efficient ASD diagnostic classi-
fication using fMRI data, because it is a deeply connected
network capable of improving parameter efficiency and gra-
dient flow.Additionally,MobileNetV2, a significantly lighter
and less complex architecture capable of striking a great bal-
ance between model complexity and performance, has been
usedwith fMRI data forASDdiagnosis [49].We compare the
performance of the more complex DenseNet201 to the com-
putationally inexpensive MobileNetV2, in order to extract
age- and severity-specific neural patterns in ASD.

The main motivation of this present study is to investigate
the effect of sample heterogeneity, as a function of age and
severity on the diagnostic classification of ASD using deep
neural networks. Due to the limitations of the availability
of extensive publicly accessible datasets, our investigation
focused on examining the severity of symptoms based on the
autism diagnostic observation schedule [ADOS]. By focus-
ing on FC’s diverse nature, we operationalized key factors
contributing to its diversity. Data were collected from three
distinct cohorts of children and adolescents ranging in age
from six to eighteen. These cohorts had varying degrees of
heterogeneity incorporated into the severity of ASD symp-
toms using three FC measures, Pearson’s correlation, fractal
connectivity, and non-fractal connectivity. We constructed
diagnostic classifiers using rs-fMRI data for each cohort,
including MobileNetV2 and DenseNet201. The hypothe-
sis stated that increased homogeneity among cohorts would
enhance classification accuracy and that the most influential
FC features would be different among cohorts.

The main contributions of this paper are:

• Deep learningmodels for the diagnosis of autism spectrum
disorders were developed based on age and severity.

• Fractal connectivity and non-fractal connectivity-based
correlationmethodswere implemented and comparedwith
Pearson’s correlation-based method.

• Our diagnostic classification of ASD is based on global
diagnostic models regardless of the sites or types of data
acquisition.

2 Materials andMethods

The pipeline used in this study is shown in Fig. 1. Pub-
licly available fMRI data sets, Autism Brain Imaging Data
Exchange (ABIDE) I and II, were used in this study [50]. The
proposed pipeline uses rs-fMRI data from 317 patients with
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Fig. 1 Proposed Pipeline for this
study

ASD and 400 controls with TD. The rs-fMRI data are pre-
processed, and then the average time series of BOLD signals
are extracted as an input dataset for deep learning.

2.1 Dataset

Our study utilized the ABIDE I and ABIDE II databases,
which were sourced from worldwide locations and included
structural MRIs, diffusion tensor imaging, and rs-fMRIs, all
of which had been approved by the local institutional review
boards. To ensure a robust data selection process, seven sites
were evaluated, each with its own criteria to be included in
the rs-fMRI dataset. Moreover, we included rs-fMRI data
acquired from subjects with open eyes only to examine the
influence of eye state on FC [51].

The study focused on rs-fMRI data from participants aged
6 to 18 years old that retained at least 80% of their original
volumes after filtering. Furthermore, we reduced the effects
of head movement on BOLD fluctuations by implementing a

root mean square deviation of less than 0.2 [52]. A compre-
hensive demographic profile was constructed by gathering
information on the subject’s gender, age, intelligence quo-
tient, and severity. Our study included 277 males and 40
females with ASD, as well as 297 males and 103 females
with TD. Table 1 presents the demographic data of all par-
ticipants.

2.2 Preprocessing

In the fMRI data analysis pipeline, preprocessing is
extremely important. AFNI (http://afni.nimh.nih.gov) [53]
and FSL (http://www.fmrib.ox.ac.uk/fsl) [54] are popular
software packages used for preprocessing and analyzing
fMRI data. In this present work, we have utilized eight differ-
ent operations in preprocessing to improve the data quality.
The eight operations are: trimming, alignment, normal-
ization, spatial smoothing, temporal filtering, subject-level
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Table 1 Demographic information of the participants segregated on basis of age

6 to 11 years 11 to 18 years 6 to 18 years

TD ASD TD ASD TD ASD

Count
(Before augmentation)

187 136 213 181 400 317

Count
(After augmentation)

1496 1088 1704 1448 3200 2536

Training/ Validation/ Test 1938/323/323 2364/394/394 4302/717/717

Gender 126 M /
61 F

112 M /
24 F

171 M /
42 F

165 M /
16 F

297 M /
103 F

277 M /
40 F

PIQ/FIQ
Mean ± SD

114.37 ± 12.61 106.32 ± 18.48 109.38 ± 13.76 104.46 ± 16.03 111.71 ± 13.46 105.26 ± 17.15

M Male, F Female, SD Standard deviation, PIQ Performance intelligence quotient, FIQ Full-scale intelligence quotient

regression, global signal regression, and nuisance regressor
filtering. The detail of each method is given below:

• Trimming: Trimming is often used to remove initial vol-
umes of fMRI data affected by T1 equilibrium. The fMRI
data obtained from theNYU sitewere trimmed tomaintain
T1 equilibrium (5 and 3 volumes, respectively, inABIDE-I
and ABIDE-II) [51].

• Alignment:WeusedFLIRTandSinc interpolation to align
functional images to anatomical space using six degrees of
freedom. The purpose of this step is to align the functional
images to the anatomical space and correct any potential
misalignments [26].

• Normalization: To ensure that the images from different
sites were aligned in the same space, the aligned images
were normalized to MNI152 3 mm, using FNIRT from
FSL. Because different scanners have different spatial res-
olutions and intensities, normalization can help correct
these differences.

• Spatial smoothing: To reduce noise in the images and
improve the signal-to-noise ratio (SNR), spatial smooth-
ing was performed. Spatial smoothening helped achieve a
global full-width-at-half-maximum of 6 mm in this study.
Smoothing extent is an important parameter to optimize,
as too much smoothing can reduce spatial resolution, and
too little smoothing can result in noisy images.

• Temporal filtering: The temporal filtering method
removes low-frequency drifts and high-frequency noise
from fMRI data. Using a second-order band-pass filter
with a pass band of 0.008–0.08 Hz, resting-state fMRI
data were temporally smoothed [26].

• Subject-level regression: Denoising was accomplished
by performing a subject-level regression on eight nuisance
variables and their corresponding first derivatives. A total
of six rigid-body motion parameters were estimated by

motion correction, along with ventricular cerebrospinal
fluid and white-matter signals measured by FSL’s FAST
method. The RS-fMRI signal is cleaned up using this step
to remove noise sources.

• Global signal regression: Preprocessing pipelines incor-
porate global signal regression to compensate for the
effects of using fMRI data from different sites, which also
reduces signal-to-noise ratios. In this step, the variability
in data is reduced due to differences in acquisition param-
eters across sites [55].

• Nuisance regressor filtering: To maintain consistency
across the entire dataset, we applied the same second-
order Butterworth band-pass filter with a pass band of
0.008–0.08 Hz to all seventeen nuisance regressors. By
following the same preprocessing steps for all regressors,
it is easier to compare results across different subjects and
studies [56, 57].

2.3 BOLDTime Series Extraction

This study constructed a whole-brain mask by identifying
voxels in which BOLD signals were detected in at least 95%
of participants. We used 333 cortical Regions of Interest
(ROI) from Gordon’s atlas [58], 14 subcortical ROIs from
the Harvard Oxford atlas [59], and 26 cerebellar ROIs from
Diedrichsen atlases [60] in combination with some minor
cerebellar ROIs. The atlases were selected based on our pre-
vious experience categorizing and analyzing the brains of
individuals with ASD [61, 62]. Awhole-brain maskwas then
constructed based on the number of voxels contained within
each ROI. Our research focused on ROIs that included at
least 95% of the voxels in the whole-brain mask [26). As a
result, 236 ROIs were obtained, including 213 cortical, 14
subcortical, and 9 cerebellar regions.
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2.4 Functional Connectivity Matrix

Three FC metrics were considered in this study: Pearson’s
correlation coefficient (PCC), fractal connectivity (FrC), and
non-fractal connectivity (NFrC). In each of the 236 regions,
the average time-series data were calculated for each indi-
vidual, by correlating every single region with every other
region, leading to 236 × 236 sized correlation matrices for
each subject. The following subsections explain Pearson’s
correlation coefficient (PCC), fractal connectivity (FrC), and
non-fractal connectivity (NFrC) measures of connectivity.

2.4.1 Pearson Correlation

Pearson correlations are a type of statistical method used to
measure FC between different brain regions [63]. In fMRI,
it is possible to calculate the linear relationship between two
series of brain activity by measuring the BOLD signal. The
Pearson correlation coefficient is calculated by dividing the
product of the covariances of two time series by the standard
deviations of those series. As a result, the values range from
-1 to 1, with a value close to 0 indicating no correlation, a
value close to 1 indicating a positive correlation (two signals
increasing simultaneously), and a value close to 0 indicating
a negative correlation.

FC analysis based on Pearson correlation can be used to
identify patterns of brain activity that are consistently co-
activated across different individuals or conditions. It is often
applied to investigate resting-state networks, which are spon-
taneously synchronized patterns of brain activity that occur
in the absence of an external task. For a1(t) and a2(t), which
represent stochastic processes where E[a1(t)] � μ1 and
E[a2(t)] � μ2, the correlation of a1(t) and a2(t) is defined
by Eqs. 1 and 2 as:

ρ1, 2 � cov[a1(t), a2(t)]

(var[a1(t)].var[a2(t)])
1
2

(1)

where, the covariance of a1 and a2 is:

cov{a1, a2}
≡ E{(a1 − μ1)(a2 − μ2)}
�

∫ ∞

−∞

∫ ∞

−∞
(a1 − μ1)(a2 − μ2) f1, 2(a1, a2)da1da2 (2)

2.4.2 Fractal Connectivity

Signals that exhibit long-range dependence and self-
similarity are described as fractal behavior [64]. Such behav-
ior can be quantified with the Hurst exponent and the fractal
dimension.Basically, itmeasures the asymptoticwavelet cor-
relation between BOLD signals in different brain regions.

The purpose of this type of correlation is to compare two
signals over time to see if their values are similar at the
same time. The correlation between two signals is high only
when their values are similar at the same time. The wavelet
transform is applied to the signals to determine the corre-
lation between their wavelet coefficients at different time
scales. In this study, a discrete wavelet transform is used,
and the level of approximation is determined by the time
series length. Depending on the length of the individual time
series, the decomposition level will vary. A simple heuristic
for automatic level selection is to divide the signal length by
a power of two. In this study, the level of decomposition, L ,
is determined by L � floor(log2(N )), where N is the signal’s
length. As a final step, a six-level discrete wavelet transform,
focused solely on approximation coefficients, was applied
with an 8-length Daubechies least asymmetric filter (db8).
In the following steps, the coefficients of the two signals
were compared at each time scale to establish a correlation
between them. According to the equations below [28, 29, 34,
65], fractal connectivity is calculated as follows:

�̂m, n � ξ̂m, nϕ(d̂m , d̂n) (3)

where,

ϕ
(
d̂m , d̂n

) � B1
(
d̂m , d̂n

)
√
B1

(
d̂m , d̂m

)
B1

(
d̂n , d̂n

)cos
(π

2
(d̂m − d̂n)

)

(4)

where, ξ̂m, n is the non-fractal connectivity, B1 is a factor
describing the shape of the power spectrum, dm and dn are
parameters determining the fractal behavior of the power
spectrum.

2.4.3 Non-Fractal Connectivity

Resting-stateBOLDsignals show a short-term and long-term
temporal dependence on short-termand long-termmemories,
respectively [66]. The short memory describes the relation-
ship between values in a time series that are close in time,
whereas the longmemory describes the relationship between
values that are far apart in time. A Hurst exponent is com-
monly used to calculate the short and longmemories of a time
series by dividing the cumulative sum by the standard devia-
tion, raised to a power [64]. By powering the ratio according
to the time series scale, the ratio becomes independent of
its time series value. The Hurst exponent ranges from 0 to
1. Values closer to 1 indicate a long memory, while val-
ues closer to 0 indicate a short memory. In the BOLD time
series covariance matrix, non-fractal connectivity between
two brain regions is defined using short memory covari-
ance matrices. These matrices can measure the similarity
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Table 2 Demographic
information of the participants
segregated on basis of ADOS
total score

ADOS total score ≤ 11 ADOS total score > 11

TD ASD TD ASD

Count
(Before augmentation)

158 136 139 141

Count
(After augmentation)

1264 1088 1112 1128

Training/ Validation/ Test 1764/ 294/ 294 1680/ 280/ 280

Age
Mean ± SD

11.69 ± 2.59 11.66 ± 2.74 12.14 ± 2.91 12.46 ± 2.85

PIQ/FIQ
Mean ± SD

111.20 ± 12.66 106.79 ± 17.37 111.85 ± 14.32 104.82 ± 16.55

SD Standard deviation, PIQ Performance intelligence quotient, FIQ Full-scale intelligence quotient

between two signals over a short period of time, in which
large covariances are observed when there are similar values
for two signals at the same time. A window of fixed width
is slid along the two signals during this process. Multivari-
ate fractionally integrated noise, x(t), is used to model short
memory covariance based on a memory parameter, d, and a
short memory function, u(t). Non-fractal connectivity

(̂
ξm, n

)
between um(t) and un(t) is described by Eq. 5 given below:

ξ̂m, n � (u)γm, n√
(u)γm,m(u)γn, n

(5)

where, γm, n denotes the covariance of um(t) and un(t) given
by γm, n :� E[um(1)un(1)]

2.5 Data Augmentation and Dataset Segregation

In this study, we created a dataset that included fractal cor-
relations, nonfractal correlations, and Pearson correlations
between FC matrices. Therefore, we generated heat maps
and converted them into images based on these matrices. A
data augmentation procedure was performed on each image,
which included rotating by 90 degrees, enhancing edges,
blurring with Gaussian noise, zooming, and cropping (four
variants: top left, top right, bottom left, bottom right). As
a result, we obtained eight different representations of each
subject as original heat maps and augmented heat maps.

A group of participants was divided by age to analyze the
impact of age on classifier performance. The study examined
three age groups: 6 to 11 years, 11 to 18 years, and 6 to 18
years. The demographics of participant datasets are shown
in Table 1. A similar analysis was conducted to examine the
effects of ADOS severity or score. ADOS is a standardized
assessment tool used by healthcare professionals to diagnose
ASD in individuals, particularly children. An ADOS score
of less than 11 indicates a less severe condition and a score of
more than 11 indicates a rather severe case. Twoclassification
sample sets were created by restricting sample heterogeneity

in ADOS total scores, comprising ADOS total score ≤ 11,
and ADOS total score > 11. There is a very limited number
of female participants in the ABIDE dataset, so this anal-
ysis was limited to male participants only. Table 2 shows
the demographic characteristics of the dataset based on the
ADOS score.

2.6 Classification

We resized the high-dimensional heat map images to 224 ×
224× 3 and divided them into training samples, which made
up 75% of the total samples; validation samples, which made
up 12.5% of the total samples; and testing samples, which
made up 12.5% of the total samples. Finally, the training data
are fed into two pre-trained CNN classifiers, MobileNetV2
and DenseNet201. A transfer learning algorithm is used to
initialize these classifiers with ImageNet weights. As a result
of fine-tuning for model training, pre-trained models can
be refined to suit new or similar tasks. A fine-tuning pro-
cess can improve the performance of a model on new data
by initializing it with pre-existing knowledge. Models were
implemented in Python (3.9.16) andTensorFlow (2.10.1) and
trained on a workstation running Windows 11 Pro on a Dell
Inc Precision 3660 x-64 based PC. The system employs a
12th Gen Intel(R) Core (TM) i7-12700K, with a processing
speed of 3600 MHz with 12 Core(s), 20 logical processors,
and an NVIDIA RTXA200 graphics processing unit with 12
GB of memory. We used the available non-fractal toolbox
in Mathworks, MATLAB (Version R2017b) for FC matrix
calculations.

2.6.1 MobileNetV2

AMobileNetV2 classifier is trained for 500 epochs at a learn-
ing rate of 0.0001.Once a normal run is completed, themodel
is fine-tuned, whichmeans that a certain number of layers are
unfrozen and allowed to adapt to the current dataset. Among
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Fig. 2 Heat map representation
of a TD subject for a Pearson’s
correlation; b fractal;
c non-fractal functional
connectivity measures

Fig. 3 Heat map representation
of an ASD subject for
a Pearson’s correlation; b fractal;
c non-fractal functional
connectivity measures

the 154 layers in MobileNetV2, 54 layers were fine-tuned
and then used to evaluate the test dataset for another 500
epochs using the model.

2.6.2 DenseNet201

The procedure used forDenseNet201was similar to that used
forMobileNetV2. It is important to emphasize that themodel
was trained normally,without fine-tuning, for 500 epochs and
with a learning rate of 0.0001. Themodel was then fine-tuned
on 57 of the 707 layers of the dataset and trained for another
500 epochs before it was used on the test dataset in order to
evaluate its performance.

3 Numerical Results

This study analyzed FC matrices obtained from resting-state
fMRIs for persons with TD and autism spectrum disorders
with three different approaches: Pearson correlations, fractal
correlations, and nonfractal correlations. Using the BOLD
time-series signals of 236 different brain regions, each sub-
ject was mapped out into a matrix of 236 by 236. Figure 2a–c
shows six representative FC heat maps based on Pearson
correlation, fractal connectivity, and non-fractal connectivity
for a TD subject. Figure 3a–c shows similar representations
of an ASD subject. All matrices showed a strong corre-
lation between their diagonal values, indicating that each
region is highly self-correlated. A significant difference was

seen in the patterns of the correlation matrices between the
three methods. Compared to fractal and nonfractal methods,
the Pearson method showed a completely different pattern,
which can be attributed to the different calculations involved
in each method.

There was an interesting finding that the difference
between the correlation matrices between fractals and non-
fractals was related to the memory parameter in the corre-
lation matrices. It has been shown that when the difference
between fractal and non-fractal connectivity parameters is
close to zero, then the fractal connectivity is almost iden-
tical to the non-fractal connectivity. It has been shown that
non-fractal connectivity can remove non-physiological char-
acteristics from fMRI data, and it can therefore be inferred
that fractal connectivity retains these characteristics when
non-fractal connectivity is used. This means that fractal and
non-fractal connectivity can provide complementary infor-
mation to each other.

According to the correlation matrices, the FC matrices
of the ASD subjects and those of the TD subjects exhibited
different patterns as seen in the FC matrices. Several regions
in the TD subjects showed strong connections, as shown by
the white color in the middle of these regions, while no such
patterns could be seen in the ASD subjects. As a result of all
three methods used in this study, there was a difference in
FC matrices, which may suggest that ASD is characterized
by this characteristic feature. It is important to keep in mind
that not all samples will exhibit the same patterns at the same
time, and thus visual distinction may not be possible.
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To train the deep-learning models, the FC heat maps for
TD and ASD participants derived from these analyses were
fed into the models as inputs. As part of the evaluation, we
tested the performance of the model on all the datasets under
similar conditions, that is, using the same weights (Ima-
geNet) and architectures (MobileNetV2 and DenseNet201)
with similar augmentation methods. To calculate the per-
formance metrics given for each dataset, we calculated the
accuracy, sensitivity, precision, and F1 score for each dataset
[67]. It is imperative to emphasize that these performance
measures calculations were repeated twice for each dataset:
once without fine-tuning, and then once with fine-tuning.

It is shown in Figs. 4a–c, 5a–c, and 6a–c that the models
perform for Pearson’s correlation coefficient, fractal connec-
tivity, and non-fractal connectivity based on the combination
of connectivitymeasures and age groups, respectively, where
(a) represents the performance metrics for the 6- to 11-
year-old age group; (b) represents the performance metrics
for the 11 to 18-year-old age group; and (c) represents the
performance metrics for the 6- to 18-year-old age group,
respectively, for each FC measure.

Based on Pearson’s correlation-based datasets,
DenseNet201 distinguished the age group 6–11 years
most accurately, with accuracy, sensitivity, precision, and F1
scores of 72.19, 84.62%, 71.63%, and 77.59%. Similarly, the
age group 6 to 11 years achieved impressive results in fractal
connectivity with accuracy, sensitivity, precision, and F1
score of 69.30%, 65.28%, 80.25%, and 72%, respectively.
In the case of non-fractal connectivity, the 6–11 age group
remained on top with 76.25% accuracy, 77.09% sensitivity,
79.77% precision, and 78.41% F1 score. MobileNetV2
was used to train this non-fractal connectivity dataset.
The non-fractal connectivity measure with DenseNet201
achieved a higher accuracy in distinguishing the ASD based
on the rs-fMRI derived from 6 to 11 years old subjects.

According to classifiers and connectivity measures, par-
ticipants between 6 and 11 years of age produced the best
results. Non-fractal connectivity scored best across all age
groups and both classifiers when compared to Pearson’s
correlation and fractal connectivity. In terms of classifier per-
formance, both MobileNetV2 and DenseNet201 performed
well across the different datasets tested. In the 11–18 age
group, the fractal connectivity measure produced a maxi-
mum classification rate of 74.47%, a sensitivity of 68.71%,
a prediction of 78.36%, and an F1-score of 73.72% in
MobileNetv2. DenseNet201 network also achieved a max-
imum mean classification rate of 70.59%, sensitivity of
90.26%, precision of 66.86%, and F1-score of 76.82% using
non-fractal connectivity features. Based on the age-based
ASD classification, the proposed non-fractal connectivity
measure produces higher accuracy than state-of-the-artmeth-
ods reported in the literature and with other features and
networks used in this study.

Similar classification pipelines were used for participant
cohorts sub-grouped by severity scores (ADOS). The results
for different combinations of FCmeasures and ADOS scores
can be visualized in Figs. 7a, b, 8a, b, and 9a, b for Pearson’s
correlation, fractal connectivity, and non-fractal connectiv-
ity, respectively, where (a) represent the performancemetrics
for cohorts with ADOS scores less than or equal to 11; (b)
represent the performance metrics for cohorts with ADOS
scores greater than 11, respectively.

UsingDenseNet201, high-severity datasets (ADOSscores
over 11) performed better in Pearson’s correlation, achiev-
ing accuracy, sensitivity, precision, and F1 scores of
72.61%, 60.73%, 87.21%, and 71.60%, respectively. With
MobileNetV2, high-severity groups outperformed low-
severity groups, obtaining 73.52% accuracy, 58.01% sen-
sitivity, 81.72% precision, and an F1 score of 67.85%. On
severity-specific datasets, nonfractal measures performed
better than fractal measures in classifying ASD from TD
with an accuracy of 83.45%. In high severity (ADOS score
of more than 11) datasets, it achieved a sensitivity of 87.3%,
a precision of 79.13%, and an F1 score of 83.01% using the
DenseNet201 classifier. Based on severity, the high sever-
ity group, i.e., those with ADOS scores greater than 11
outperformed the low severity group on all counts. It is
again non-fractal connectivity that performs best, and both
classifiers produce comparable results when combined with
different datasets.

4 Discussion

4.1 Effect of Functional Connectivity methods

In this study, Pearson’s correlation coefficient method was
used to compare fractal and non-fractal measures of connec-
tivity. These results are presented in Figs. 3a–c, 4a–c, and
5a–c. According to our findings, the non-fractal approach
outperforms the fractal approach for identifying differences
in neural connectivity between individuals with ASD and
those with TD. A non-fractal analysis of the BOLD signal
in both space and time provides more meaningful informa-
tion about the heterogeneity present in the input data than
a linear correlation method like PCC. Furthermore, Pear-
son’s correlation performed better than datasets based on
fractal connectivity. Interestingly, these results are consistent
with what was previously reported in studies that compared
the effectiveness of these diagnostic methods in diagnos-
ing autism spectrum disorders [34] as well as Alzheimer’s
disease [33]. According to the proposed pipeline, 76.25%
accuracy was achieved with nonfractal connectivity, 72.19%
accuracy with Pearson’s correlation, and 69.30% accuracy
with fractal connectivity. According to Sadiq et al. [34], their
non-fractal FCwas best by amargin of 5.65% to 7.74%when
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Fig. 4 Performance metrics of
Pearson’s correlation coefficient
for a Ages 6 to 11 years; b Ages
11 to 18 years; c Ages 6 to
18 years

123



Arabian Journal for Science and Engineering (2024) 49:6847–6865 6857

Fig. 5 Performance metrics of
Fractal connectivity for a Ages 6
to 11 years; b Ages 11 to
18 years; c Ages 6 to 18 years
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Fig. 6 Performance metrics of
non-fractal connectivity for
a Ages 6 to 11 years; b Ages 11
to 18 years; c Ages 6 to 18 years
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Fig. 7 Performance metrics of
Pearson’s correlation for
a ADOS scores less than or equal
to 11; b ADOS scores more than
11

compared with Pearson’s correlation-based approach. Based
on the support vectormachine (SVM)classifier,Naseemet al.
[33] also reported an accuracy of 83.3% for the non-fractal
connectivity of the ADNI dataset, outperforming fractal con-
nectivity and Pearson’s correlation by 16.4% and 17.2%,
respectively. According to a previous study using fractals

on fMRI datasets, individuals with autism spectrum disor-
ders experience a significant reduction in the complexity of
the signals in specific brain regions, including the amygdala,
vermis, basin ganglion, and hippocampus [29].
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Fig. 8 Performance metrics of
fractal connectivity for a ADOS
scores less than or equal to 11;
b ADOS scores more than 11

4.2 Significance of Age

In the present study, participants with ASD or TD who were
6 to 11 years old were able to classify more accurately than
those who were 11 to 18 years old or those who were 6
to 18 years old. In this study, we found a significant rela-
tionship between age and FC differences in individuals with

ASD. It could be because early childhood has a signifi-
cant amount of neural development that is faster than that
of children and adolescents, as well as FC patterns that
are substantially different from those observed in children
and adolescents. Deep learning algorithms can easily iden-
tify abnormal FC patterns, which can be used to diagnose
diseases. Haghighat et al. [69] conducted a study to build
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Fig. 9 Performance metrics of
non-fractal connectivity for
a ADOS scores less than or equal
to 11; b ADOS scores more than
11

ASD diagnostic models for three different age groups: chil-
dren, adolescents, and adults. According to the results of
the study, children with ASD are well discriminated from
the TD (Accuracy: 95.23%), followed by adults (Accuracy:
83.33%) and adolescents (Accuracy: 78.57%). As well, Sub-
baraju et al. [7] found similar results when they examined

ASD and TD diagnoses in gender-specific adolescents and
adults (Accuracy: 85.4% for subjects under 18 years of age;
Accuracy: 78.6% for subjects over 18 years of age). Accord-
ing to Eslami et al. [39], diagnostic classification models for
males aged under 15 performed better (Accuracy: 82%) than
the entire dataset used for their analysis (Accuracy: 68%).
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Table 3 Comparison with existing age-specific studies

Reference Database Number of
Subjects

Age
groups
(years)

Modality Features Classifier Performance

Our Study ABIDE I &
II

317 ASD and
400 TD

6–11,
11–18,
6–18

fMRI (age and
gender)

NFrC
PCC
FrC

MobileNetV2,
DenseNet201

(MNV2 /
DN201)
76.25% /
74.68%,
74.47% /
72.39%,
65.48% /
70.59%

[68] ABIDE 816 5–10,
10–15

fMRI (age) CV, MI, Bend,
SCC, PaCC

SVM 85.81%,
69%

[69] ABIDE I & II 127 ASD and
130 TD

< 11,
11–18,

fMRI (age) PC CVC 95.23%,
78.57%

[7] ABIDE 505 ASD and
530 TD

< 18,
> 18

fMRI SFBDM SVM MA- 78.6%
MAD-
85.4%
FA- 86.7%
FAD-95%

[70] ABIDE 449 ASD and
451 TD

< 18,
> 18,
All

sMRI VBM PBL-McRBFN 61.49%
70.41%
59.73%

[18] Own dataset 20 ASD, 20 TD 7 – 13 fMRI FC BOLD signal
Saliency Map

83%
78%

Bold values indicates the best performance achieved by this present work compared to the state-of-the-art methods reported in the literature
fMRI: Functional Magnetic Resonance Imaging, FC: Functional Connectivity, NFrC: Non Fractal Connectivity; FrC: Fractal Connectivity, PCC:
Pearson’s Correlation Coefficient, CV: Covariance, SCC: Spearman’s Correlation Coefficient, MI: Mutual Information, Bend: Percentage Bend
Correlation, PaCC: Partial Correlation Coefficient, SVM: Support Vector Machine, PC: Partial Correlation, CVC: Classification Via Clustering,
SFBDM: Spatial Feature-Based Detection Method, MA: Male Adolescent, MAD: Male Adult, FA: Female Adolescent, FAD: Female Adult,
VBM: Voxel-Based Morphometry, PBL-McRBFN: Projection-Based Learning Metacognitive Radial Basis Function Network Classifier, MNV2:
MobileNetv2, DN201: DenseNet201

According to Table 3, the performance of the present work
is compared with existing studies based on age. Compared
to the existing work, our work has utilized both age, and
symptoms severity of the same dataset for ASD classifica-
tion. In addition, our present has considered three different
age groups and utilized the functional connectivity measures
based onPCC, FrC, andNFrC in contrastwith otherworks. In
summary, the differences in FC observed among individuals
with autism suggest that there are underlying neurobiological
differences contributing to the disorder’s symptoms. In addi-
tion to FC changes observed in different age groups, these
developmental changes may also result in changes in brain
function in individuals with autism spectrum disorders.

4.3 Significance of ADOS Score

We used DenseNet201 to evaluate participant cohorts with
ADOS scores over 11 and achieved an accuracy of 83.45%.
According to Reiter et al. [10], high-severity ASD sub-
jects were also classified similarly based on heterogeneous

datasets. It may be that the higher severity score is char-
acterized by significant under- and over-connectivity in the
neural architecture, which is easily captured by FC mea-
sures. According to Haweel et al. [71]), task-based fMRI
can accurately categorize ASD subjects into mild, moderate,
and severe categories. In addition, classification accuracywas
improved in mild versus severe (81%) compared to mild ver-
susmoderate (80%)when tested onADOSscores.According
to the results, the best classification of ASD was moderate
versus severe (77%) when comparing the fMRI data with the
ADOS scores [72]. A severity-based model is important for
making diagnoses of autism spectrum disorders based on the
results of the study.

4.4 Effect of Classifiers

In our study, MobileNetV2 and DenseNet201 are equally
effective when analyzing three different sets of data.
MobileNetV2 achieved the highest accuracy of 76.25% in
the same age group, while DenseNet201 achieved the high-
est accuracy of 74.68%. A high classification accuracy for
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DenseNet201 has been demonstrated in both sMRI [73] and
fMRI [47] studies. Based on Ahmed et al.’s [49] research,
MobileNetV2 is 76.5% accurate at diagnosing autism spec-
trum disorder (ASD).

4.5 Significance of ProposedMethodology in ASD
Diagnosis

In the study, 30 combinations of pipelines were exam-
ined, each with three ages, two severity groups, three
FC methods, and two classification models. Based on the
results of the analysis, the processing pipeline that uses
age-specific data (6–11 years old), non-fractal FC, and
MobileNetV2 had the best classification accuracy (76.25%).
Among severity-specific datasets (ADOS scores greater than
11), non-fractal FC and DenseNet201 produced the high-
est accuracy, 83.45%. These pipelines outperformed Pearson
and fractal FC models as well as other deep learning models.
Several studies have used age-specific datasets [7, 39, 69],
severity-specific datasets [10], fractal and nonfractal meth-
ods [29, 33], along with deep learning algorithms [47, 73]. It
is the first time this pipeline has been used in a study.

4.6 Limitations and FutureWork

It is evident that the proposed methodology is effective in
diagnosing ASD; however, some limitations exist in this
pipeline. The training dataset contains just seven sites, which
is relatively small. As a result of the stringent inclusion cri-
teria used in this study, the remaining sites in the ABIDE
database were not considered for analysis. Due to the lim-
ited availability of data for this age group in the ABIDE
database, we did not include participants over 18 years old in
our analysis.Data cross-validationwas not possible due to the
computational complexity of the model training. As part of
the testing dataset, augmented images were included. There
is the possibility of expanding this study to include more par-
ticipants. In future work, feature ranking and selection could
be included to ensure the classifier includes only relevant
features. In addition, unsupervised clustering algorithms can
be used to reduce heterogeneity in datasets by identifying
underlying patterns. Based on robust and promising patterns
in clustered datasets, ASD and TD could be better classified
as diagnostic conditions.

5 Conclusion

In this study, FCmatriceswere computed based on fMRI data
and three different connectivity measures, including Pearson
correlation, fractal connectivity, and non-fractal connectiv-
ity, to examine how age, severity, and FC measures affect
ASD classification. The matrices were converted into heat

maps and used to train MobileNetV2 and DenseNet201. The
age-specific dataset with participants between the ages of
6 and 11 years performed the best across all three types of
connectivity in comparison to the datasetswith 11 to 18-year-
olds and 6 to 18-year-olds. TheMobileNetV2 network scored
the highest in accuracy, sensitivity, precision, and F1-score,
with 76.25%, 77.09%, 79.77%, and 78.41%, respectively.
Using DenseNet201, high-severity datasets with ADOS
scores above 11 achieved 83.45% accuracy, 87.3% sensitiv-
ity, 79.13% precision, and an F1-score of 83.01% compared
to low-severity datasets. Researchers found that a dataset
with reduced heterogeneity and specific extraction of short-
term temporal memory dependencies from time-series data
was more accurate when fed to a deep network. Furthermore,
the findings suggest that inconsistency in neuroanatomical
reports of ASDmay be due to differences in age or symptom
severity in the study cohorts, highlighting the importance of
considering the effects of age, symptom severity, biological
factors, and methodology in future studies of ASD’s under-
lying neural mechanisms.

Funding This work was supported by the Science and Engineering
Research Board through the Start-up Research Grant (SRG) scheme
(SRG/2021/002289).
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