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Abstract
Facial expression recognition (FER) in thewild is one of themost challenging visual tasks owing to various uncontrolled factors
such as occlusion, pose, and subtle variation in real scenes. These factors can directly affect the robust performance of current
networks, especially as most single-feature learning space methods lack the extraction of potential discriminative features and
fail to provide a deeper understanding of expressions. To address the above issues, we propose a novel hybrid attention-aware
learning network (HALNet), which comprises a feature compactness network (FCN), a hybrid attention enhancement network
(HAEN), and a joint loss optimization strategy. First, FCN performs basic expression feature extraction and optimizes intra-
and inter-class distributions simultaneously. Afterward, HAEN constructs a multi-level feature enhancement space by fusing
hybrid attention based on CNN and transformer in parallel to effectively improve the profound understanding of expressions.
Finally, the expression classification is performed by supervised optimization with joint loss. Extensive experiments are
assessed on some of the widest employed wild expression datasets, and results indicate our method is superior to several
present state-of-the-art methods, obtaining accuracies of 90.29%, 90.04%, and 61.75% on RAF-DB, FERPlus, and AffectNet,
respectively. The cross-dataset and occlusion and pose variation datasets assessment further substantiate our approach’s sound
generalization and robustness.

Keywords Facial expression recognition · Hybrid attention learning · Transformer · Occlusion and pose variation

1 Introduction

As a very important biological feature of emotional cog-
nition, facial expression is one of the most natural and
direct signal transmissionmodes of human emotional expres-
sion and the most effective manner of understanding and
communicating human emotional states. The impact of
expression-based emotional intelligence in the advancement
of artificial intelligence is garnering increasing attention from
scholars. In particular, automatic facial expression recog-
nition (FER) includes extensive applications across many
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areas, including human–computer interaction, psychologi-
cal assessment, medical monitoring, and public safety [1–4].
Consequently, the study of facial expression recognition has
been receiving increasing interest from researchers, and a
series of related works have been continuously carried out.

With the advancement of FER, significant recognition
performance has been achieved on some small-scale, single-
background, non-occlusion, and non-pose variant expression
datasets such as CK+ [5], Oulu-CASIA [6], and MMI [7] in
controlled laboratory environments. However, as shown in
Fig. 1, many occlusions, poses, subtle expression variations,
lighting, and image quality present in real scenesmake recog-
nition of expressions in such scenarios significantly more
challenging. The performance of recognition on large-scale
facial expression datasets in the wild, for instance, RAF-DB
[8], FERPlus [9], and AffectNet [10], still has much potential
for upgrading. Hence, expression recognition in real environ-
ments has become one of the focuses of current research.

During the FER research, conventional machine learn-
ing methods are mainly used early on to obtain engineering
features from small controlled expression datasets [11–14]
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Fig. 1 RAF-DB (top), FERPlus (middle), and AffectNet (bottom) sam-
ples of wild expressions. The FER faces significant challenges due to
various occlusions, poses, lighting, subtle variations, image resolution,
etc.

with limited recognition performance. With the increas-
ing demand for large-scale real expression applications,
learning-based feature extraction based on deep learning can
more fully capture rich expression information, and end-to-
end network models further enhance expression recognition
efficiency. A growing number of deep learning models have
continued to improve wild FER task performance [15–17].
As attention mechanisms continue to be applied to a vari-
ety of computer tasks [18–21], attention focusing on core
regions has been further investigated in wild FER [22, 23].
Some scholars have devised center loss [24] and island loss
[25] for optimizing the inter- and intra-class distribution of
expressions and further guiding the effective learning of the
model. However, there are still some issues that need to be
further addressed as follows: a large number of occlusions,
poses, and small expression spans between classes of real
facial expressions present enormous challenges, while most
current methods use a single feature extraction and repre-
sentation space lacking a deep understanding of the overall
expression, and insufficient feature extraction capability for
regions of interest causing weak robustness problems in
recognition; since there are significant inter-class similarity
and intra-class variability in wild expression datasets, along
with labeling bias arising from subjective and objective rea-
sons, such problems can also lead to degradation of the final
recognition performance if they are not optimally guided by
model training.

To address the above concerns effectively, we introduce a
novel deep learning model for wild FER called the hybrid
attention-aware learning network (HALNet). The model
mainly involves a feature compactness network (FCN), a
hybrid attention enhancement network (HAEN), and a joint
optimization strategy component. First, FCN employs the
lightweight ResNet-18 as a baseline model for extract-
ing basic expression features along with compactness loss
to construct a more sensible intra- and inter-class spa-
tial distribution of features. Afterward, HAEN constructs
a multi-level feature enhancement space through parallel

hybrid attention fusion to effectively enhance the deep under-
standing of expressions. Particularly, HAEN consists of a
shift enhancement transformer module (SETM), a chan-
nel attention enhancement module (CAEM), and a spatial
attention enhancement module (SAEM). SETM sequentially
feeds the generalized features after channel shifting into
a multi-head self-attention learning network and a gated-
aware forward network to boost global internal contextual
interaction understanding. CAEMcapturesmoremeaningful
channel information through efficient global channel inter-
action. SAEM captures the most informative regions using a
convolutional codec constructed with a large convolutional
kernel. Finally, the label-softened classification loss function
is combined with compactness loss to jointly supervise the
optimization of the network to further enhance the learn-
ing capability of the network. By effectively combining the
above network learningmodules and under the constant over-
sight by joint loss, our approach eventually demonstrates
significant recognition performance and robustness on mul-
tiple wild expression datasets, occlusion and pose variation
datasets, and cross-dataset.

In summary, the major contributions of this paper are out-
lined below:

• Wepropose a novel HALNetmethod that can better under-
stand expression variations and capture key discriminative
features through a designed hybrid attention model, and
combined with optimization in the feature space can effec-
tively address the lack of recognition ability caused by
problems such as occlusion and pose, further improving
the robust performance of wild FER.

• We design an efficient parallel hybrid attention fusion
enhancement network called HAEN, which can better
model the global contextual internal information by the
self-attention joint unit constructed based on multiple
sub-networks designed by transformer, while the channel
attention and spatial attention units constructed based on
CNNs focus on the most meaningful feature regions and
the most representative feature regions. This fusion net-
work can enhance the deep understanding of expression
from details to the whole and unfold the final strong dis-
crimination recognition more effectively.

• We assess our HALNet method on three of the most pop-
ular wild expression datasets: RAF-DB, FERPlus, and
AffectNet. Experimental results show that our approach
achieves state-of-the-art performance. Furthermore, the
effectiveness of our method is further demonstrated by
the excellent performance achieved on the occlusion and
pose variation datasets as well as on the cross-dataset.
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2 RelatedWork

In this section, we will describe previous related research
work on both FER in the wild and attention-based FER.

2.1 FER in theWild

The rapid development in emotional intelligence takes the
study of facial expression recognition to a new level. While
most of the early research focused on laboratory-controlled
expression recognition and achieved superior recognition
results, facial expression recognition that is more in line
with the actual natural environment has received growing
focus from researchers as various application requirements
are proposed. Moreover, constrained by the various chal-
lenging issues mentioned in the previous section, more
researchers have shifted from expression analysis based on
traditional manual features to further recognition and opti-
mization research using deep learning techniques.

To address the uncertainty of expressions,Wang et al. [26]
introduced a self-cure network (SCN) to reduce the degree of
overfitting of the network by regularly arranging the learned
adaptive weights and re-labeling the samples discriminated
as uncertain. Zhang et al. [27] proposed a relative uncertainty
learning (RUL) model that uses uncertainty as weights to
blend facial features and devise a cumulative loss for better
uncertainty learning. Yan et al. [28] presented an efficient
label noise robust network (LRN) to further suppress the
heteroskedasticity uncertainties arising from inter-class label
noise by exploring the inter-class correlations. Some scholars
have improved network recognition performance by design-
ing loss functions to optimize network learning. Li et al.
[29] proposed the separate loss to strengthen the discrim-
inability of different classes of expressions by normalizing
the cosine similarity to optimize the intra- and inter-class
distances. Fan et al. [30] presented the RW loss that further
optimizes the feature space and integrates a sampleweighting
strategy to control uncertainty for improving the recognition
performanceof themodel. Farzaneh et al. [31] proposed adis-
criminant distribution-agnostic loss to deal with the problem
of limited learning ability of the network due to the extreme
class imbalance phenomenon. Siqueira et al. [32] constructed
the ensembleswith shared representations (ESRs) network to
enhance expression recognition, further reducing redundant
data and improving computational efficiency. Liu et al. [33]
designed a point adversarial self-mining (PASM) method
to enhance the learning ability of the network by gradu-
ally generating learning materials and continuously iterating
the teacher network to simulate human learning behavior.
Ruan et al. [34] designed a feature decomposition reconstruc-
tion learning (FDRL) methodology to obtain discriminative
facial features by learning latent intra- and inter-feature rela-
tionships through joint feature decomposition and feature

reconstruction networks under joint loss optimization. Zhao
et al. [35] proposed the EfficientFace model to obtain higher
wild expression recognition accuracy by establishing global
and local feature extractors and the corresponding training
optimization strategies. Jiang et al. [36] further designed the
identity and pose disentangled facial expression recognition
(IPD-FER) network to separate the expression components
from head pose and identity for mining more effective dis-
criminative features.

2.2 Attention-Based FER

The visual attention mechanism utilizes feature weight
reconstruction to select more discriminative features to
perform visual tasks such as image classification more
accurately by focusing more on those core regions of inter-
est. Wang et al. [22] built the regional attention network
(RAN) that captures critical regional features for pose and
occlusion expressions through self-attention and relational
attention to further alleviate the degradation of expres-
sion recognition performance induced by pose variation
and occlusion. Li et al. [37] proposed a slide-patch and
whole-face attention model with SE blocks (SPWFA-SE),
incorporating local and global features derived through spa-
tial attention to improve expression recognition accuracy.
Xia et al. [38] presented ADC-Net, which leverages chan-
nel attention to obtain discriminative features generated by
scrambled core local subregions of the expression for final
recognition. Zhao et al. [39] presented a global multi-scale
and local attention network (MA-Net) for obtaining robust
global and local features by constructing global multi-scale
and local attention modules to further enhance the recog-
nition of pose and occlusion expressions in real scenes.
Guo et al. [40] introduced a multi-region attention trans-
formation framework (MATF) that merges local and global
details of faces to achievemulti-region expression correlation
by fusing local detail information and coarse global fea-
tures through an attention transformation network. Liu et al.
[41] constructed an adapted multilayer perceptual attention
network (AMP-Net) according to facial perception mech-
anisms and facial attributes to enhance the robustness of
recognition by adaptively capturing critical information from
local, global, and salient facial regions. Wang et al. [42]
built a lightweight attentional embedding network (LAENet)
based on CNN-based spatial attention to better focus on
emotionally relevant locations in images. Ruan et al. [43]
designed an adaptive deep disturbance-disentangled learn-
ing (ADDL) model, which can adaptively isolate multiple
disturbances from facial expression images. It exploits the
advantages of multi-task learning and adversarial transfer
learning and achieves a good recognition performance with
the assistance of multi-level attention. Zhang et al. [44]
presented an enhanced global–local feature learning with
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priority (EDGL-FLP) method, which further enhances the
discriminative ability of various expressions with the sup-
port of feature extraction without auxiliary information and
priority-based feature attention fusion. With the introduction
of the visual transformer,Ma et al. [45] proposed visual trans-
formers with feature fusion (VTFF) method, which fused
the extracted CNN features with manual LBP features and
used a self-attention-based transformer to further enhance the
understanding of various complex expressions. Liang et al.
[46] also introduced a convolutional-transformer dual branch
network (CT-DBN) to address occlusion and pose variation
by fusing local and global features through a parallel CNN
and a self-attention-based transformer. Sun et al. [47] pro-
posed an appearance and geometry transformer (AGT)model
to further improve the recognition accuracy of wild FER by
using two self-attention-based transformers for simultaneous
feature extraction and fusion of heterogeneous data consist-
ing of images and graphics.

Most of the current methods mentioned above improve
the discriminative power of facial features mainly by con-
structing different CNN-based channel or spatial attention
mechanisms, and some of the lesser methods use a single
self-attention-based transformer to learn expression discrim-
inative features. However, these approaches do not pay
particular attention to the issue of missing information
in subspaces built in a single-attention model. In con-
trast, our presented hybrid attention mechanism can focus
on both the meaningful (channel) and most informative
(spatial) expression areas and further enhance the internal
relevance learning of expression features in the multi-head
(self-attention) mode. The fused hybrid attention network
can capture more substantial discriminative features, sig-
nificantly improving the recognition ability. This approach
enhances the deep understanding of various emotions, facili-
tates learning nuances among facial expressions, better deals
with occlusion and pose problems, and can significantly
boost the robustness and accuracy of FER under real-world
scenarios.

3 ProposedMethod

3.1 Overview

Figure 2 illustrates the overall network structure of
HALNet. Given a sample of facial expressions, our FCN
initially employs the lightweight backbone network ResNet-
18 for extracting basic expression features while exploiting
the designed compactness loss to build a more rational intra-
and inter-class spatial distribution. Subsequently, the focus
is on designing HAEN more from a global perspective to
construct a multi-level attention space to enhance the focus
on key expression regions. In particular, HAEN consists

of the SETM, CAEM, and SAEM. SETM feeds channel-
shifted features sequentially into a multi-head self-attention
learning network and a gated-aware forward network to
enhance global intra-contextual interaction understanding.
CAEM builds global channel interactions focusing on more
meaningful channel information. SAEM devises an effi-
cient codec structure based on large convolutional kernels
for group convolution to obtain the most informative areas.
The above transformer architecture-based self-attention with
global perception capability and the CNN structure-based
channel attention and spatial attention with detailed capture
advantages are fully integrated to obtain a hybrid enhanced
attention map with complementary advantages. Finally, the
training and optimization of the whole network are com-
pleted under the supervision of the joint loss optimization
strategy to further improve the accuracy and robustness of
the method.

3.2 Feature Compactness Network (FCN)

Aiming to construct a relatively efficient and lightweight fea-
ture extraction model, we adopt the shallow ResNet-18 for
the baseline model. In particular, its residual units can con-
trol the network degradation and better tackle the problem of
gradient disappearance and explosion.

When the ith expression sample x is input, the network
feature output of the last layer is obtained through the back-
bone network S:

xi
′ � S(xi , w) (1)

where w denotes the weight parameter of the network.
Compactness loss Given that wild facial expressions have

remarkable intra-class variability and inter-class similarity,
inspired by improved methods such as center loss [48, 49]
in solving such problems, we design this compactness loss
function for the intra- and inter-class spatial distance opti-
mization of facial expressions for more accurate recognition
on this basis. We hereby construct a multi-level automatic
codec to rebuild the adaptive feature space weights. This
asymmetric encoder first flattens the output x ′ of the last
layer and transforms it into a low-dimensional spacewith 128
dimensions, then remaps it again into a 1024-dimensional
sub-high-dimensional feature, and eventually maps it again
to a 512-dimensional output subspace yielding the final spa-
tial feature weights, thereby not only reducing the redundant
information, but also further enhancing the adaptive expres-
sion capability of the enhanced features. The whole process
is shown below:

hl � δ(WT
l hl−1 + bl ), l � 1, 2, · · · n (2)

ωi � ψ(τ (hl�3)) (3)
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Fig. 2 Overall framework of the proposed HALNet approach. FCN
extracts basic facial features using ResNet-18 as a baseline and
builds more rational intra- and inter-class distributions by com-
pactness loss. HAEN consists of SETM, CAEM, and SAEM

to construct a multilayer attention subspace fusion enhancement
module. Final expression classification is eventually performed
under the joint supervision of compactness loss and softened classi-
fication loss

where hl denotes the feature output of the lth layer, and when
l� 1, the network input h0 is in the form of the representation
after x ′ flattening. bl is the bias here set to 0, δ indicates the
ReLU activation function to enhance the nonlinear capability
of the network, and τ refers to the tanh activation function
of the last layer. ψ is the softmax to further map the output
weight results between 0 and 1.

After obtaining the final adaptive weightsω, the following
compactness loss is established:

LC � 1

M

M∑

i�1

ωi ◦ ∥∥x̂i − cyi
∥∥2
2 (4)

where x̂i denotes the feature vector for class yi after x ′ aver-
aging pooling, cyi ∈ RD represents the corresponding class
center, yi ∈ {1, 2, · · · n}, and ‖ · ‖2 stands for L2 regulariza-
tion. ◦ denotes the dot product by the element, andM denotes
the training sample number of themini-batch. This loss func-
tion achieves a better reconstruction of the intra-class feature

distribution, making the intra-class features exhibit better
compactness and more significant inter-class spacing.

3.3 Hybrid Attention Enhancement Network (HAEN)

This chapter introduces theHAEN in detail, which comprises
SETM, CAEM, and SAEM modules, for further obtaining
rich and critical expression features of facial regions of inter-
est.

Shift enhancement transformer module (SETM) To
address the limitations of local feature extraction in CNN,
we propose SETM,which can better model global contextual
information and enhance internal correlation understanding.
As shown in Fig. 2, SETM acts as a deep improvement mod-
ule of the ViT [50] encoder, mainly consisting of three parts,
namely CSN, MSLN, and GFN.

1) Channel shift network (CSN): To enhance the general-
ization and robustness of the transformer encoder, inspired
by the idea of shift operations [51, 52], as depicted in Fig. 2a,
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we introduce a channel shift network before entering the
self-attention network. Given an input feature x ′ of size C
× H × W , some of the channels are selected to be shifted
sequentially in pixel units along four spatial directions, such
as left, right, up, and down,with the removed pixels no longer
used, and the empty pixels are filled with 0. In addition to
the above channel operations, the remaining channels remain
unchanged. Finally, the feature output E with the same shape
after the above transformation is obtained. The specific pro-
cess is shown as follows:

e[0 : H , 1 : W ]0:αC ⇐ x ′[0 : H , 0 : W − 1]0:αC

e[0 : H , 0 : W − 1]αC :2αC ⇐ x ′[0 : H , 1 : W ]αC :2αC

e[0 : H − 1, 0 : W ]2αC :3αC ⇐ x ′[1 : H , 0 : W ]2αC :3αC

e[1 : H , 0 : W ]3αC :4αC ⇐ x ′[0 : H − 1, 0 : W ]3αC :4αC

(5)

where α represents the scale factor for the number of
selected channels and is set to 1/12. We combine the above-
transformed channels with the remaining untransformed
channels as the final output E. The implementation mech-
anism of this module is very simple and efficient and does
not contain any parameters.

2) Multi-head self-attention learning network (MSLN):
MSLN is used to calculate attention weights to improve the
model’s representation of inputs by boosting more compre-
hensive attention through parallel multi-subspace learning,
as illustrated in Fig. 2b. Based on the enhanced features
E gained from CSN, we first encode the input in terms of
learnable positional embeddings and then feed the encoded
features into a multi-head self-attention learning unit to
compute the query (Q), key (K), and value (V ) vectors, indi-
vidually. Moreover, the following operations are performed
to obtain the final attention weights based on obtaining the
above vectors and are specifically described as follows:

Q � WQ
d LN (E) ∈ R

D

K � WK
d LN (E) ∈ R

D

V � WV
d LN (E) ∈ R

D (6)

Att ( Q, K , V )� Sof tmax(
QKT

√
D

)V (7)

whereW represents the corresponding parameter matrix, LN
denotes layer normalization, D � C/H means the dimen-
sionality of each attention head, C is the original embedding
dimension, and H refers to the number of attention heads.
The final attention embedding maps Z obtained by the resid-
ual operation is delivered to the subsequent network unit as
follows:

Z � Att ( Q, K , V )+ E (8)

3) Gated-aware feed-forward network (GFN): Conven-
tional feed-forward networks dealing with self-attention
mechanisms by channel conversion through only two layers
of linear networks may not be sufficient to adapt to complex
processes [53]. For better capturing the key expression fea-
ture information from the informationflow,which enables the
effective feature information to enter the subsequent network
and improve the features’ discriminative power, we design
a gated-aware feed-forward network block, as illustrated in
Fig. 2c, which can control the flow of network information
more precisely and effectively.

For a given input Z , the process of GFN is described as
follows:

AT � F2(δ(F1(LN (Z ))) ⊗ F1(LN (Z ))) + Z (9)

where LN denotes layer normalization, F1 represents dou-
bling the original number of channels using a linear func-
tion, F2 represents projecting the expanded number of
channels to the original ones with a linear function, δ stands
for the GELU activation function, and ⊗ means element
multiplication.AT is the attention feature mapping obtained
under the whole SETM unit above. GFN guides the flow
of information past various layers in the pipeline, ultimately
producingmore accurate feature information aftermultilayer
stacking.

Channel attention enhancement module (CAEM) To fur-
ther emphasize which features are the most important for
expression recognition, we built a channel attention enhance-
ment module to more effectively mine all channels with high
correlation to key features. First, we design two 3 × 3 con-
volutions to further enhance the nonlinear feature extraction
ability and expand the field of view of the network, based
on which global average pooling is performed followed by
1 × 1 convolution for channel compression, and 1 × 1-
based convolutional channel expansion is performed again
under the action of ReLU activation function. Ultimately,
the reconstructed channel features are sigmoid-activated and
element-wise multiplied with the features before pooling
to construct the final attentional feature mapping AC . The
whole process is shown below in detail:

x̂ � f 3×3, c
conv (δ( f 3×3, c/r

conv (x ′)) (10)

AC � σ ( f 1×1, c
conv (δ( f 1×1, c/s

conv (GAP(x̂))))) ⊗ x̂ (11)

where f 3×3, c/r
conv and f 1×1, c/s

conv represent the convolution oper-
ation with 3 × 3 and 1 × 1 convolution kernels, and c is the
original number of channels, which is set to 512 here, and r
and s are scaling factors with values of 4 and 16, respectively.
GAP stands for the global average pooling, while δ and σ are
the ReLU and sigmoid activation functions, respectively, and
⊗ represents the element-wise multiplication.
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Spatial attention enhancement module (SAEM) To better
focus on themostmeaningful facial expression regions in var-
ious faces, we further design a spatial attention enhancement
module, which aims to capture important expression region
features more precisely by focusing on the critical parts
related to the task from the spatial dimension. To enhance
the capture of the focused regions under global perception,
we first employ a large convolution kernel of 7 × 7 for the
output x ′ of the last layer of the backbone network with a
group convolution size of 64 and reduce the channel dimen-
sion, followed by a group convolution of 7 × 7 convolution
kernels for feature enhancement extraction through channel
reconstruction after the nonlinear enhancement of the activa-
tion function, and finally multiply with the original x ′ after
sigmoid activation to obtain the final spatial attention feature
mapping AS , which is formulated as follows:

AS � σ ( f 7×7, c
gconv (δ( f

7×7, c/r
gconv (x ′)))) ⊗ x ′ (12)

where x ′ represents the input, f 7×7, c/r
gconv denotes the group

convolution of the 7 × 7 convolution kernel, c refers to the
original channel number, and r is the scaling factor, here is set
to 4. δ refers to theGELUactivation function,σ is the sigmoid
function, and ⊗ represents the element-wise multiplication.

Ultimately, in order to take full advantage of the above
three attentions formore effective expression recognition, we
perform a final hybrid attention fusion enhancement based
on transformer and CNN, denoted as follows:

A � AT+(AC+AS) (13)

3.4 Model Joint Optimization Strategy

For better final expression classification, we adopt a joint
network optimization learning strategy in applying hybrid
attention features for linear fully connected classification.We
first introduce label softening techniques in the commonly
used cross-entropy supervised classification loss, using label
smoothing to deal with the problem of label bias caused by
the presence of a large number of subjective or objective
factors in the wild FER dataset and to prevent overfitting
caused by mislabeling that leads to paranoid modeling of the
network around the wrong answer. Moreover, we combine
the compactness loss in the feature compactness network to
optimize the intra-class distribution in the feature learning
process, further improving the accuracy and robustness of
expression recognition. The final joint loss function is shown
below:

L � LSC + λLC (14)

where LC stands for the compactness loss, λ is a control
factor to determine the degree of involvement of this loss in
the overall loss, andLSC is the softened classification loss as
the basic classification loss is shown in detail below:

LSC � −
N∑

i�1

log(pi )[(1 − δ) ∗ yi + δ/N ] (15)

where pi represents the predicted probability after softmax,
δ denotes the smoothing factor, which is set to 0.1, yi is 1
when the label is correct and 0 when the label is incorrect,
and N refers to the number of categories.

4 Experimental Results

4.1 Datasets

To better reflect the recognition performance of the model,
we first perform validation on datasets, including the most
commonly used RAF-DB, FERPlus, and AffectNet wild
expression datasets, while the occlusion and pose variation
datasets are evaluated for targeted robustness. Additionally,
we perform a cross-dataset assessment of CK + to assess
the model’s generalization capability. Details are described
below:

RAF-DB [8] consists of a basic or composite dataset
including 29,672 real expressions collected using the Inter-
net, which is labeled by 40 skilled professionals. Our
experiments are carried out on a basic dataset comprising
12,271 training samples and 3,068 test samples to recognize
seven basic expressions.

FERPlus [9] is a real scene expression dataset by re-
labeling the FER2013 [54] dataset used in the ICML 2013
challenge into ten classes. The dataset contains 28,709,
3,589, and 3,589 training, validation, and test images of size
48 × 48 pixels. Consistent with the preceding research, we
perform overall accuracy measures on the eight classes of
expressions containing contempt.

AffectNet [10] is the largest dataset of uncontrolled expres-
sions to date, which consists of 450,000 manually annotated
images of facial expressions obtained from several Inter-
net search engines. The dataset is extremely challenging
and includes a large number of varied ethnicities, poses,
occlusions, illuminations, backgrounds, and other complex
factors, and the categories are very uneven. Similar to the
FERPlus dataset selection, we chose a training set of 287,651
images and a test set of 4,000 images to evaluate the accuracy
of the eight basic facial expressions.

CK+ [5] is a laboratory expression dataset extended from
Cohn-Kanade (CK) and includes 593 video sequences com-
posed of 123 subjects, where 327 sequences are tagged
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as seven basic expressions and contempt. Every sequence
contains a range of expressions, starting from a neutral
expression in the first frame and progressing toward the peak
response of the corresponding expression in the last frame.
Consistent with preceding studies, the initial frame of each
sequence served as the neutral expression and the final frame
as the target expression, leading to 618 images labeled as
seven basic emotions and 654 images labeled as eight emo-
tions for cross-dataset validation.

Occlusion and pose variation datasets [22] consist of six
dedicated test subsets for occlusion and pose constructed
based on the RAF-DB and FERPlus test set and the val-
idation set of AffectNet-8. The occlusion subset consists
of occlusion-RAF-DB, occlusion-FERPlus, and occlusion-
AffectNet, each containing 735, 605, and 683 samples, while
the pose subset consists of samples with angles greater
than 30° and angles greater than 45°, where pose-RAF-DB
includes 1,247 and 558 expressions with angles greater than
30 and 45, respectively. Pose-FERPlus consists of 1,170
and 633 corresponding expressions, and pose-AffectNet also
comprises 1,949 and 985 samples of different angles, respec-
tively.

4.2 Implementation Details

For all acquired facial expression samples, we unify images
to a size of 236 × 236. An on-the-fly enhancement strategy
is used to prevent overfitting and improve generalization by
performing a training image, including random crop, random
horizontal flip, normalization, and randomerasing operations
to obtain an input image of 224× 224 pixels in size. The test
image is also center-cropped and normalized to obtain a test
input image size of 224× 224.We adopt an end-to-endmodel
training approach, using ResNet-18 as the backbone model,
where ResNet-18 is pre-trained on the MS-Celeb-1M [55]
face dataset. The model is trained by setting the mini-batch
size to 64, and using an SGD optimizer with a momentum
of 0.9, and a fixed weight decay of 5e-4, while the initial
learning rate is set to 0.04. The depth N of the coding layer
in SETM is 3, and the hyperparameter λ is fixed at 0.01. The
model is trained on both RAF-DB and FERPlus datasets for
60 epochs decaying by a factor of 10 every 20 epochs.We also
train on AffectNet for 30 epochs, decaying by a factor of 5
every 5 epochs, with a dynamically balanced sampling tactic
to automatically rebalance the classes to address extreme
imbalances.

The HALNet model has a parametric count of 30.04M
and GFLOPs of 2.56. The training durations for RAF-DB,
FERPlus, and AffectNet are 39.94, 67.08, and 305.68 min,
respectively. The whole experiment is achieved using the
PyTorch platform on the NVIDIA RTX 2080Ti GPU hard-
ware base.

Fig. 3 Ablation study of encoding layer depth in SETM on RAF-DB
dataset

4.3 Ablation Studies

We proceed to conduct ablation studies to further assess the
impact of model components and some key parameters on
model performance.

Evaluation of components for HALNet To analyze the
contribution of each component of HALNet to the learning
ability of the network, we gradually add shift enhancement
transformermodule (SETM), channel attention enhancement
module (CAEM), and spatial attention enhancement module
(SAEM) to the baseline model (ResNet-18) to investigate
their effects on the model performance. Table 1 lists the
results of our analysis on the wild expression datasets RAF-
DB, FERPlus, and AffectNet. When SETM, CAEM, and
SAEM are joined to the baseline network alone, it increases
by 0.94%, 0.84%, and 0.91% on RAF-DB, 1.05%, 1.15%,
and 0.99% on FERPlus in turn, as well as 1.10%, 0.95%, and
1.22% on AffectNet, respectively, which indicates that the
above different attention learning modes can contribute to
better mining of expression key features from different per-
spectives. When the above modules are combined pairwise,
there is a considerable improvement in the overall perfor-
mance of themodel. The fusion of SETMwith othermodules
is more obvious, which indicates that SETM can better learn
potential contextual correlations after model fusion. More-
over, when the three enhancement modules are mix-fused,
the model performance shows a significant increase, which
is 2.15%, 2.16%, and 2.32%higher than the baseline onRAF-
DB, FERPlus, and AffectNet, respectively. The above results
further suggest that our model can combine the advantages
of channel and spatial attention and enhance the correlation
between the contexts within the features, which enables the
model to further enhance the understanding of expressions.

Evaluation of layer depth in SETM We conduct the cor-
responding ablation experiments to validate the effect of the
depth of the encoding layers in the SETM on the model per-
formance. It is observed that the accuracy of the RAF-DB
demonstrates variation with an increasing number of layers
(0–6), as indicated in Fig. 3. Notably, the model achieves
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Table 1 Ablation study for each
module of HALNet SETM CAEM SAEM Accuracy (%)

RAF-DB FERPlus AffectNet

✗ ✗ ✗ 88.14 87.88 59.43

✓ ✗ ✗ 89.08 88.93 60.53

✗ ✓ ✗ 88.98 89.03 60.38

✗ ✗ ✓ 89.05 88.87 60.65

✓ ✓ ✗ 89.63 89.66 61.05

✓ ✗ ✓ 89.70 89.53 61.28

✗ ✓ ✓ 89.34 89.38 60.98

✓ ✓ ✓ 90.29 90.04 61.75

The best outcomes are highlighted in bold

Fig. 4 Ablation study of the parameter λ in the network on the RAF-DB
dataset

the highest accuracy (90.29%) when the depth is 3, followed
by a decreasing trend of accuracy with further increase in
the depth. The ablation results indicate that the SETM with
a certain depth of coding layers achieves the best learning
capability, while shallower or deeper models have limited
learning capability or redundancy making the model perfor-
mance degraded.

Evaluation of parameter λ in the model We further inves-
tigate the effect of the hyperparameter λ in the model loss
function on the network performance, as depicted in Fig. 4.
We assess the λ values from 0 to 1; in turn, the experimental
results show that our approach attains the best performance
when λ � 0.01 and shows a decreasing trend with increasing
parameter values. Therefore, the final value of λ is fixed at
0.01.

Performance evaluation between SETM and ViT To bet-
ter illustrate the effectiveness of our designed modules,
we first perform benchmark experiments using the stan-
dardmulti-head self-attention learning network (MSLN) and
feed-forward network (FN) blocks from theViT [50] encoder
and then conduct ablation experiments with our channel
shift network (CSN) and gated-aware feed-forward network

Table 2 Comparison of ViT [50] and our SETM onmodel performance

Methods Accuracy (%)

RAF-DB FERPlus AffectNet

MSLN + FN (ViT) 89.63 89.53 61.25

CSN + MSLN + FN 90.03 89.82 61.50

MSLN + GFN 89.90 89.79 61.58

CSN + MSLN + GFN
(SETM)

90.29 90.04 61.75

The best results are in bold

(GFN), respectively, to verify the effect of different mod-
ules on the model performance. It is shown in Table 2 that
adding the CSN to the ViT or replacing the FN in the ViT
with the GFN block provides further performance improve-
ments over the standard ViT encoder. Moreover, the final
SETM constructed by combining all the modules mentioned
above leads to an incremental improvement in the overall
model performance on all three datasets, further proving the
design’s effectiveness and good generalization.

4.4 Visualization

We further carry out some data visualizations to illustrate the
effectiveness of our network.

Feature attention visualizationWe adopt Grad-CAM [56]
to visualize and compare the baseline model without using
attention and the HALNet model with hybrid attention on
some wild expression samples, respectively, as illustrated
in Fig. 5. The results clearly demonstrate that the feature
maps without hybrid attention exhibit a divergent energy
distribution, lacking sufficient focus on the core regions of
the expressions. Moreover, the feature maps after using our
designed HALNet with mixed attention are able to focus
more precisely on key regions, especially some occluded and
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Fig. 5 Feature heatmaps are performed via the Grad-CAM tool, dis-
playing the original samples (top), the feature maps of the baseline
model (middle), and the feature maps of HALNet (bottom). Notice-
ably, our hybrid attention model demonstrates a more precise capture
of the expression region of interest

deflected expressions, indicating a significant improvement
of our model in fine-grained expression classification.

Feature distribution visualization To further evaluate the
effectiveness of our approach, the t-SNE [57] is employed
to visualize the distribution of 2D images obtained from the
baseline methodology (ResNet-18 with cross-entropy loss)
andourHALNet approach. Figure 6 clearly illustrates that the
baseline method lacks significant aggregation and differen-
tiation among various categories of expressions. In contrast,
our HALNet approach exhibits superior spatial distribution
and constraint capabilities. It demonstrates enhanced cohe-
siveness among intra-class expressions and presents stronger
expression discrimination overall.

4.5 Comparison with State-of-the-Art Methods

We first perform a comparison of the proposed HALNet
approach with several current state-of-the-art methods on
RAF-DB, FERPlus, and AffectNet wild datasets in turn.
Moreover, we evaluate the performance of the occlusion
and pose variation datasets while conducting a cross-dataset
assessment of CK + to verify the generalizability of the
methodology. The whole process is evaluated using the over-
all sample accuracy as the metric.

Performance on RAF-DB Compared with some state-of-
the-art approaches from Table 3, our HALNet obtains the
highest results, yielding an accuracy rate of 90.29%. When
compared with attention-based methods such as RAN [22],
AMP-Net [41], ADDL [43], CT-DBN [46], and AGT [47],
we outperform the best AGT by 0.77%. For methods SCN
[26], RUL [27], and LRN [28], which address label noise and
inconsistency, our method surpasses the best RUL method
by 1.31%. For the loss optimization-based approaches, sep-
arate loss [29], DDA [31], and FDRL [34], our approach
exceeds the optimal FDRL by 0.82%. Compared with other
network structuremodels, PASM[33] andEfficientFace [35],
our method still surpasses the optimal PASM by 1.61%.
Furthermore, as evident from the confusion matrix depicted

Fig. 6 Feature distributionof theRAF-DBdataset onbaseline andHAL-
Net is visualized with t-SNE

in Fig. 7a, our approach demonstrates superior recognition
performance across most categories except for the disgust
and fear categories, which are easily recognized as other
expression categories with tiny spans, since very few training
samples are available.

Performance on FERPlus The results of comparing var-
ious methods on FERPlus are shown in Table 4, where our
designed model achieves an optimal accuracy of 90.04%.
Compared with the attention-based RAN [22], VTFF [45],
ADC-Net [38], MATF [40], PACVT [59], CT-DBN [46], and
AGT [47] methods, our method outperforms AGT by 0.64%.
When compared with SCN [26] and LRN [28], which are
improved for the label problem, our method surpasses the
best LRN method by 0.51%, and it also achieves a per-
formance improvement of 1.62% over the optimal model
in comparison with the loss-optimized RW loss [30] and
IPD-FER [36] methods. Meanwhile, our method improves
by 2.28% over the best CNN + BOVW [58] compared to
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(a) RAF-DB (b) FERPlus (c) AffectNet

Fig. 7 Confusion matrices with our HALNet on RAF-DB, FERPlus, and AffectNet datasets

Table 3 Comparison to the state-of-the-art methods on RAF-DB

Method Year Acc. (%)

Separate loss [29] 2019 86.38

RAN [22] 2020 86.90

DDA [31] 2020 86.90

SCN [26] 2020 87.03

PASM [33] 2021 88.68

EfficientFace [35] 2021 88.36

FDRL [34] 2021 89.47

RUL [27] 2021 88.98

LRN [28] 2022 88.91

AMP-Net [41] 2022 89.25

ADDL [43] 2022 89.34

CT-DBN [46] 2023 88.40

AGT [47] 2023 89.52

HALNet (ours) 2023 90.29

The best results are in bold

other feature extraction network models. From Fig. 7b, it
can be seen that our method is prone to confusion with other
expressions with smaller spans on expressions of contempt,
fear, and disgust with very few samples, and the recognition
rate is still not high. However, the rest of the categories show
better recognition performance.

Performance on AffectNet Table 5 gives the comparative
results of the different models. Our method achieves an opti-
mal accuracy of 61.75% on AffectNet with eight classes.
Compared to the attention-based RAN [22], SPWFA-SE
[37], MA-Net [39], LAENet-SA [42], AMP-Net [41], and
EDGL-FLP [44], our approach outperforms the best AMP-
Net by 0.36%. Compared with LRN [28] based on label
optimization, our method exceeds it by 0.92%. Simultane-
ously, when compared with other feature learning network
CNN + BOVW [58], ESRs [32], and EfficientFace [35], we
are 1.86% higher than the best EfficientFace. The confusion

Table 4 Comparison to the state-of-the-art methods on FERPlus

Method Year Acc. (%)

CNN + BOVW [58] 2019 87.76

ESRs [32] 2020 87.25

RAN [22] 2020 88.55

SCN [26] 2020 88.01

RW loss [30] 2020 87.60

VTFF [45] 2021 88.81

ADC-Net [38] 2021 88.90

LRN [28] 2022 89.53

IPD-FER [36] 2022 88.42

MATF [40] 2022 89.34

PACVT [59] 2023 88.72

CT-DBN [46] 2023 89.17

AGT [47] 2023 89.40

HALNet (ours) 2023 90.04

The best results are in bold

Table 5 Comparison to the state-of-the-art methods on AffectNet-8

Method Year Acc. (%)

CNN + BOVW [58] 2019 59.58

ESRs [32] 2020 59.30

RAN [22] 2020 59.50

SPWFA-SE [37] 2020 59.23

SCN [26] 2020 60.23

EfficientFace [35] 2021 59.89

MA-Net [39] 2021 60.29

LRN [28] 2022 60.83

LAENet-SA [42] 2022 61.22

AMP-Net [41] 2022 61.39

EDGL-FLP [44] 2023 61.09

HALNet (ours) 2023 61.75

The best results are in bold
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Table 6 Performance of cross-dataset evaluation on CK+

Method Train Test Acc. (%)

gACNN [60] RAF-DB CK + 81.07

SPWFA-SE [37] RAF-DB CK + 81.72

VTFF [45] RAF-DB CK + 81.88

CT-DBN [46] RAF-DB CK + 82.67

PACVT [59] RAF-DB CK + 82.10

VTFF [45] FERPlus CK + 83.79

CT-DBN [46] FERPlus CK + 81.50

PACVT [59] FERPlus CK + 83.88

SPWFA-SE [37] AffectNet CK + 85.44

VTFF [45] AffectNet CK + 86.24

LAENet-SA [42] AffectNet CK + 85.10

PACVT [59] AffectNet CK + 85.86

HALNet (ours) RAF-DB CK + 85.92

HALNet (ours) FERPlus CK + 86.85

HALNet (ours) AffectNet CK + 91.59

The best results are in bold

matrix in Fig. 7c further demonstrates the recognition rate of
ourmethod in each category.As awhole, the recognition rates
of existing methods on AffectNet are generally low, mainly
because of the large data size of this dataset, the slight dif-
ference between different classes of expressions, the lack of
labeling accuracy, etc., causing a more significant challenge
of easy misclassification.

Performance on CK+ To further validate the general-
ization capability of our designed model, a cross-dataset
evaluation is performed. We sequentially train our model on
RAF-DB, FERPlus, and AffectNet wild datasets and then
evaluate them on CK+ . The cross-validation of seven basic
emotion categories is performed on RAF-DB, and the other
two datasets are cross-validated on the eight basic expres-
sions containing contempt. The comparison results for all
methods are presented in Table 6, and our model outper-
forms the best method by 3.25%, 2.97%, and 5.35% on the
three datasets, respectively. These outcomes further illustrate
the superior generalization performance of ourmethod, espe-
cially on the large-scale AffectNet dataset.

Performance on occlusion and pose variation datasets
As illustrated in Table 7, we perform an in-depth assess-
ment of the model on three occlusion and pose variation
datasets, respectively. Our method improves over the sev-
eral methods and indicates some advantages over the present
best methodology. First, our model surpasses the optimal
AMP-Net [41] by 1.52%on the occlusion datasets occlusion-
RAF-DB and outperforms CT-DBN [46] by 0.99% on the
occlusion-FERPlus, respectively. In the following compari-
son on the pose dataset, our model outperforms the current

Table 7 Comparison to state-of-the-art approaches on occlusion and
pose variation datasets

(a) Performance of the occlusion-RAF-DB and the
pose-RAF-DB datasets

Method Occlusion Pose (≥ 30°) Pose (≥ 45°)

ResNet-18 [22] 80.19 84.04 83.15

RAN [22] 82.72 86.74 85.20

MA-Net [39] 83.65 87.89 87.99

EfficientFace [35] 83.24 88.13 86.92

VTFF [45] 83.95 87.97 88.35

AMP-Net [41] 85.28 89.75 88.35

CT-DBN [46] 84.90 88.21 86.20

HALNet (ours) 86.80 90.54 89.96

(b) Performance of the occlusion-FERPlus and the
pose-FERPlus datasets

Method Occlusion Pose (≥ 30°) Pose (≥ 45°)

ResNet-18 [22] 73.33 78.11 75.50

RAN [22] 83.63 82.23 80.40

VTFF [45] 84.79 88.29 87.20

AMP-Net [41] 85.44 88.52 87.57

CT-DBN [46] 85.79 90.60 87.50

HALNet (ours) 86.78 89.32 87.84

(c) Performance of the occlusion-AffectNet and the
pose-AffectNet datasets

Method Occlusion Pose (≥ 30°) Pose (≥ 45°)

ResNet-18 [22] 49.48 50.10 48.50

RAN [22] 58.50 53.90 53.19

MA-Net [39] 59.59 57.51 57.78

EfficientFace [35] 59.88 57.36 56.87

VTFF [45] 62.98 60.61 61.00

AMP-Net [41] 64.27 61.37 61.16

HALNet (ours) 63.54 61.52 61.32

The best results are in bold

optimal AMP-Net by 0.79% and 0.15% on pose-RAF-DB
andpose-AffectNet, respectively,when the pose is larger than
30 degrees. Moreover, our model also reveals an improve-
ment of 1.61%, 0.27%, and 0.16% over the optimal model
when compared to the pose-RAF-DB, pose-FERPlus, and
pose-AffectNet for poses larger than 45 degrees. Even though
very few methods have a slight advantage over ours com-
pared to the bestmethods, our overall performance still shows
an upward trend. Through the above experimental evalu-
ation, our model shows better robustness and recognition
performance in coping with the real expressions of pose and
occlusion problems.
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4.6 Discussion

From the above extensive experiments and results, our
approach surpasses some current state-of-the-art methods,
which are still mainly from CNN-based channel or spa-
tial attention for local enhancement such as RAN [22],
SPWFA-SE [37], AMP-Net [41], or using transformer-based
self-attention, like VTFF [45], CT-DBN [46] and AGT [47],
to increase the global feature discriminative power. For com-
plex non-rigid structures such as expressions, if the feature
information in key regions and the correlation between global
feature contexts cannot be captured simultaneously, this will
result in limited comprehension, which is not conducive to
further recognition improvement. Our hybrid attention is pre-
cisely based on the strong capturing ability of CAEM and
SAEM attention units constructed by CNN for key features
in the focus region and SETM attention units designed based
on transformer’s self-attention with stronger global context
comprehension ability for complementary multi-attention
information fusion, which can be seen from the attention
structure ablation experiments in Table 1, and the multi-
dataset experimental results that include occlusion and pose
expressions also attain more competitive results than single
attention model. While other methods, such as SCN [26],
RUL [27], and LRN [28], only perform loss optimization
in terms of label noise or intra-class and inter-class distri-
butions in feature space, our approach further improves the
model performance by designing a joint loss optimization
strategy for label noise and spatial distribution on top of the
mixed attention as mentioned in the above approach as well.

We further provide some samples of correctly classified
and misclassified expressions under our model training as
shown in Fig. 8 . From the prediction results of the three
datasets, it is noted that our model can correctly classify
expressions with occlusion, pose, and some expressions with
low image quality, but misclassification still exists for some
expressions with superimposed poses and occlusions as well
as for expressions with tiny expression spans, which are still
highly challenging to comprehend when the model relies
only on a single image. It can also be observed that some
labeling errors caused by subjective factors lead to devia-
tions between the predicted results of the model and the true
labels, especially the large-scale dataset AffectNet with low
labeling accuracy.

5 Conclusion

With the increasing interest in developing innovative appli-
cations of biological features in intelligent science based on
deep learning methods, it is crucial to improve the recogni-
tion rate and robustness of models. This paper proposes a
hybrid attention-aware learning network (HALNet) for wild

Fig. 8 Some sample examples of correct classification and misclassifi-
cation on the three datasets. T stands for true labels, and P stands for
predicted labels

FER, which can more effectively deeply understand and
accurately recognize real expressions, including occlusion
and pose variations. Initially, a lightweight FCN captures
the basic expressive features while simultaneously optimiz-
ing the intra-class and inter-class distribution. Then, the
hybrid attention enhancement network HAEN is focused on
designing a multi-level attention fusion network by SETM,
CAEM, and SAEM to more effectively capture discrimi-
native features that facilitate accurate recognition. Finally,
the expression classification is performed under joint super-
vised loss optimization. We perform experiments on three
wild expression datasets, demonstrating that our method
surpasses some state-of-the-art methods. The estimation of
occlusion and pose variation datasets as well as cross-dataset
further validates the well-generalization and robustness of
our approach.

Since human perception of emotions is a multifactor-
triggered process, and our current model only targets single-
modal and static expression recognition, the performance
will be limited by the singularity of the temporal sequence
and the singularity of the modality. Therefore, in the next
step, we will further conduct research on dynamic expres-
sion and multimodal (such as expression, speech, and body
gesture) emotion recognition.
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