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Abstract
Granite rocks are subjected to exogenic forces, such as tectonic stress and chemical weathering, which cause them to weather
differentially, forming boulders that are common in temperate and humid regions. The presence of a large boulder on a slope
can significantly impact slope stability, resulting in the formation of what is known as a solitary boulder slope. This study is
dedicated to investigate the large-deformation instability characteristics of such slopes. In pursuit of this objective, our study
first validates an adapted material point method through laboratory experiments. Subsequently, utilizing the inverse discrete
Fourier transform theory, boulders with varying shapes were synthesized and further transformed into material point method
models. Finally, the material point method was employed to analyse the impact of boulder position, shape, and incline on the
large deformation characteristics of the slope. The results show that: (1) The closer a boulder is to the plastic zone of the slope,
the stronger its reinforcement effect on the slope. (2) As the shape of boulders becomes more complex, the run-out distance
of the slope tends to decrease, but the variability in run-out distances increases. (3) The slope plastic zone moves around
the boulder, and its distribution undergoes alterations based on the boulder’s shape. This study investigates the instability
characteristics of large deformation in boulder slopes with varying boulder shapes, which provides a reference for the stability
assessment of solitary boulder slopes.
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List of symbols

vsI Velocity contributed by object s at nodeI
vlI Velocity contributed by object l at nodeI
nsI Outer normal unit vector of the boundary of object s at

nodeI
Dsl

I Actual distance of s and l at node I
d Cell size
λ Point-space coefficient
Dn Fourier descriptor
H Slope height (mm)
α Slope angle (°)
L Length of the slope crest (mm)
ρ Density (kg/m3)
E Elastic modulus (MPa)
ν Poisson’s ratio
c Cohesion (kPa)
ϕ Friction angle (°)
μ Friction coefficient
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1 Introduction

Granites often exhibit multiple sets of orthogonal joints,
which segment the rocks into distinct sections. Influenced
by exogenic forces, such as tectonic stress and chemical
weathering, these segments may undergo disparate weather-
ing processes, eventually giving rise to spheroidalweathering
formations known as boulders [1–3]. Boulders are a common
occurrence in warm and humid regions worldwide, includ-
ing western and southern Europe, southern Africa, southern
Asia, America, and Australia [4]. In hilly and mountainous
regions, boulders can become embedded on slopes, and the
presence of a substantial boulder on a slope can markedly
influence the slope’s stability, resulting in what is referred to
as a solitary boulder slope.

The geological hazards on slopes, such as rockfalls and
landslides, can vary depending on the degree of boulder expo-
sure. A boulder with high exposure is more susceptible to
rockfalls because of less support. This phenomenon has been
thoroughly studied by other researchers (Pérez-Rey et al. [5,
6]; Vann et al. [7], Gentilini et al. [8], and Morales et al.
[9]). On the other hand, a boulder with low exposure can
significantly influence the development and distribution of
the slope-sliding zone [10, 11]. Surprisingly, this scenario
has received relatively little attention in research. Li et al.
[12] used the FEM, and Liu et al. [13] used the FDM to
discuss the stability of a slope with a completely buried boul-
der. However, these numerical analysis methods often lead to
computational failure owing to grid distortionwhen the slope
deformation is significant, making it challenging to discuss
large-deformation failure characteristics such as slip area and
failure shape [14].

Furthermore, the original joints of granites are not always
entirely orthogonal and the weathering effect on the boul-
der is not uniform. Hence, the shapes of boulders vary,
including ellipsoids, slabs, and other irregular shapes [15,
16] (Fig. 1 displays three boulders with different shapes).
Previous studies often overlook these differenceswhen estab-
lishing boulder models [5, 7–9] or select a few boulders to

create digital models using digital image processing tech-
nology [6, 12, 13]. This prevailing approach hinders the
quantitative exploration of how the boulder’s appearance
characteristics affect the characteristics of slope instability.

With advancements in computational science, many new
technologies have been introduced in geotechnical engineer-
ing. Numerous new methods suitable for large deformation
analysis have been proposed [17–19]. Among them, the
material point method (MPM) [20, 21] can effectively avoid
computational failure caused by grid distortion and use tra-
ditional constitutive models of soil and rock. MPM has
gradually been applied to slope stability analysis [22, 23],
soil excavation [24], anchor pull-out [25], and many other
geotechnical engineering fields. Mollon et al. [26] created
a new method to generate particles with different shapes
based on inverse discrete Fourier transform (IDFT) theory.
Relevant researches [26–28] have also demonstrated that
Fourier descriptors enable accurate and quantitative control
of a particle’s elongation, convexity, and surface roughness.
These recent developments open up exciting possibilities
for investigating the instability characteristics in solitary
boulder slopes with large-deformations and for constructing
quantitative boulder models reflecting distinct appearance
characteristics.

Based on the above analysis, this study aimed to inves-
tigate the large-deformation instability characteristics of
solitary boulder slopes. First, the modified MPM program
was validated using laboratory tests. Second, based on the
IDFT, boulder models with different elongations, convexi-
ties, and surface roughnesses were quantitatively constructed
and placed on regular slopes. Third, these solitary boulder
slopes were discretised into MPM models by identifying
the soil-boulder boundary. Finally, the MPM program was
utilised to explore the influence of boulder position, shape,
and inclination degree on the slope run-out distance. The
large-deformation mechanisms of solitary boulder slopes
were revealed. This study contributes to the evaluation of
the solitary boulder slope stability.

Fig. 1 Photographs of three
boulders with different shapes

(a) Photograph of boulder 
one [15]

(b) Photograph of boulder 
two

(c) Photograph of boulder 
three
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Fig. 2 Schematic of the calculation process of MPM

2 Establishment of theMPM SlopeModel

2.1 Basic Principle of MPM

2.1.1 Calculation Framework of MPM

MPM combines Lagrange particles and Euler grids to
describe the problem domain. In each calculation step, the
particles and grids are connected to avoid the generation of
nonlinear convection terms. To prevent grid distortion, a new
background grid is created at the start of a new step [20, 21].

TheMPM calculation framework, as shown in Fig. 2 [29],
involves the following steps. (1) The material point informa-
tion is mapped onto background grids with applied boundary
conditions, as shown in Fig. 2a. (2) The motion equation
of the grid nodes is integrated by combining the boundary
and contact conditions, as shown in Fig. 2b. (3) The cal-
culated results are mapped back to the material points, as
shown in Fig. 2c. (4) The position and velocity of thematerial
points are updated, and the deformed meshes are discarded,
as shown in Fig. 2d.

2.1.2 Auxiliary Contact Algorithm

In MPM, the motion of objects is determined by the single-
value velocity field defined on background grids, and thus,
the non-slip contact is automatically satisfied [30]. How-
ever, if we want to consider the relative sliding or separation
between objects, we need to introduce a contact algorithm.
Bardenhagen et al. [31] first introduced a contact algorithm

Fig. 3 Schematic of the auxiliary contact algorithm

into MPM, and then many scholars [32, 33] made further
improvements to it.

As shown in Fig. 3, if both objects s and l contribute to
the momentum of node I , they may come into contact. When
the normal velocity of the node satisfies the condition [34]:

(vsI − vlI )n
s
I > 0 (1)

This indicates that the two objects are close to each other
and that additional contact force needs to be added [31].Here,
vsI is the velocity contributed by object s at nodeI , vlI is the
velocity contributed by object l at nodeI , and nsI is the outer
normal unit vector of the boundary of object s at nodeI .

However, Eq. (1) leads to false contact. Although two
objects in opposite directions have not actually contacted,
when their distance is less than twice the size of the back-
ground cell, Eq. (1) is satisfied.

As shown in Fig. 3, to solve this problem, it is necessary to
calculate the actual distance Dsl

I of two objects to assist the
judgment [34]; that is, it also needs to satisfy the condition:

Dsl
I ≤ λd (2)

where the point space coefficient λ is introduced to consider
the space area represented by the material point, and d is the
cell size.

This study used the MPM calculation program developed
by the School of Aerospace, Tsinghua University (https://
github.com/xzhang66/MPM3D-F90), which includes some
basic contact algorithms [30]. The authors added an auxiliary
contact judgment to avoid contact occurring earlier than the
actual time.
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Fig. 4 Schematic of the reconstruction process of the boulder

Fig. 5 Schematic of MPM
discretization

2.2 Reconstruction of the Boulder Model Based
on IDFT

The curve obtained by expanding the contour of the boulder
from its centroid can be treated as a time-domain signal in
the Fourier domain. According to the Fourier transform, by
manipulating discrete frequency-domain signals, it is pos-
sible to quantitatively synthesise a time-domain signal and
hence construct boulder models with different shapes [26].

In this study, there are 64 discrete frequency-domain sig-
nals, and their amplitudes are defined as Dn, which is a
Fourier descriptor [26]. Previous studies have shown that
controlling Dn can change the shape of the boulder. D0 and
D1 are fixed values, D2 controls the elongation of the boul-
der, and D3 to D7 control the convexity of the boulder. D8 to
D64 control the surface roughness of the boulder, and their
values are obtained from the empirical formulas [26–28]:

Dn � 2α·log2(n/3)+log2(D3), 3 < n < 8 (3)

Dn � 2β·log2(n/8)+log2(D8), n > 8 (4)

As shown in Fig. 4, discrete frequency-domain signals
are generated by controlling the values of D2, D3, and D8.
Subsequently, by manipulating these signals, a time-domain
signal is constructed to produce a boulder model.

2.3 Discrete of the Solitary Boulder Slope

To use MPM to simulate solitary boulder slopes, it is essen-
tial to discretise the model into an MPM model. This study
establishes the MPM model by identifying the soil-boulder
boundary. The main steps are as follows:

(1) As described in Sect. 3.1, the boulder is reconstructed by
Fourier transform, and the boulder model is then scaled
and placed on the slope as required, as shown in Fig. 5a.
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Fig. 6 Flow chart of the generation of the MPM model for the solitary boulder slope

(2) Material points are generated in a designated region
according to a predetermined coordinate sequence, as
shown in Fig. 5b.

(3) The region to which each material point belonged is
identified. If the generated material point belongs to the
boulder (blue point in Fig. 5), its attribute is recorded
as a boulder. If the generated material point belongs to
the soil, it is recorded as the soil (green point in Fig. 5).
If the generated material point does not belong to the
slope, it is disregarded (grey point in Fig. 5), as shown
in Fig. 5c.

(4) The recorded material points are then outputted to gen-
erate the MPM model of the slope, as shown in Fig. 5d.

The entire process for generating theMPMmodel is illus-
trated in Fig. 6.

3 Laboratory Model Tests

3.1 Test Scheme

To verify the reliability of the MPM program, four labo-
ratory tests on slope failure under gravity were conducted:
one homogeneous slope and three heterogeneous slopes. The
model box used in the tests is depicted in Fig. 7, and its inner
wall size was 1200 mm × 600 mm × 280 mm.
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Fig. 7 Model box

Fine gravelwith a particle size of 1mmwas used as the soil
for the tests. Three aluminium columnswith different section
shapes but 278 mm in height were used to simulate the boul-
ders. The friction angle was determined through the angle
of repose test (Fig. 8a), the friction coefficient was obtained
by pulling the aluminium rod using a spring scale (Fig. 8b),

and the density was calculated by measuring the weight and
volume ratio of the gravel (Fig. 8c). The remaining parame-
ters, which have a minimal impact on the calculation results,
were derived from relevant literature references [35–37]. The
specific material parameters and slope geometries are listed
in Tables 1 and 2, respectively.

3.2 Test Results

Four indicators were used to compare the results obtained
by laboratory tests and the MPM program: run-out distance,
influence distance, displacement of the aluminium column,
and slope shape after failure. Figure 9 illustrates that the
run-out distance is the length difference of the slope bottom
before and after slope failure, whereas the influence distance
is the length difference of the slope crest before and after
slope instability [38].

Table 3 presents the run-out distance, influence distance,
displacement of the aluminium column, and relative error
between them. Figure 10 shows the laboratory test results
and the MPM results, of which I shows the laboratory test
results, II shows the MPM results, and III shows the com-
parison between the tests and the MPM. In addition, there
were certain gaps between the aluminium columns and the
glass on both sides, and some pebbles may flow into these

Fig. 8 Measurements of the
material parameters

(a) Repose angle test (b) Friction coefficient test (c) Density measurement

Table 1 Values of material
parameters for tests Material Density Poisson’s

ratio [35]
Elastic
modulus
[36, 37]

Cohesion Friction
angle

Friction
coefficient

ρ(kg/m3) ν E(MPa) c(kPa) ϕ(°) μ

Gravel 1650 0.20 480 0 36.5 0.35

Aluminium 2700 0.33 70,000 – –

Table 2 Sizes of slope models

Numb Slope height Slope angle Length of the slope crest Boulder shape

H(mm) α (°) L(mm)

Test 1 495 66.5 400 No boulder

Test 2 495 66.5 400 Circle with the radius of 50 mm

Test 3 450 56.3 400 Square with the side length of 80 mm

Test 4 450 56.3 400 Regular hexagon with the side length of 50 mm
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Fig. 9 Schematic of the influence distance and the run-out distance

gaps during movement, and the pebbles in these gaps were
processed.

For the homogeneous slope, the results of the laboratory
test and MPM solution agreed very well. The relative errors
of the run-out distance and influence distance was no more
than 15%, which indicated that the adapted program can
simulate the large-deformation instability of a homogeneous
slope well. For a heterogeneous slope, the aluminium col-
umn divided the slope surface into two segments. The first
segment was in good agreement, whereas the second had
some deviations. Due to dimensional inaccuracies during the
fabrication of the model, the acrylic glass does not form a
perfectly smooth surface but rather exhibits some curvature.
This curvature introduces certain hindrances to the motion
of the aluminium column, and the hindering effect increases
as the aluminium column move over longer distances. This
may be a contributing factor to the larger errors observed in
the movement distances of the aluminium column and the
deformation of the second portion of the slope.

4 Numerical Analyses

4.1 Model Parameters

Boulders can vary greatly in size and shape owing to dif-
ferences in their formation environments, with some being

as small as 0.25 m and others larger than 23 m, and taking
on various shapes such as spheres, ellipsoids, and irregular
slabs [15, 16]. In this study, all boulders were assumed to
have an equivalent diameter of 8 m, which is defined as the
diameter of an area-equivalent circle. Boulder models are of
the stellate category, meaning that there is only one intersec-
tion point that radiates from the centroid to the contour of the
boulder. The Fourier descriptors D2, D3, and D8 of the boul-
ders used in this study ranged from 0.05 to 0.5, 0.01 to 0.25,
and 0.005 to 0.05, respectively. The geometric parameters of
the slope model used in this research is depicted in Fig. 11.

The model is assumed to be a plane strain model. The
bottom of the model was a fixed boundary, the top was a free
boundary, and the rest was a symmetric boundary. Instabil-
ity was caused solely by dead weight. The Drucker–Prager
model was employed to simulate both the soil and boulder,
with their material parameters provided in Table 4 [12]. To
balance accuracy and efficiency, the grid node spacing was
set to 0.20 m, whereas each cell was composed of four mate-
rial points. The point-space coefficient λ was set to 0.5.

4.2 Influence of the Boulder Position on Run-Out
Distance

This section uses five boulder models of different shapes, as
illustrated in Fig. 12. Each boulder was buried at the top,
middle, or bottom of the slope. The initial position of the
boulder centroidwas at the slope surface. The boulder located
at the top was then vertically displaced downward by 2 m,
4 m, 6 m, 8 m, 10 m, and 12 m. Similarly, the boulder located
at themiddle is displaced by 2m, 4m, 6m, 8m, and 10m, and
the boulder at the bottom is displaced by 2 m, 4 m, 6 m, and
8 m, resulting in a total of 18 positions for each boulder and
a total of 90 models for the five boulders. Figure 13 shows
the various positions of the boulders.

As shown in Fig. 14, different boulder positions have dif-
ferent effects on slope.

When the buried depth was shallow, the run-out distance
of the slopewith a higher positioned boulder was greater than
that with a lower boulder, as shown in Fig. 14a. There are two
primary reasons for this phenomenon. First, a boulder at a
higher position reinforces less of the soil. Second, a higher

Table 3 Results of the tests and the MPM solutions

Numb Run-out distance (m) Influence distance (m) Displacement of the boulder (m)

Test MPM Relative error Test MPM Relative error Test MPM Relative error

Test 1 0.460 0.520 13.04% 0.330 0.335 1.52% – – –

Test 2 0.430 0.485 12.79% 0.320 0.371 15.94% 0.278 0.359 29.14%

Test 3 0.270 0.317 17.40% 0.250 0.270 8.00% 0.182 0.224 23.08%

Test 4 0.260 0.328 26.15% 0.280 0.290 3.57% 0.215 0.257 19.53%
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Fig. 10 Comparisons of the tests and the MPM solutions

Fig. 11 Schematic of the slope
model
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Table 4 Values of material
parameters for numerical
analysis [12]

Material Density Elastic
modulus

Poisson’s
ratio

Cohesion Friction
angle

Friction
coefficient

ρ(kg/m3) E(MPa) ν c(kPa) ϕ(°) μ

Soil 2000 50 0.35 11 18 0.5

Boulder 2500 100,000 0.15 1000 38

Fig. 12 Five boulder models with different shapes

Fig. 13 Schematic of positions of
the boulder

boulder possesses more potential energy, which is released
in a more destructive manner when the slope becomes desta-
bilised.

When the buried depthwas large, the relationship between
the boulder height and run-out distance was less obvious, as
shown in Fig. 14a. This is because as the depth increases, the
boulder gradually moves away from the sliding zone of the
slope, and its reinforcement effect is continuously attenuated.
However, the extent of attenuation at different heights is not
equal.

For slopeswhere the boulderwas located at the top ormid-
dle, the relationship between the run-out distance and burial
depth followed a consistent trend, as shown in Fig. 14b and
c. With increasing burial depth, the run-out distance initially
decreased and then increased. It isworth noting that, for some
higher boulders, the run-out distance was larger than that of
the homogeneous slope. This phenomenon is attributed to
the fact that when the buried depth is shallow, the boulder
is located above the sliding zone, and slope instability may
be aggravated under the boulder’s gravitational force. As the

buried depth increases, the boulder approaches the sliding
zone first and then gradually moves away from it, which
initially enhances the strengthening effect of the boulder, fol-
lowed by a subsequent decrease.

For slopeswhere the boulderwas located at the bottom, the
run-out distance increased with increasing buried depth, but
was always less than that of the homogeneous slope, as shown
in Fig. 14d. This is because the boulder at the bottom can
reinforce the entire slope. However, with increasing burial
depth, the boulder gradually moves away from the sliding
zone, leading to a weakening of its reinforcement effect.

4.3 Influence of the Boulder Shape and Inclination
Degree on Run-Out Distance

As described in Sect. 3.2, themain indicators used to describe
the boulder shape are the elongation, convexity, and surface
roughness, which are controlled by Fourier descriptors D2,
D3, and D8, respectively. To isolate the impact of each indi-
vidual factor on the slope, the other descriptors were set to
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Fig. 14 Run-out distance of the slope when the boulder located at different positions

zero, and only the ith descriptor (where i is equal to 2, 3,
or 8) was changed. As shown in Fig. 15, 15 boulder mod-
els are generated. To eliminate the influence of the boulder
inclination angle, each boulder was rotated 30° for a cycle
(12 angles in total), resulting in 180 models. The centre of
each boulder was placed at the midpoint of the sliding zone.

Figure 16 displays a boxplot of run-out distance versus
Fourier descriptors Di, with grey points marking the mean
values of the run-out distance at different angles connected
by a solid line. The following observations were made from
the results shown in Fig. 16.

For boulders governed by D2, the mean value of the run-
out distance first slightly increased and then significantly
decreased. This is due to the two opposing factors involved in

the boulder influence: the normal interception of the boulder
for the soil and the tangential friction between the boulder
and two sides of the soil. As shown in Fig. 17, boulders with
a smallerD2 can intercept more widely, but their friction area
is smaller, while the boulders with largerD2 are the opposite
effect. Furthermore, the dispersion of the run-out distance
caused by the boulder inclination angle increased with an
increase in D2. This is because, when the angle between the
long axis of the boulder and the slope surface is close to 90°,
the reinforcement effect is stronger,which is significantly dif-
ferent when it is close to 0°. Moreover, elongation increases
divergence.
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Fig. 15 Fifteen boulder models
with different Di

Fig. 16 Run-out distance under
different boulder shapes

Fig. 17 Schematic of the reinforcement effect of the boulder

For boulders governed by D3, the run-out distance
decreased with increasing D3. This is because with the
increase inD3, the contact area and occlusion degree between
the boulder and soil increase, which improves the reinforce-
ment effect. In addition, owing to the higher uncertainty of
the complex shape, the dispersion of the run-out distance
increased with an increase in D3.

For boulders governed by D8, the run-out distance trend
was similar to that of boulders controlled by D3, and the
reasons is also similar.However, unlike convexity, the surface
roughness changesmore uniformly, causing the dispersion of
the run-out distance to change slightly.
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Fig.18 Distribution of the plastic zone of the slope under different buried depths

4.4 Mesoscopic Instability Characteristics
of the Slope

In this section, we discuss the influence of the instability
characteristics of a solitary boulder slope from two perspec-
tives: final distribution of the plastic zone and its development
process.

Figure 18 presents the final distribution of the plastic zone
under different boulder-buried depths.When the buried depth
is small, the boulder is positioned above the plastic zone,
providing almost no reinforcement effect on the slope and
even exacerbating instability (seen in Figs. 18a and b). As
the buried depth increases, the boulder gradually approaches
the sliding zone, causing the plastic zone to wrap around the
boulder [39, 40], which enhances the slope stability (seen in
Fig. 18c and d). However, when the buried depth continues
to increase, the boulder gradually moves under the slope-
sliding zone, and its reinforcement effect gradually weakens,
resulting in an increase in run-out distance (seen in Fig. 18e).

Figures 19, 20, 21 display the final distribution of the
slope plastic zone under boulders with different shapes. The
boulder alters the distribution of the slope plastic zone, and
an intermediate zone exists where the plastic strain is zero
(marked with a red circle in Fig. 19a), with the boulder’s
reinforcement primarily concentrated in this area. As shown
in Fig. 19, as the elongation increases, the intermediate zone
narrows, reflecting that the top of the boulder intercepts less
soil. From Figs. 20 and 21, the plastic strain fluctuation
around the boulder increaseswith the boulder’s convexity and
surface roughness, which explains the decrease in the run-out
distance with D3 and D8 increasing. However, because the
fluctuation caused by the surface roughness is uniform, the
dispersion of the run-out distance changes only slightly.

Figure 22 illustrates the change in the plastic zone over
time during the failure process of the slope. During insta-
bility, the plastic zone first appeared near the boulder and

bottom of the slope before expanding along the soil-boulder
interface. The plastic zone then further developed to the top
of the slope, ultimately leading to transfixation. In practice,
it is crucial to reinforce the areas near the bottom of the slope
and the boulder.

5 Discussion

In this study, numerous MPM models of solitary boulder
slopeswere generated using IDFT and boundary recognition.
The instability characteristics of the slopes were analysed
using a modified MPM program. However, some areas still
require further improvement.

Firstly, to simplify the establishment of boulder mod-
els and improve the calculation efficiency, all models were
assumed to be plane strain models. This simplification of the
three-dimensional problem may lead to deviations from the
actual situation and therefore needs to be addressed in future
research.

Secondly, while this study only considered the impact of
solitary boulders on slope stability, there may be smaller
stones around the boulder that can also contribute to insta-
bility. Further research is needed to investigate the impact of
smaller stones on slope stability.

Thirdly, the slope instability in this study only consid-
ered the effect of dead weight, whereas other factors, such as
earthquakes and rainfall, can also lead to instability. These
factors should be the focus of future research.

Fourthly, when the continuous model was discretised into
an MPM model, the shape of the model may be distorted,
depending on the number of material points used. Increasing
the number of material points significantly reduces computa-
tional efficiency. Thus, the calculation efficiency of theMPM
program must be further improved to enable the calculation
of more detailed models.
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Fig.19 Distribution of the plastic zone of the slope under different D2
Fig.20 Distribution of the plastic zone of the slope under different D3
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Fig.21 Distribution of the plastic zone of the slope under different D8

Lastly, the boulder models generated in this paper are of
the stellate category, meaning that there is only one intersec-

tion point that radiates from the centroid to the contour of the
boulder. This limitation requires further study regarding the
generation of more complex boulders.

6 Conclusions

This study aimed to explore the influence of solitary boulders
on slope stability by using a modified MPM program. First,
laboratory tests were performed to verify the accuracy of the
program. Subsequently, boulder models with various shapes
were generated using IDFT and incorporated into the slope
asMPMmodels through boundary identification. Finally, the
program was used to investigate the large-deformation char-
acteristics of the slope at different boulder positions, shapes,
and inclinations. The research findings are summarised as
follows:

(1) Boulder at a lower position and closer to the slope-
sliding zone enhances the reinforcement effect, resulting
in improved slope stability.

(2) The boulder’s reinforcement effect is due to its normal
interception and tangential friction. Increasing the con-
tact area and degree of occlusion between the boulder
and soil can enhance slope stability.

(3) For boulders controlled by elongation and convexity, the
dispersionof the run-out distance causedbyvariations in
the boulder inclination angle increases with increasing
shape complexity. In contrast, for boulders controlled by
surface roughness, where the surface roughness changes
uniformly, the dispersion of the run-out distance is not
significantly affected.

(4) On a solitary boulder slope, the slope plastic moves
around the boulder. However, this effect decays when
the distance between the boulder and the sliding zone
increases. Even if the boulder is located above the slid-
ing zone, the slope run-out distance may be greater than
that of a homogeneous slope.

Although this study has yielded valuable insights, it still
exhibits certain limitations. In the future, further refinement
of theMPMprogramwill be essential to improve its precision
and efficiency. Additionally, improvements are required in
the boulder generation procedure to create complex boulders
with multiple centres.
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Fig. 22 Development of the plastic zone overtime
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