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Abstract

The vertical deflection of steel-concrete composite bridges (VDCB) was estimated using novel ensemble soft computing
(SC) models. These models, namely SGBE-RF, RSS-RF, and B-RF, are a combination of random forest and various ensemble
techniques such as Stochastic Gradient Boosting (SGBE), random SUBSPACE (RSS), and bagging (B). Data from 83
bridges in Vietnam were obtained and utilized for the study. The importance of input variables used in prediction modeling
was evaluated using correlation-based feature selection. The models were validated and compared using various methods
including root mean squared error, mean absolute error, R-squared (Rz), and Taylor diagrams. The validation results revealed
that all three ensemble models, SGBE-RF (R?> = 0.805), RSS-RF (R? = 0.781), and B-RF (R? = 0.764) performed well in
predicting the VDCB. Their performance surpassed that of the single RF model (R? = 0.74). Among them, SGBE-RF emerged
as the superior model. Therefore, it can be concluded that SGBE-RF is a powerful tool in accurate and quick prediction of

the VDCB.

Keywords Vertical deflection - Bridge engineering - Soft computing - Ensemble models

1 Introduction

Vertical deflection, a change in a bridge’s structure along
the vertical axis, can occur due to various factors such as
load, temperature changes, or material degradation over time.
Excessive vertical deflection can lead to lateral drift, affecting
the stability of the bridge, and cause vehicle-bridge coupling
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vibration, impacting the operation of vehicles on the bridge.
Thus, vertical deflection in bridge structures is indeed a criti-
cal safety concern. While a bridge may be structurally sound,
excessive vertical deflection can indicate potential issues [1].
Therefore, monitoring and controlling vertical deflection is
crucial for maintaining the safety and longevity of bridge
structures.

Monitoring and analyzing vertical deflection can also
help identify potential structural weaknesses or areas of
the bridges in need of maintenance or repair. Traditionally,
there are several approaches for determination of vertical
deflection of bridges including dial gauge method (DGM),
linear variable differential transformer (LVDT), laser scan-
ning method (LSM), and finite element method (FEM). In
DGM, a dial gauge is mounted on the bridge structure, and
the deflection is measured by observing the movement of the
gauge; the accuracy of this method is limited by the sensi-
tivity of the dial gauge. LVDT uses a linear transducer to
measure the displacement of a target point on the bridge; this
method has better accuracy than the dial gauge method, but it
requires more complex instrumentation. LSM involves using
a laser scanner to measure the distance between the scanner
and the bridge structure. The deflection is then calculated
based on the change in distance between the scanner and the
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bridge; this method provides high accuracy and precision,
but is also more complex and expensive. FEM is a computer-
based simulation method that uses mathematical models to
simulate the behavior of the bridge structure under load; this
method is useful for predicting the behavior of a bridge under
different loading scenarios, but its accuracy is dependent on
the quality of the model and input data.

In recent years, soft computing (SC) models, including
machine learning (ML) models, have gained prominence.
These models are built on computational algorithms that
learn from data and analyze the relationship between input
and output variables. This ability has made them particu-
larly effective in solving complex real-world problems. They
have found applications in various fields, including struc-
tural engineering [2, 3], material science [4, 5], and bridge
engineering [6]. It is considered more flexible and adaptable
approach than traditional computing approaches like FEM.
Yue et al. [7] applied deep learning and linear regression
in prediction of temperature-induced deflection of long-span
cable-stayed bridges. Deng et al. [8] used deep learning to
predict the deflection of in-service bridge based on time-
continuous vehicle influence coefficient and environmental
temperature variables. Yue et al. [9] developed indepen-
dent recurrent neural network to predict temperature-induced
deflection of a cable-stayed bridge based on the average tem-
perature of the main girder. Wang et al. [10] developed and
compared two SC models namely LSTM neural network and
support vector machines (SVM) for prediction of tempera-
ture-induced defection of cable-stayed bridges. In general,
these mentioned studies showed that the SC models have a
great potential in solving the problems of bridge engineering
[6]. However, their application is still limited in prediction of
the deflection of various types of bridges [11]. Thus, devel-
opment and application of novel SC models in prediction of
the deflection of bridges are required for better performance
of predictive models which might help the bridge engineers
to save time and cost for bridge health monitoring and eval-
uation.

In this study, thus, the main objective is to predict the Ver-
tical deflection of steel-concrete composite bridges (VDCB)
using three novel ensemble models namely SGBE-RF, RSS-
RF and B-RF—a combination of random forest and various
ensemble techniques namely stochastic gradient boosting
(SGBE), random subspace (RSS), and bagging. The main
difference of this study compared with previous published
works is that this is the first study working on the predic-
tion of the VDCB using soft computing models. In addition,
novelty of this study also lies on the development of the
novel ensemble soft computing models in prediction of the
VDCB. Database of 83 experimental loading tests carried
out on 83 bridges in various locations throughout Vietnam
was collected and used for the model’s study. Correlation-
based feature selection was used to evaluate the importance
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of input variables used in prediction modeling. Various meth-
ods namely RMSE, MAE, and R, and Taylor diagram were
selected for validation and comparison of the models. Weka
software was used for predictive modeling and data process-
ing.

2 Materials and Methods
2.1 Data Used

In this study, experimental loading tests were conducted on
83 bridges located throughout Vietnam [11]. These bridges
have operating periods ranging from 4 to 43 years. The data
collected from these tests were utilized for the model” study.
Database collected includes two main types of variables:
input parameters (X1-X5) which consist of the bridge’s
cross-sectional shape, length of concrete beam, number of
years in use, height of the main girder, and distance between
the main girders and an output parameter (Y) which is
the maximum vertical deflection measured in millimeters.
The maximum vertical deflection was determined through a
truck-loading test using a 300kN load, in which the largest
measured bridge deflection was selected through the eccen-
tricity method. The deflection measurements were taken
using a dial indicator with 0.01 mm increments, mounted at
the mid-span position on the bottom of the beam with limit
pins and an outer frame clamp (Fig. 1 and Fig. 2). The dis-
tribution of the input and output variables used in this study
is presented in Fig. 3. Table 1 shows the initial statistical
analysis of data used in this study. To train and validate the
models, the experimental data were randomly split into two
parts including 70% of the data used to generate the training
dataset and the remaining 30% used for the testing dataset.
In this study, we have used the hold-out method to divide
the data into training and testing as this method is a popular
method for splitting the data for ML modeling [12]. Data of
this study was also presented in the previous work [11].

2.2 Methods Used
2.2.1 Random Forest (RF)

RF algorithm—a popular ML technique was first introduced
by Leo Breiman and Adele Cutler in 2001 [13]. It is based
on the concept of decision trees, but instead of using a single
decision tree, Random Forest builds an ensemble of decision
trees, which are combined to make predictions [14]. In RF,
multiple decision trees are built on different subsets of the
data and features, and the predictions of the trees are com-
bined to make the final prediction [15]. In each iteration of
the algorithm, a random subset of the data and a random
subset of the features are selected for building the decision
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Fig. 1 Dial indicator used in the
experiments (a) and field photo
of experiments (b)
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Table 1 Initial statistical analysis of data used in this study

No. Codes Parameters Mean Std Min 25% 50% 75% Max
1 X1 Cross-sectional shape (I and T) 1.651 0.48 1 1 2 2 2

2 X2 Length of concrete beam (m) 24.621 6.401 9 21 24.54 33 35

3 X3 Years of exploitation 20.47 10.711 4 14 15 22 43

4 X4 Height of main girder (m) 1.308 0.262 0.9 1.07 1.21 1.64 1.73
5 X5 Distance between the main girders (m) 1.96 0.571 0.95 1.525 2.25 2.4 2.75
6 Y1 Maximum vertical deflection (mm) 7.036 3.005 1.06 4.667 6.945 9.165 15.72
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trees [16], which helps to reduce the risk of overfitting and
improves the generalizability of the model.

RF has been applied in a wide range of applications,
including finance, healthcare, and bioinformatics. In this
work, RF was used as a base model to develop various novel
ensemble models for prediction of the VDCB.

2.2.2 Stochastic Gradient Boosting (SGBE)

SGBE is an extension of the gradient boosting algorithm and
was first introduced by Jerome Friedman in 2002 [17]. It is
an ensemble method used in ML that combines the results of
multiple models trained on different subsets of the data. In
this technique, the main principle is to iteratively train models
on the residuals of the previous models, while introducing
a stochastic element to reduce overfitting and improve the
generalizability of the model [17]. It starts by training an
initial model on the training data, which is then used to make
predictions on the same data. In each subsequent iteration,
the SGBE method introduces a new model that is trained on
the residuals (difference between the predicted values and
the actual values) of the previous model. However, instead of
training the model on the entire dataset, the method randomly
selects a subset of the data for each iteration, as well as a
subset of the features [18], which helps to reduce overfitting
and improve the robustness of the model.

SGBE has been successfully applied in a wide range of
applications, including image and speech recognition, natural
language processing, and bioinformatics. In this work, SGBE
was used to improve the performance of RF algorithm to
develop an ensemble model of SGBE-RF in prediction of
the VDCB.

2.2.3 Random Subspace (RSS)

RSS was first introduced by Tin Kam Ho in 1998 which
is known as an effective ensemble technique in improving
the performance of the weak models [19]. In this method, a
subset of the features is randomly selected for each tree in
the forest, and the trees are then combined to form the final
ensemble model [20]. It is particularly useful when working
with high-dimensional datasets, where there are many fea-
tures, and the number of training samples is limited. Unlike
traditional ensemble techniques like Bagging or Boosting
which use a single model with multiple training sets, RSS
employs a different strategy by using multiple models on
different subsets of features [21]. Therefore, the method can
reduce overfitting, identify important features, and provide
more robust predictions on new data.

RSS has been shown to be effective in a wide range of
applications, including image classification, text classifica-
tion, and bioinformatics. In this study, RSS was used to
improve the performance of Random Forest algorithm to
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develop an ensemble model of RSS-RF in prediction of the
VDCB.

2.2.4 Bagging (B)

Bagging known as bootstrap aggregating is one of the classi-
cal ensemble techniques used in ML to improve the accuracy
and robustness of single models [22]. It was first introduced
by Leo Breiman in 1996 [22]. The main principle of Bag-
ging is to create multiple versions of the same model, each
trained on a different subset of the training data and then,
combine their predictions to produce a more accurate and
robust ensemble model [23]. Bagging is particularly use-
ful when working with complex models that are prone to
overfitting [24], as it can help to reduce the variance in the
predictions and improve the generalizability of the model.
Bagging has become a popular technique in a wide range
of applications such as Image and speech recognition, finan-
cial forecasting, fraud detection, medical diagnosis, natural
language processing. In this study, Bagging was selected in
improving the performance of RF model for developing an
ensemble model of B-RF for prediction of the VDCB.

2.2.5 Validation Indicators

Several statistical measures are utilized for model validation.
In this study, we have used statistical metrics R-squared (R?),
root mean squared error (RMSE), and mean absolute error
(MAE) [25-28]. R2, also known as the coefficient of determi-
nation, signifies the proportion of variance in the dependent
variable that can be explained by the model. Its values range
from Oto 1 [29, 30]. A value of “1” suggests that the indepen-
dent variables account for all the variation in the dependent
variable, indicating a perfect fit of the model to the data. Con-
versely, a value of “0” implies that the independent variables
do not explain any of the variation in the dependent vari-
able around its mean. The RMSE is a metric used in model
validation to quantify the difference between predicted and
actual values [31]. A lower RMSE indicates a better fit of
the model to the data [32, 33]. The MAE is another impor-
tant metric used in model validation [34, 35]¢. It shows how
close a model’s predictions are to the actual results. It gives
equal weight to all errors and is less influenced by outliers.
A lower MAE means the model’s predictions are more accu-
rate. It is always desirable to use statistical measures R2,
RMSE and MAE together for more comprehensive view of
model performance. Some researchers have also calculated
the error level-cumulative frequency relationship to evaluate
accuracy of predictive model [32, 33].

In model development, statistical measures such as R2,
RMSE, and MAE play a crucial role during both the training
and testing phases. During the training phase, these mea-
sures help evaluate the model’s performance on the training
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data, providing insights into how well the model is learning.
For instance, a high R coupled with low RMSE and MAE
values would suggest that the model has effectively learned
from the training data. On the other hand, during the testing
phase, these measures assess how well the trained model can
generalize to unseen data. If the model exhibits high R? and
low RMSE and MAE values on the testing data, it is an indi-
cation that the model is not overfitting the training data and
can effectively generalize to new, unseen data.

In addition to RMSE, MAE, and R?, Taylor diagram was
also used to compare the performance of different ML models
in this study. Itis a polar coordinate plot that shows how well a
set of model simulations match observed data in terms of their
R2, RMSE, MAE, and standard deviation [36]. Each model
simulation is represented by a point on the diagram, and the
closer the point is to the reference point (which represents
the observations), the better the model’s performance.

2.2.6 Correlation-Based Feature Selection (CFS)

CFS is one of the most popular feature selection algorithms
used in selecting a subset of relevant features that have strong
correlations with the target variable [37]. It was first proposed
by Mark Hall in 1999 as a way to improve the performance
of ML models by reducing the number of irrelevant or redun-
dant features in the dataset [38]. It works by computing the
correlations between each feature and the target variable, as
well as the correlations between features themselves, repre-
senting by average metric (AM), on which it selects the subset
of features that have the highest correlations with the target
variable while minimizing the correlation between features
[38]. In this work, CFS was selected to evaluate the impor-
tance of input variables vs the output of the VDCB.

3 Methodological Flowchart

Methodology of this study is presented in Fig. 4. It started
with the preparation of the data used for the modeling. Data
of 83 bridges collected were divided into training (70%)
and testing (30%). Using training dataset, the models were
then trained and constructed. Out of four models, three
hybrid models namely B-RF, RSS-RF, and SGBE-RF were
constructed by combing the RF and B, RSS, and SGBE
optimizations. In the hybrid models, B, RSS, and SGBE opti-
mizations were used to optimize the training dataset, and
then, the optimal training dataset was used in the RF for
prediction. Validation and comparison of the models were
carried out using testing dataset and several popular valida-
tion indicators including R, RMSE and MAE.

4 Results and Discussion
4.1 Importance of Input Variables Using CFS

CFS feature selection method was applied to evaluate the
importance of input variables used for prediction of the
VDCB as shown in Fig. 5. It can be observed that X2 has
the highest value of AM (1.668), followed by X1 (1.434),
X4 (1.314), X5 (0.997), and X3 (0.92), respectively. Thus, it
can be stated that X2 has the highest importance for predic-
tive modeling of the VDCB, and all input variables (X 1-X5)
have contributed and selected in predicting the VDCB. It is
reasonable as the length of concrete beams can impact the
overall load-carrying capacity of the bridges affecting the
vertical deflection [39].

Longer beams usually deflect more under the same load.
This is because deflection in a beam is also influenced by its
length. According to beam theory, for a simply supported
beam under a uniformly distributed load, the maximum
deflection is proportional to the length of the beam to the
fourth power. So, if all other factors (like material, cross-
sectional shape, and load) are constant, a longer beam will
deflect more. Thus, while a larger moment of inertia (related
to the beam’s cross-sectional shape) can help resist bend-
ing, the length of the beam plays a significant role in its
overall deflection. Both these factors are crucial in structural
design. It is also considered as one of the most important fac-
tor affecting the vertical deflection and vertical acceleration
of the bridges [40, 41].

4.2 Training and Validating the Models

Using training dataset, three ensemble models (SGBE-RF,
RSS-RF, B-RF) and a single RF model were trained and con-
structed. In order to receive the highest performance of these
models, the hyper-parameters used in training the models
were optimized through the trial-and-error process as shown
in Table 2.

Validation of the models was carried out on both training
and testing datasets as shown in Figs. 6, 7, 8, and Table 3. It
is observed from Fig. 6 that SGBE-RF has the highest value
of R? (0.845) in the case of training dataset, followed by RF
(0.834), RSS-RF (0.824), and R-RF (0.773), respectively. In
the case of testing dataset, SGBE-RF also has the highest
values of R? (0.805), followed by RSS-RF (0.781), B-RF
(0.764), and RF (0.74), respectively. It is also observed that
R values of ensemble models (SGBE-RF, RSS-RF and B-
RF) are higher than R?value of RF. In respect with RMSE,
Fig. 7 shows that SGBE-RF has the lowest value (1.298)
compared with other models such as RF (1.329), RSS-RF
(1.408), B-RF (1.601) in the case of training dataset while in
the case of testing dataset SGBE-RF also has the lowest value
(1.215) compared with RSS-RF (1.232), B-RF (1.317), and
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RF (1.509). Itis also observed that RMSE values of ensemble
models (SGBE-RF, RSS-RF and B-RF) are lower than RMSE
value of RF. In the case of MAE, Table 3 shows that that
SGBE-RF has the lowest value (0.805) compared with other
models such as RF (0.816), RSS-RF (0.935), B-RF (1.087)
in the case of training dataset while in the case of testing
dataset SGBE-RF also has the lowest value (0.92) compared
with RSS-RF (0.926), B-RF (1.030), and RF (1.097). Itis also
seen that MAE values of ensemble models (SGBE-RF, RSS-
RF and B-RF) are lower than MAE value of RF. Analysis
of Taylor diagram shows that SGBE-RF is the nearest point
to the reference line compared with other models RSS-RF,
B-RF, and RF for both training and testing datasets (Fig. 8).

Generally, it can be stated that all three ensemble mod-
els (SGBE-RF, RSS-RF and B-RF) and a single RF model
performed well for prediction of the VDCB. However, the
performance of SGBE-RF is better than other ensemble
models (RSS-RF and B-RF), and all three ensemble mod-
els (SGBE-RF, RSS-RF and B-RF) outperforms single RF
model. It means that ensemble techniques like SGBE, RSS,
and Bagging slightly improved the performance of a sin-
gle RF model. It is because of the advantages of ensemble
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Average Metric (AM)

techniques in improving the accuracy and performance of
the single ML models. More specifically, SGBE has several
advantages [17, 42] including (i) the algorithm can reduce
the risk of overfitting and improve the generalization perfor-
mance of the model due to randomly subsampling the data
and selecting a random subset of features at each stage of the
boosting process, and (ii) it is capable in working with com-
plex, high-dimensional datasets and effectively capturing the
underlying patterns in the data and improve the overall accu-
racy of the predictions by combining multiple weak models
into a strong ensemble model. Advantages of RSS are [19,
43] (i) it is able to improve the accuracy of the predictions
by building multiple models on different random subsets of
features, (ii) it helps in reducing overfitting by limiting the
number of features that are used in each individual model,
and (iii) it is able to identify which features are consis-
tently important across the different models. For Bagging,
the advantages are [22, 44] (i) it is able to reduce the risk of
overfitting to the training data by building multiple models
on different bootstrapped samples of the dataset; thus, it can
improve the performance of the model, especially in cases
where the original dataset is small or noisy, (ii) it is capable in
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Table 2 Hyper-parameters of the models used in this study
No. Hyper-parameters Models

RF SGBE-RF RSS-RF B-RF
1 Batch size 100 100 100 100
2 Debug False False False False
3 Do not check capabilities False False False False
4 Num decimal places 20 2 2 50
5 Minimize Absolute Error - - - -
6 Num Execution slots 1 - 1 1
7 Bag Size Percent 100 - - 100
8 Num iterations 10 - 10 100
9 Resume - - 3 -
10 Shrinkage - - False -
11 Calc out Bag False - 100 False
12 Output Out of Bag Complexity Statistics False - - False
13 Seed 1 1 1 1
14 Sub space size - 0.5 -
15 Print Classifiers False - - False
16 Represent Copies Using Weights - - - False
17 Store Out of Bag Predictions False - - False
18 Break Ties Randomly False - - -
19 Compute attribute Importance False - - -
20 Max Depth 50 - - -
21 Num Features 100 - - -

improving the stability of the model by reducing the variance
of the predictions, and (iii) this algorithm is powerful to out-
liers in the data, as the samples are drawn with replacement,
and each model is built on a different subset of the data; it can
help in reducing the impact of outliers on the final predic-
tions; thus, the performance of the final model is improved.
In addition, RF is a versatile and powerful algorithm that also
offers several advantages including high prediction accuracy,
robustness to overfitting, automatic feature selection, toler-
ance to missing data, and scalability [13, 45]. In this work,
RF is the most suitable model for combining with SGBE for
improving the predictive modeling of the VDCB.

5 Concluding Remarks

This study proposed and applied three novel ensemble mod-
els (SGBE-RF, RSS-RF, B-RF) and a single RF model for
predicting the VDCB. These models were trained and vali-
dated using data from 83 steel-concrete composite bridges
located in various part of Vietnam. The validation and com-
parison of these models were conducted using standard
statistical methods, including R*, RMSE, MAE, and the

Taylor diagram. The validation results indicated that the
SGBE-RF model outperformed the other models (RSS-RF,
B-RF, and RF) in predicting the VDCB. Notably, the three
ensemble models (SGBE-RF, RSS-RF, B-RF) demonstrated
superior performance compared to the single RF model.

The findings of this study underscore the potential of
ensemble models in enhancing the accuracy and robustness
of VDCB predictions. It was also observed that the length
of the concrete beam is a critical parameter in predicting the
VDCB. Future research could investigate the applicability of
these models to other types of bridge types, depending on the
sufficient availability of data. Additionally, exploring other
ensemble models or machine learning techniques could fur-
ther enhance the accuracy and robustness of predictions in
bridge engineering.
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Fig. 6 R values of the models:
a training RF, b testing RF,

¢ training SGBE-REF, d testing
SGBE-REF, e training RSS-RF,
f testing RSS-REF, g training
B-RF, and h testing B-RF
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Table 3 Performance of the
models using training and testing No. Parameter Training dataset Testing dataset
datasets
atasets R? MAE RMSE R2 MAE RMSE
1 RF 0.834 0.816 1.329 0.74 1.097 1.509
2 SGBE-RF 0.845 0.805 1.298 0.805 0.92 1.215
3 RSS-RF 0.824 0.935 1.408 0.781 0.926 1.232
4 B-RF 0.773 1.087 1.601 0.764 1.030 1.317

Acknowledgements This research is funded by University of Transport
Technology (UTT) under grant number DTTD2022-11.

Funding The author(s) received no financial support for the research,
authorship, and/or publication of this article.

Data Availability Some or all data, models, or code that support the
findings of this study are available from the corresponding author upon
reasonable request.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Sun,J.; Jiang, Y.: Bridge dynamic deflection and damage analysis
based on transfer matrix of multibody system. Int. J. Steel Struct.
23(3), 709-718 (2023)

Albostami, A.S.; Al-Hamd, R.K.S.; Alzabeebee, S.: Soft comput-
ing models for assessing bond performance of reinforcing bars in
concrete at high temperatures. Innov. Infrastruct. Solut. 8(8), 1-19
(2023)

Ngamkhanong, C.; Alzabeebee, S.; Keawsawasvong, S.; Thong-
chom, C.: Performance of different machine learning techniques

@ Springer

10.

11.

in predicting the flexural capacity of concrete beams reinforced
with FRP rods. Asian J. Civ. Eng. pp. 1-12 (2023)

. Albostami, A.S.; Al-Hamd, R.K.S.; Alzabeebee, S.; Minto, A.;

Keawsawasvong, S.: Application of soft computing in predicting
the compressive. Strength of Self-Compacted Concrete Containing
Recyclable Aggregate (2023)

. Al Hamd, R.K.S.; Alzabeebee, S.; Cunningham, L.S.; Gales, J.:

Bond behaviour of rebar in concrete at elevated temperatures: a
soft computing approach. Fire Mater. (2022)

. Fan, W.; Chen, Y.; Li, J.; Sun, Y.; Feng, J.; Hassanin, H.; Sareh, P.:

Machine learning applied to the design and inspection of reinforced
concrete bridges: Resilient methods and emerging applications. In:
Structures, pp. 3954-3963. Elsevier (2021)

. Yue, Z.-x; Ding, Y.-l; Zhao, H.-w: Deep learning-based minute-

scale digital prediction model of temperature-induced deflection of
a cable-stayed bridge: case study. J. Bridg. Eng. 26(6), 05021004
(2021)

. Deng, Y.; Ju, H.; Zhai, W.; Li, A.; Ding, Y.: Correlation model of

deflection, vehicle load, and temperature for in-service bridge using
deep learning and structural health monitoring. Struct. Control.
Health Monit. 29(12), e3113 (2022)

. Yue, Z.; Ding, Y.; Zhao, H.; Wang, Z.: Case study of deep learning

model of temperature-induced deflection of a cable-stayed bridge
driven by data knowledge. Symmetry 13(12), 2293 (2021)

Wang, M.; Ding, Y.; Zhao, H.: Digital prediction model of
temperature-induced deflection for cable-stayed bridges based on
learning of response-only data. J. Civ. Struct. Heal. Monit. 12(3),
629-645 (2022)

Ha, H.; Manh, L.V.; Nguyen, D.D.; Amiri, M.; Prakash, I.; Pham,
B.T.: Hybrid machine learning model for prediction of vertical
deflection of composite bridges. In: Proceedings of the Institution
of Civil Engineers-Bridge Engineering, 1-10 (2023)



Arabian Journal for Science and Engineering (2024) 49:5505-5515

5515

12.

13.
14.

15.

16.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Van Phong, T., Pham, B.T. : Performance of Naive Bayes Tree with
ensemble learner techniques for groundwater potential mapping.
Physics and Chemistry of the Earth, Parts A/B/C (2023)

Breiman, L.: Random forests. Mach. Learn. 45, 5-32 (2001)
Bernard, S.; Heutte, L.; Adam, S.: On the selection of decision
trees in random forests. In: 2009 International Joint Conference on
Neural Networks. IEEE, pp 302-307 (2009)

Fratello, M.; Tagliaferri, R. Decision trees and random forests.
Encycl. Bioinf. Comput. Biol. ABC Bioinf. 374 (2018)
Diaz-Uriarte, R.; Alvarez de Andrés, S.: Gene selection and clas-
sification of microarray data using random forest. BMC Bioinf. 7,
1-13 (2006)

Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data
Anal. 38(4), 367-378 (2002)

. Ibragimov, B.; Gusev, G.: Minimal variance sampling in stochastic

gradient boosting. Adv. Neural Inf. Process. Syst. 32 (2019)

Ho, T.K.: The random subspace method for constructing decision
forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832-844
(1998)

Baskin, L.I.; Marcou, G.; Horvath, D.; Varnek, A.: Random sub-
spaces and random forest. Tutor. Chemoinf.; 263-269 (2017)
Mielniczuk, J.; Teisseyre, P.: Using random subspace method for
prediction and variable importance assessment in linear regression.
Comput. Stat. Data Anal. 71, 725-742 (2014)

Breiman, L.: Bagging predictors. Mach. Learn. 24, 123-140 (1996)
Dudoit, S.; Fridlyand, J.: Bagging to improve the accuracy of a
clustering procedure. Bioinformatics 19(9), 1090-1099 (2003)
Sutton, C.D.: Classification and regression trees, bagging, and
boosting. Handb. Stat. 24, 303-329 (2005)

Chicco, D.; Warrens, M.J.; Jurman, G.: The coefficient of determi-
nation R-squared is more informative than SMAPE, MAE, MAPE,
MSE and RMSE in regression analysis evaluation. Peer] Comput.
Sci. 7, €623 (2021)

Nguyen, T.T.; Nguyen, D.D.; Nguyen, S.D.; Prakash, I.; Van Tran,
P.; Pham, B.T.: Forecasting construction price index using artifi-
cial intelligence models: support vector machines and radial basis
function neural network. J. Sci. Trans. Technol. 2, 9-19 (2022)
Ly, H.-B.; Nguyen, T.-A.; Pham, B.T.; Nguyen, M.H.: A hybrid
machine learning model to estimate self-compacting concrete com-
pressive strength. Front. Struct. Civ. Eng. 16, 1-13 (2022)
Nguyen, M.D.; Costache, R.; Sy, A.H.; Ahmadzadeh, H.; Van Le,
H.; Prakash, I.; Pham, B.T.: Novel approach for soil classification
using machine learning methods. Bull. Eng. Geol. Env. 81(11), 468
(2022)

Taylor, R.: Interpretation of the correlation coefficient: a basic
review. J. Diagn. Med. Sonography 6(1), 35-39 (1990)

Nguyen, D.D.; Roussis, P.C.; Pham, B.T.; Ferentinou, M.; Mamou,
A.; Vu, D.Q.; Bui, Q.-A.T.; Trong, D.K.; Asteris, P.G.: Bagging
and multilayer perceptron hybrid intelligence models predicting
the swelling potential of soil. Transp. Geotech. 36, 100797 (2022)

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Chai, T.; Draxler, R.R.: Root mean square error (RMSE) or mean
absolute error (MAE)?—Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 7(3), 1247-1250 (2014)
Alzabeebee, S.; Alshkane, Y.; Keawsawasvong, S.: New model to
predict bearing capacity of shallow foundations resting on cohe-
sionless soil. Geotech. Geol. Eng. 41, 1-17 (2023)

Alzabeebee, S.: Explicit soft computing model to predict the
undrained bearing capacity of footing resting on aggregate pier
reinforced cohesive ground. Innov. Infrastruct. Solut. 7(1), 105
(2022)

Vu, D.Q.; Nguyen, D.D.; Bui, Q.-A.T.; Trong, D.K.; Prakash, I.;
Pham, B.T.: Estimation of California bearing ratio of soils using
random forest based machine learning. J. Sci. Transp. Technol. 44,
48-61 (2021)

Thai, P.B.; Nguyen, D.D.; Thi, Q.-A.B.; Nguyen, M.D.; Vu, T.T.;
Prakash, I.: Estimation of load-bearing capacity of bored piles using
machine learning models. Sci. Earth 44 (4) (2022)

Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi,
O.: Estimation of monthly reference evapotranspiration using
novel hybrid machine learning approaches. Hydrol. Sci. J. 64(15),
1824-1842 (2019)

Michalak, K.; Kwasnicka, H.: Correlation based feature selection
method. Int. J. Bio-Inspir. Comput. 2(5), 319-332 (2010)

Hall MA (1999) Correlation-based feature selection for machine
learning. The University of Waikato,

Garden, H.; Quantrill, R.; Hollaway, L.; Thorne, A.; Parke, G.:
An experimental study of the anchorage length of carbon fibre
composite plates used to strengthen reinforced concrete beams.
Constr. Build. Mater. 12(4), 203-219 (1998)

XuJ (2020) Machine learning—based dynamic response prediction
of high—speed railway bridges.

Howe, R.; Muller, R.: Polycrystalline silicon micromechanical
beams. J. Electrochem. Soc. 130(6), 1420 (1983)

Moisen, G.G.; Freeman, E.A.; Blackard, J.A.; Frescino, T.S.; Zim-
mermann, N.E.; Edwards, T.C., Jr.: Predicting tree species presence
and basal area in Utah: a comparison of stochastic gradient boost-
ing, generalized additive models, and tree-based methods. Ecol.
Model. 199(2), 176-187 (2006)

Li, H.; Wen, G.; Yu, Z.; Zhou, T.: Random subspace evidence clas-
sifier. Neurocomputing 110, 62-69 (2013)

Fan, W.; Xu, B.; Li, H.; Lu, G.; Liu, Z.: A novel surrogate model
for channel geometry optimization of PEM fuel cell based on
bagging-SVM ensemble Regression. Int. J. Hydrog. Energy 47(33),
14971-14982 (2022)

Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z.: The linear random forest
algorithm and its advantages in machine learning assisted logging
regression modeling. J. Petrol. Sci. Eng. 174, 776-789 (2019)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer



	Ensemble Soft Computing Models for Prediction of Deflection of Steel–Concrete Composite Bridges
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Data Used
	2.2 Methods Used
	2.2.1 Random Forest (RF)
	2.2.2 Stochastic Gradient Boosting (SGBE)
	2.2.3 Random Subspace (RSS)
	2.2.4 Bagging (B)
	2.2.5 Validation Indicators
	2.2.6 Correlation-Based Feature Selection (CFS)


	3 Methodological Flowchart
	4 Results and Discussion
	4.1 Importance of Input Variables Using CFS
	4.2 Training and Validating the Models

	5 Concluding Remarks
	Acknowledgements
	References




